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Introduction

Short Summary:

« Architecture: Introduces Policies Modulating
Trajectory Generators (PMTG), combining
simple policy with a Trajectory Generator (TG).

Amplitude

Executive Summary:

*Robot Type: Quadruped robot

«Control Method: A combined control approach where
a learned policy modulates a predefined TG. The
learned policy can influence parameters of the TG.

*Design Method: The TG design is based on a hand-
tuned approach , and the policy is trained via a
Proximal policy optimization (PPO)

*Gait Types: Walking, running, and bounding gaits
were tested.

*Sensors Used: 4-dimensional IMU reading, which
includes angular velocity and robot orientation
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PMTG General Architecture
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« PMTG architecture focuses on the interaction between a learned policy and a predefined TG

« The architecture incorporates prior knowledge through a parameterized TG that operates
separately from the learned policy.

« The TG, as a stateful module, generates motor actions based on internal states and adjustable
parameters.

« The policy modulates these parameters and can directly correct TG outputs, while observing
the TG’s state

* This setup uses a feed-forward Neural Network (NN) for the policy
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Technical Highlights

Adaptation on Quadruped Locomotion
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« Inputs: The policy receives observations (s), desired velocity, and TG phase (phitg) at

each timestep.

« TG Parameters: Computes frequency (ftg), amplitude (atg), and walking height (htg) for

the TG.

« Leg Actions: Calculates eight actions for leg positions (ufb), added to TG’s calculated leg

positions (utg).

« Control Tracking: Motor positions are tracked by Proportional-Derivative controllers.
« Time Modulation: Policy-controlled frequency allows flexible, time-independent

modulation of the TG phase.
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The phase of the trajectory generator (between 0 and 27) is defined as:
G = Pr—1 + 27 frg At mod 2,

where f;, defines the frequency of the trajectory generator. In PMTG architecture, f;, is selected
by the policy at each time step as an action.

eIl Cs + aygcos(t’)
Yto = | B(t) hig + Aesin(t’) + Ocos(t')

e S(t), and F(t) are respectively the swing and extension of the leg as shown in Fig. 4.
e (, defines the center for the swing DOF and extension DOF (in radians).

® N4 defines the center for the extension DOFE. Extension is represented in terms of rotation
of the two motors in the opposite direction, hence the unit is also radians. Since all legs
share the same h, it corresponds to the walking height of the robot.

e «y, defines the amplitude of the swing signal (in radians). This corresponds to the size of
a stride during locomotion.

e A, defines the amplitude of the extension during swing phase. This corresponds to the
ground clearance of the feet during the swing phase.

e () defines the extension difference between when the leg is at the end of the swing and when
the leg is at end of the stance. This is mostly useful for climbing up or down.

We compute ' based on the swing and stance phases: For each leg, the phase is calculated separately as

j : ; Oleg = Pr + A mod 27,
f" — {2((1)‘124,8) if 0< (fjlcg < 271-6; leg t leg

(27— die) . where A¢y, represents the phase difference of this leg compared to the first (left front) leg. This is
2 — Tkg otherwise, defined by the selected gait (i.e. walking vs bounding).

where [ defines the proportion of the duration of the swing phase to the stance phase.
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Process

« Training Algorithm: Evolutionnary Strategies (ARS) / Reinforcement Learning
(PPO)

* Gradually increasing speed from 0 m/s to v,,,, and decrease itto O

« Add of random perturbations (vertical up to 60 N/ horizontal up to 10 N) to favor
robustness

* Policy Complexity
o Simple Linear Policy (ES-Lin)
o Two-Layer Fully Connected Network (PPO)

Reward Function

Vmax - maximum desired 5
velocity _(vr—vT)
Vg : robot's actual velocity R = vmaxe  2vmax
V1 : robot's target velocity
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Separate Tasks
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« Slow Walking (up to 0.4 m.s?) (a) Leg phases of TG for walking and running.
« Fast Walking (up to 0.8 m.s?) | |
» Bounding Lo .

B i | I | 2

(b) Leg phases of TG for bounding.
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Training

Learning with and without PMTG
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« Comparison between PMTG and
Vanilla (i.e. removal of TG)
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Results

Single Run after Training
o Therobot can track well the desired

speed.

The policy significantly modulates
both the amplitude (which commands
stride length) and the frequency of the
gait depending on the desired speed.

It does not necessarily indicate leg
movement, as a correction term can

be added by the policy.

The motion of the leg is periodic, but
the shape of the signal changes
significantly depending on the
Sspeed.
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Learning Quadrupedal Locomotion over Challenging Terrain (ETHZ)
Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, Marco Hutter

» PMTG architecture used to control the ANYmal.
o Use of temporal convolutional network (TCN) instead of a feed-forward Neural
Network in the control policy.
= Proprioceptive memory for robustness without vision.
o Training of the policy using a Teacher model that has access to privileged
information (contact forces, terrain profile, disturbances, ...).
o Training on more difficult terrain as the model learns in addition to external

disturbances.
o Robot control uses direction of travel instead of speed.
= Can adapt the speed depending on the terrain.

=  Omnidirectional.

(More information on the 3rd of December with gr 31)


https://arxiv.org/search/cs?searchtype=author&query=Lee,+J
https://arxiv.org/search/cs?searchtype=author&query=Hwangbo,+J
https://arxiv.org/search/cs?searchtype=author&query=Wellhausen,+L
https://arxiv.org/search/cs?searchtype=author&query=Koltun,+V
https://arxiv.org/search/cs?searchtype=author&query=Hutter,+M

L

Pros

» Simple architecture
o 1- or 2-layer Feedforward NN
control policy.
o Motion tracking with PD controller

» Locomotion with walking/running gaits
and bounding gaits

» Quick training of the policy.

12

Cons

> Unidirectional control

» Very simple simulation training, so no
adaptation depending on the terrain.

» Blind controller (IMU) is an excellent
basis for locomotion, but it is restricted
by the topography (no cliffs, lakes, ...)
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Experiments

https://www.youtube.com/watch?v= 6SbXK4i0mY&ab channel=Atillscen

13


https://www.youtube.com/watch?v=_6SbXK4i0mY&ab_channel=AtilIscen
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B WELCOME TO EPFL

Possible exam gquestions

1) In the context of quadruped locomotion, which parameters of the
Trajectory Generator (TG) are adjusted by the policy at each time
step?

o Slide5

2) Why is the use of a simple linear policy sufficient to learn complex
behaviour when using a PMTG?
o Thisis because the PMTG reduces the complexity of the learning task by encoding

prior knowledge in the trajectory generator (TG), allowing the policy to learn complex
behaviour with a simple linear structure. (Slide 9)

-
'Y

Speaker
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