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Introduction

Presents an imitation learning framework 
that allows legged robots to learn agile and 
diverse locomotion skills by imitating real-
world animal behaviours.

Motivation:

Manual control strategies:

oRequire dynamic modelling and robotics 
expertise

oRequire deep understanding of the 
movement

oHave limited flexibility and efficiency in 
replicating complex movement



Proposed Solution

Imitation learning: Leverages animals’ motion data to teach robots through 
simulation

Domain Adaptation: Bridges the gap between simulation and real-world 
deployment

oRobot used: Quadruped robot (Laikago)

oControl type: Reinforcement learning



Design Method Overview

▪ Motion Retargeting 

▪ Motion Imitation

▪ Domain Adaptation



Motion Retargeting

▪ Differences between the subject’s and the robot’s morphologies.
▪ Define a set of keypoints on the hips and the feet for both.
▪ Define a direct mapping between the keypoints.
▪ Then choose the joints of the robots that minimize the objective:
▪ arg min σ𝑖 σ𝑖 ො𝑥𝑖 𝑡 − 𝑥𝑖 𝑞 + ത𝑞 − 𝑞 𝑇𝑊(ത𝑞 − 𝑞)



Motion Imitation as an RL problem (1)

▪ Learn a control policy 𝜋 that maximizes its expected return for some task:

 

    𝐽 𝜋 = 𝐸𝜏~𝑝(𝜏|𝜋)[σ𝑡=0
𝑇−1 𝛾𝑡𝑟𝑡]

▪ To do so: At every t:

▪ Sample an action 𝑎𝑡~𝜋(𝑎𝑡|𝑠𝑡) which results in state 𝑠𝑡+1.

▪ Compute reward 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

▪ At every time-step this results in a trajectory: 𝜏 = { 𝑠0, 𝑎0, 𝑟0 , 𝑠1, 𝑎1, 𝑟1 , … } 

▪ Note:

   
   𝑝 𝜏 𝜋 = 𝑝(𝑠0) ς𝑡=0

𝑇−1 𝑝 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡  𝜋(𝑎𝑡|𝑠𝑡)



▪ 𝑠𝑡 = 𝑞𝑡−2:𝑡 , 𝑎𝑡−3:𝑡−1 : Last three joint positions and actions.

▪ q: IMU measurements, (row, pitch, yaw).

▪ We introduce to the policy desired goal poses: 

▪ 𝑔𝑡 = ො𝑞𝑡+1, ො𝑞𝑡+2, ො𝑞𝑡+10, ො𝑞𝑡+30 : Four desired poses spanning 1s.

▪ With this we now sample actions: 𝑎𝑡 = 𝜋 𝑎𝑡 𝑠𝑡 , 𝑔𝑡 .

▪ Reward function is defined as: 

▪ 𝑟𝑡 = 0.5𝑟𝑡
𝑝

+ 0.05𝑟𝑡
𝑣 + 0.2𝑟𝑡

𝑒 + 0.15𝑟𝑡
𝑟𝑝

+ 0.1𝑟𝑡
𝑟𝑣

▪ The different reward terms are defined as: 

𝑟𝑡
𝑘 = exp −𝑎 ෍

𝑖

||෠𝑘𝑡
𝑖 − 𝑘𝑡

𝑖| ቚ
2

, 𝑎 > 0.

Motion Imitation as an RL problem (2)



▪ To transfer to real world, the main challenge is that the dynamics are different 

from the simulator’s dynamics. 

▪ 𝜇:  𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 

▪ Randomly generate multiple 𝜇, and train policies over different dynamics → 

Domain Randomization.

▪ z~𝐸 𝑧|𝜇 : Latent space features of the dynamics, trained using a stochastic 

encoder → Domain Adaptation.

▪ At every time step, a search is performed where an optimal z* is found.

▪ This representation is fed to the policy network.

