
Learning Agile Robotic Locomotion Skills by
Imitating Animals

Leen Daher
Marc Mouawad

Matteo Mesa Gonzalez

MICRO-507 – Legged Robots

Introduction

Presents an imitation learning framework
that allows legged robots to learn agile and
diverse locomotion skills by imitating real-
world animal behaviours.

Motivation:

Manual control strategies:

oRequire dynamic modelling and robotics
expertise

oRequire deep understanding of the
movement

oHave limited flexibility and efficiency in
replicating complex movement

Proposed Solution

Imitation learning: Leverages animals’ motion data to teach robots through
simulation

Domain Adaptation: Bridges the gap between simulation and real-world
deployment

oRobot used: Quadruped robot (Laikago)

oControl type: Reinforcement learning

Design Method Overview

▪ Motion Retargeting

▪ Motion Imitation

▪ Domain Adaptation

Motion Retargeting

▪ Differences between the subject’s and the robot’s morphologies.
▪ Define a set of keypoints on the hips and the feet for both.
▪ Define a direct mapping between the keypoints.
▪ Then choose the joints of the robots that minimize the objective:
▪ arg min σ𝑖 σ𝑖 ො𝑥𝑖 𝑡 − 𝑥𝑖 𝑞 + ത𝑞 − 𝑞 𝑇𝑊(ത𝑞 − 𝑞)

Motion Imitation as an RL problem (1)

▪ Learn a control policy 𝜋 that maximizes its expected return for some task:

 𝐽 𝜋 = 𝐸𝜏~𝑝(𝜏|𝜋)[σ𝑡=0
𝑇−1 𝛾𝑡𝑟𝑡]

▪ To do so: At every t:

▪ Sample an action 𝑎𝑡~𝜋(𝑎𝑡|𝑠𝑡) which results in state 𝑠𝑡+1.

▪ Compute reward 𝑟𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1).

▪ At every time-step this results in a trajectory: 𝜏 = { 𝑠0, 𝑎0, 𝑟0 , 𝑠1, 𝑎1, 𝑟1 , … }

▪ Note:

 𝑝 𝜏 𝜋 = 𝑝(𝑠0) ς𝑡=0

𝑇−1 𝑝 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡 𝜋(𝑎𝑡|𝑠𝑡)

▪ 𝑠𝑡 = 𝑞𝑡−2:𝑡 , 𝑎𝑡−3:𝑡−1 : Last three joint positions and actions.

▪ q: IMU measurements, (row, pitch, yaw).

▪ We introduce to the policy desired goal poses:

▪ 𝑔𝑡 = ො𝑞𝑡+1, ො𝑞𝑡+2, ො𝑞𝑡+10, ො𝑞𝑡+30 : Four desired poses spanning 1s.

▪ With this we now sample actions: 𝑎𝑡 = 𝜋 𝑎𝑡 𝑠𝑡 , 𝑔𝑡 .

▪ Reward function is defined as:

▪ 𝑟𝑡 = 0.5𝑟𝑡
𝑝

+ 0.05𝑟𝑡
𝑣 + 0.2𝑟𝑡

𝑒 + 0.15𝑟𝑡
𝑟𝑝

+ 0.1𝑟𝑡
𝑟𝑣

▪ The different reward terms are defined as:

𝑟𝑡
𝑘 = exp −𝑎 ෍

𝑖

||෠𝑘𝑡
𝑖 − 𝑘𝑡

𝑖| ቚ
2

, 𝑎 > 0.

Motion Imitation as an RL problem (2)

▪ To transfer to real world, the main challenge is that the dynamics are different

from the simulator’s dynamics.

▪ 𝜇: 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠.

▪ Randomly generate multiple 𝜇, and train policies over different dynamics →

Domain Randomization.

▪ z~𝐸 𝑧|𝜇 : Latent space features of the dynamics, trained using a stochastic

encoder → Domain Adaptation.

▪ At every time step, a search is performed where an optimal z* is found.

▪ This representation is fed to the policy network.

