Image Processing 1, Exercise 1

1 Inner Products

[basic] Computing the inner product of two functions is a basic skill in image processing. This exercise will make you practice and help you better understand the properties of inner products.

- (a) Compute the inner product (which for each of the spaces can be found in the course notes) between the following functions.
 - i. $f, g \in L_2(\mathbb{R}^2)$,

$$f(x,y) = \operatorname{rect}\left(\frac{x}{2}\right)\operatorname{rect}\left(\frac{1}{2} + y\right); g(x,y) = \operatorname{rect}\left(\frac{y}{2}\right)\operatorname{rect}\left(\frac{1}{2} + x\right).$$

Hint: The function rect is defined in the table "Useful 1D Fourier-transform pairs" provided in the IP1 Appendix (on moodle).

ii. $f, g \in L_2(\mathbb{R}^2)$,

$$f(x,y) = \cos(2\pi x) \operatorname{rect}\left(\frac{x}{2}\right) \operatorname{rect}(y); g(x,y) = \operatorname{rect}\left(\frac{x}{3}\right) \operatorname{rect}\left(\frac{y}{2}\right).$$

iii. $f, g \in \ell_2(\mathbb{Z})$, where \bigcap here indicates the value of the sequence at the reference index k = 0.

$$f = \{ \cdots \ 0 \ 0 \ 0 \ 1 \ 2 \ 5 \ 1 \ 2 \ 0 \ 0 \cdots \}$$
$$q = \{ \cdots \ 0 \ 0 \ 1 \ 3 \ 2 \ 4 \ 0 \ 9 \ 2 \ 0 \cdots \}.$$

- (b) Show that the following definitions of $\langle \cdot, \cdot \rangle$ do not represent \mathcal{H} -inner products.
 - i. $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1^*$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^2$, $\boldsymbol{x} = (x_1, x_2)$, $\boldsymbol{y} = (y_1, y_2)$. Hint: which vectors will have $\langle \boldsymbol{x}, \boldsymbol{x} \rangle = 0$?
 - ii. $\langle f, g \rangle = \int_0^1 \dot{f}(x)(\dot{g}(x))^* dx$, where $f, g \in L_2(\mathbb{R})$ and $\dot{f} = \frac{df}{dx}$.

2 Linearity and shift-invariance properties

[basic] Linear and shift-invariant systems are fundamental to image processing. This exercise will help you determine if a given operator is shift-invariant and eventually linear.

- (a) An optical system \mathcal{T} is said to be *additive* if $\mathcal{T}\{f+g\} = \mathcal{T}\{f\} + \mathcal{T}\{g\}$, and *homogeneous* if $\mathcal{T}\{\lambda f\} = \lambda \mathcal{T}\{f\}$. Show that a system is linear iff it is additive and homogeneous.
- (b) Let \mathcal{T}_3 be defined as the combination of \mathcal{T}_1 and \mathcal{T}_2 , such that $\mathcal{T}_3\{f\} = \mathcal{T}_2\{\mathcal{T}_1\{f\}\}$, where f is an image. Show that \mathcal{T}_3 is linear and shift invariant if \mathcal{T}_1 and \mathcal{T}_2 are linear and shift invariant.
- (c) Determine if the following standard operators \mathcal{T} are linear, where $a = \{a_1, \dots, a_N\}$:
 - i. Mean

$$\mathcal{T}\{a\} = \{\mu, \dots, \mu\}, \text{ where } \mu = \sum_{k=1}^{N} a_k$$

ii. Median (N is an odd number.)

$$\mathcal{T}{a} = {\zeta, \dots, \zeta}, \text{ where } \zeta = b_{(N+1)/2}$$

where $b_k = a_{\tau(k)}, b_1 \leq \cdots \leq b_N$, and $\tau(k)$ is a permutation that sorts the a_k .

iii. Gamma correction

$$\mathcal{T}\{a\} = \{a_1^{\gamma}, \dots, a_N^{\gamma}\}$$
 where $\gamma > 0 \ (\gamma \neq 1)$ is a constant.

$$\mathcal{T}\{a\} = \{a_N, a_{N-1} \dots, a_2, a_1\}$$

$$\mathcal{T}\{a\} = \{B_T(a_1), \dots, B_T(a_N)\},\$$

where
$$B_T(x) = \begin{cases} 0 & x < T \\ 1 & x \ge T, \end{cases}$$
 and T is a constant.

(d) Determine if the following linear systems $\mathcal T$ are shift-invariant

i.
$$\mathcal{T}{f}(x,y) = f(x+3/2,y-5)$$

ii.
$$\mathcal{T}\{f\}(x,y) = f(-x,-y)$$

iii.
$$\mathcal{T}{f}(x,y) = f(2x,y/2)$$