Domain Adaptation and Domain Randomization



𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝜇~𝑝(𝜇)𝐸𝑧~𝐸(𝑧|𝜇)𝐸𝜏~𝑝(𝜏|𝜋,𝜇,𝑧) ෍
𝑡

𝑇−1

𝛾𝑡𝑟𝑡 − 𝛽𝐸𝜇~𝑝 𝜇 [𝐷𝐾𝐿[𝐸 𝑧 𝜇 ||𝜌(𝑧)]]

▪ The issue at hand is the model might overfit by assuming z is too 

accurate of a representation of the system dynamics. 

▪ Due to unmodeled effects, no vector would be a perfect representation.

▪ Fix: Add a regularization term to the amount of mutual information the 

model can access to z and 𝜇.  We get the following optimization 

problem: 

Potential Issue and fix:



▪ The additional term acts as a regularization over the mutual information 

between the dynamic parameters and their latent representation.

 

▪ The D_KL divergence acts as a distance measure between E and a variational 

prior p(z).

▪ 𝛽: Acts as a tradeoff between robustness and adaptability. For higher values, 

the optimizer would not look into as much information between mu and z, 

therefore we get closer to domain randomization. For lower values, we are in a 

domain adaptation setup. Hence, for moderate values of beta, we get the best 

of both worlds.

Regularizing the mutual information



▪Policy Types Compared
1. No Rand (Non-Adaptive, No Randomness )

Trained without dynamic variation; performs consistently in a fixed environment.

2. Robust (Robust with Randomness)
Trained with randomized dynamics for better resistance to variations but lacks 
adaptability in new conditions.

3. Adaptive before (Adaptive Policy) 
Adjusts actions to the real-world environment, enhancing stability and 
performance

4. Adaptive After (Adaptive with information Bottleneck)
Limits access to precise dynamic information with optimal 𝛽, improving 
robustness while allowing flexible adaptation.

Overview of Policy Types



▪Two-step Procedure

1. Simulation

Trained in PyBullet with mocap data from dogs and artist-created animation.

2. Transfer to Real World

Each Policies tested on the physical robot

oUniform Evaluation

 Normalized Return: Policies scored on a normalized scale from 0 to 1 for 

       objective comparison.

Experimental Methodology



▪Experimental Results 
o Learned Locomotion Skills

Real-World Adaptation

Caption: A showcase of various locomotion skills acquired by Laikago, including pacing, trotting, and 

backward movements. The figure compares performance across policies, demonstrating the advanced 

abilities of adaptive policies.



▪Experimental Results 
o Performance Across Simulated Environments

Adaptability and Performance in Diverse Environments

Caption: Performance of each policy type 

across multiple simulated environments 

with varied dynamics. Adaptive policies 

show higher robustness by achieving 

better results in a larger proportion of 

these environments.



▪Experimental Results 
o Adaptation Across Varied Environments

Adaptability and Performance in Diverse Environments

Caption: Learning curves of policies across five new environments, showing quick adaptation. 

Adaptive policies with an information bottleneck adjust efficiently to changing conditions.



▪Highlights

Accelerated Video of Results



▪ Pros

oIncreased efficiency with dynamic skills

oImproved adaptability to various 

environments

oEasier real-world implementation

oBetter performance compared to 

manufacturing

Pros and Cons 

▪Cons

oLimited by hardware and algorithmic 

constraints

oLess stability compared to top manual 

controllers

oStill constrained by real-world limitations
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▪ Kumar, Ashish & Fu, Zipeng & Pathak, Deepak & Malik, Jitendra. (2021). 
RMA: Rapid Motor Adaptation for Legged Robots. 
10.48550/arXiv.2107.04034. 
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▪ Klipfel, Arnaud & Sontakke, Nitish & Liu, Ren & Ha, Sehoon. (2023). 
Learning a Single Policy for Diverse Behaviors on a Quadrupedal Robot 
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Two possible exam questions

▪ What are the steps for motion retargeting ?

▪ Propose a domain adaptation to decrease the gap between simulation and 
Real World. What is a potential issue to this method, and how would you fix 
it?
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