Domain Adaptation and Domain Randomization

𝑎𝑟𝑔𝑚𝑎𝑥 𝐸𝜇~𝑝(𝜇)𝐸𝑧~𝐸(𝑧|𝜇)𝐸𝜏~𝑝(𝜏|𝜋,𝜇,𝑧) ෍
𝑡

𝑇−1

𝛾𝑡𝑟𝑡 − 𝛽𝐸𝜇~𝑝 𝜇 [𝐷𝐾𝐿[𝐸 𝑧 𝜇 ||𝜌(𝑧)]]

▪ The issue at hand is the model might overfit by assuming z is too

accurate of a representation of the system dynamics.

▪ Due to unmodeled effects, no vector would be a perfect representation.

▪ Fix: Add a regularization term to the amount of mutual information the

model can access to z and 𝜇. We get the following optimization

problem:

Potential Issue and fix:

▪ The additional term acts as a regularization over the mutual information

between the dynamic parameters and their latent representation.

▪ The D_KL divergence acts as a distance measure between E and a variational

prior p(z).

▪ 𝛽: Acts as a tradeoff between robustness and adaptability. For higher values,

the optimizer would not look into as much information between mu and z,

therefore we get closer to domain randomization. For lower values, we are in a

domain adaptation setup. Hence, for moderate values of beta, we get the best

of both worlds.

Regularizing the mutual information

▪Policy Types Compared
1. No Rand (Non-Adaptive, No Randomness)

Trained without dynamic variation; performs consistently in a fixed environment.

2. Robust (Robust with Randomness)
Trained with randomized dynamics for better resistance to variations but lacks
adaptability in new conditions.

3. Adaptive before (Adaptive Policy)
Adjusts actions to the real-world environment, enhancing stability and
performance

4. Adaptive After (Adaptive with information Bottleneck)
Limits access to precise dynamic information with optimal 𝛽, improving
robustness while allowing flexible adaptation.

Overview of Policy Types

▪Two-step Procedure

1. Simulation

Trained in PyBullet with mocap data from dogs and artist-created animation.

2. Transfer to Real World

Each Policies tested on the physical robot

oUniform Evaluation

 Normalized Return: Policies scored on a normalized scale from 0 to 1 for

 objective comparison.

Experimental Methodology

▪Experimental Results
o Learned Locomotion Skills

Real-World Adaptation

Caption: A showcase of various locomotion skills acquired by Laikago, including pacing, trotting, and

backward movements. The figure compares performance across policies, demonstrating the advanced

abilities of adaptive policies.

▪Experimental Results
o Performance Across Simulated Environments

Adaptability and Performance in Diverse Environments

Caption: Performance of each policy type

across multiple simulated environments

with varied dynamics. Adaptive policies

show higher robustness by achieving

better results in a larger proportion of

these environments.

▪Experimental Results
o Adaptation Across Varied Environments

Adaptability and Performance in Diverse Environments

Caption: Learning curves of policies across five new environments, showing quick adaptation.

Adaptive policies with an information bottleneck adjust efficiently to changing conditions.

▪Highlights

Accelerated Video of Results

▪ Pros

oIncreased efficiency with dynamic skills

oImproved adaptability to various

environments

oEasier real-world implementation

oBetter performance compared to

manufacturing

Pros and Cons

▪Cons

oLimited by hardware and algorithmic

constraints

oLess stability compared to top manual

controllers

oStill constrained by real-world limitations

Influence on the Robotics Community

▪ Kumar, Ashish & Fu, Zipeng & Pathak, Deepak & Malik, Jitendra. (2021).
RMA: Rapid Motor Adaptation for Legged Robots.
10.48550/arXiv.2107.04034.

▪ Li, He & Yu, Wenhao & Zhang, Tingnan & Wensing, Patrick. (2022). Zero-
Shot Retargeting of Learned Quadruped Locomotion Policies Using Hybrid
Kinodynamic Model Predictive Control. 11971-11977.
10.1109/IROS47612.2022.9981967.

▪ Klipfel, Arnaud & Sontakke, Nitish & Liu, Ren & Ha, Sehoon. (2023).
Learning a Single Policy for Diverse Behaviors on a Quadrupedal Robot
Using Scalable Motion Imitation. 2768-2775.
10.1109/IROS55552.2023.10341709.

Q & A

Leen Daher

Marc Mouawad

Matteo Mesa

Gonzalez

Two possible exam questions

▪ What are the steps for motion retargeting ?

▪ Propose a domain adaptation to decrease the gap between simulation and
Real World. What is a potential issue to this method, and how would you fix
it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Q & A
	Slide 20

