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=PrL Introduction

C Presents an imitation learning framework
Motivation that allows legged robots to learn agile and
. | diverse locomotion skills by imitating real-
world animal behaviours.

Motivation:
Manual control strategies:

oRequire dynamic modelling and robotics
expertise

oRequire deep understanding of the
movement

Animals can perform impressive feats of agility. oHave limited flexibility and efficiency in
replicating complex movement
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=PrL
Proposed Solution

Imitation learning: Leverages animals’ motion data to teach robots through
simulation

Domain Adaptation: Bridges the gap between simulation and real-world
deployment

oRobot used: Quadruped robot (Laikago)

oControl type: Reinforcement learning
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=Pi-L

Design Method Overview

= Motion Retargeting

= Motion Imitation

= Domain Adaptation
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cPrL
Motion Retargeting

= Differences between the subject’s and the robot’s morphologies.
= Define a set of keypoints on the hips and the feet for both.

= Define a direct mapping between the keypoints.

= Then choose the joints of the robots that minimize the objective:

= argminY; Y;|12;(®) — x;()I| + (G- PTW (@ — q)
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EPFL
Motion Imitation as an RL problem (1)

= Learn a control policy = that maximizes its expected return for some task:

J(m) = Er~p(r|n) [Zz::_(} Vtrt]
= To do so: Atevery t:

= Sample an action a;~m(a;|s;) which results in state s;, .
= Compute reward r: = r(S¢, At, Sgrq1)-
= At every time-step this results in a trajectory: t = {(sg, agy, 19), (51, a1, 7)), ... }

= Note:

p(z|m) = p(so) HZ:=_1 p(ses1lse ar) m(aelse)
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=PFL
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Motion Imitation as an RL problem (2)

s; = (q¢—2.¢, ap—3..—1): Last three joint positions and actions.

g: IMU measurements, (row, pitch, yaw).

We introduce to the policy desired goal poses:

9t = Gt+1, Gt+2, Gr+10, Ge+30): Four desired poses spanning 1s.
With this we now sample actions: a, = w(a;|s;, g¢).

Reward function is defined as:

r, = 0.5 + 0.057 + 0.2r¢ + 0.157,° + 0.1

The different reward terms are defined as:

~ . 12
rtk=exp<—a2|lk{g—k§| ),a>0.
i




EPFL
Domain Adaptation and Domain Randomization

= To transfer to real world, the main challenge is that the dynamics are different
from the simulator’s dynamics.

= u: vector of dynamics parameters.

= Randomly generate multiple u, and train policies over different dynamics -
Domain Randomization.

= z~FE(z|u): Latent space features of the dynamics, trained using a stochastic
encoder - Domain Adaptation.

= At every time step, a search is performed where an optimal z* is found.

= Ecole = This representation is fed to the policy network.
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=PrL
Potential Issue and fix:

= The issue at hand is the model might overfit by assuming z is too
accurate of a representation of the system dynamics.

= Due to unmodeled effects, no vector would be a perfect representation.

= Fix: Add a regularization term to the amount of mutual information the
model can access to z and u. We get the following optimization
problem:

T-1
argmax E/,L~p(/,L)Ez~E(z|u)E‘c~p(r|7t,u,z) [Zt Vtrt] _ IBEu~p(u) [DKL [E(Zl.u) | |p(Z)]]
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=PrL
Regularizing the mutual information

= The additional term acts as a regularization over the mutual information
between the dynamic parameters and their latent representation.

= The D_KL divergence acts as a distance measure between E and a variational
prior p(z).

= f3: Acts as a tradeoff between robustness and adaptability. For higher values,
the optimizer would not look into as much information between mu and z,
therefore we get closer to domain randomization. For lower values, we are in a
domain adaptation setup. Hence, for moderate values of beta, we get the best
of both worlds.
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cPrL
Overview of Policy Types

= Policy Types Compared
1. No Rand (Non-Adaptive, No Randomness )
Trained without dynamic variation; performs consistently in a fixed environment.

2. Robust (Robust with Randomness)

Trained with randomized dynamics for better resistance to variations but lacks
adaptability in new conditions.

3. Adaptive before (Adaptive Policy)

Adjusts actions to the real-world environment, enhancing stability and
performance

4. Adaptive After (Adaptive with information Bottleneck)

Limits access to precise dynamic information with optimal f, improving
robustness while allowing flexible adaptation.
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EPFL
Experimental Methodology

= Two-step Procedure

1. Simulation

Trained in PyBullet with mocap data from dogs and artist-created animation.

2. Transfer to Real World
Each Policies tested on the physical robot
oUniform Evaluation

Normalized Return: Policies scored on a normalized scale from O to 1 for

objective comparison.
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cPrL
Real-World Adaptation

= Experimental Results
o Learned Locomotion Skills

Policy Performance (Real World)
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Caption: A showcase of various locomotion skills acquired by Laikago, including pacing, trotting, and
backward movements. The figure compares performance across policies, demonstrating the advanced

= Ecole abilities of adaptive policies.
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Adaptability and Performance in Diverse Environments

= Experimental Results
o Performance Across Simulated Environments
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Caption: Performance of each policy type
across multiple simulated environments
with varied dynamics. Adaptive policies
show higher robustness by achieving
better results in a larger proportion of
these environments.



cPrL
Adaptability and Performance in Diverse Environments

= Experimental Results
o Adaptation Across Varied Environments
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Caption: Learning curves of policies across five new environments, showing quick adaptation.
Adaptive policies with an information bottleneck adjust efficiently to changing conditions.
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=PrL
Accelerated Video of Results

= Highlights

Results
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EPFL
Pros and Cons

* Pros
olncreased efficiency with dynamic skills

olmproved adaptability to various

environments
o Easier real-world implementation

o Better performance compared to

manufacturing
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= Cons

oLimited by hardware and algorithmic

constraints

oLess stability compared to top manual

controllers

o Still constrained by real-world limitations



cPrL
Influence on the Robotics Community

= Kumar, Ashish & Fu, Zipeng & Pathak, Deepak & Malik, Jitendra. (2021).
RMA: Rapid Motor Adaptation for Legged Robots.
10.48550/arXiv.2107.04034.

= LI, He & Yu, Wenhao & Zhang, Tingnan & Wensing, Patrick. (2022). Zero-
Shot Retargeting of Learned Quadruped Locomotion Policies Using Hybrid
Kinodynamic Model Predictive Control. 11971-11977.
10.1109/IROS47612.2022.9981967.

= Klipfel, Arnaud & Sontakke, Nitish & Liu, Ren & Ha, Sehoon. (2023).
Learning a Single Policy for Diverse Behaviors on a Quadrupedal Robot
Using Scalable Motion Imitation. 2768-2775.
10.1109/IROS55552.2023.10341709.
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EPFL
Two possible exam questions

= What are the steps for motion retargeting ?

= Propose a domain adaptation to decrease the gap between simulation and

Real World. What is a potential issue to this method, and how would you fix
it?
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