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Figure 1: Video of real-world testing
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Introduction

= Keywords: Bipedal Locomotion, Sim-to-Real
Transfer, Long Short-Term Memory (LSTM),
Proprioception

= Research aim: To make bipedal robots
capable of navigating stairs using only
proprioception, without relying on fragile
external sensors like cameras

= Sim-to-Real Transfer: The training occurred
entirely in simulation, randomizing stair
features such as height, width, and slope,
before transferring the policy to real-world
testing
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demonstration of
a bipedal robot
traversing real-
world stairs using
only
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Figure 2: Cassie — Bipedal robot by Orgeon
State University and Agility Robotics

Stair Run
[0.24,0.30] m

Stair Rise
[0.10,0.21] m

( [ Stair Count
A L8]

Ground Slope
[-1.71,1.71] deg

Landing Width
[0.50, 2.00] m

Figure 3: Randomization of stair features
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Key aspects

= Biped robot, human-scale
= Actuators: electrical
= Control: torque in the joints

= Sensors: Blind robot has no
exteroceptive sensors

= Design: learns through sim-to-real
Reinforcement Learning

o Built on reward-function

= Navigate Staircase with no specific gait

Figure 4: Real-world testing performed
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P*L Reinforcement leaming formulation (1)

= State space:
1) Robot’s physical state: pelvis orientation and angular speed, joint
positions and velocities
2) High level command inputs from human operator with
randomization

3) 2 Cyclic clock inputs: to manage gait phases _ | sin(27(¢, +0.0))
sin (27(¢; +0.5))

= Action space:
1) 10 PD targets for the joints
2) Clock delta: to regulate stepping frequency of the gait  ¢r+1 = fmod(¢; + 6,,1.0)
G Limited impact on performance




=PFL Reinforcement Ieaming formulation (2)

= Dynamics randomization: several dynamics quantities are
randomized at the beginning of each episode to overcome
possible modelling errors

Parameter Unit Range
Joint damping Nms/rad | [0.5,3.5] x default values
Joint mass kg 10.5,1.7] x default values
Ground Friction — 0.5, 1.1]
Joint Encoder Offset | rad —0.05,0.05]
Execution Rate Hz 37,42]
= Policy representation and learning: Memory improves

performance for Partially

|.  LSTM recurrent neural network for the goal policy sy Observable environments

Il. Feedforward neural network for ablation experiment

Proximal policy optimization (PPO), KL-threshold-termination variant,
mirror loss term for symmetric gait



= Reward function: R(s,¢)=1-E[p(s,¢)]

|.  Terms involving expectation: vary
during gait cycle, penalization foot
forces and foot velocities at key
intervals - periodic foot lift

[I. Terms to match a translational
velocity and orientation

lll. Terms to improve smoothness and
enerqgy efficiency and reduce pelvis
shakiness

= Terrain randomization:
|.  Stairs dimensions + noise
lI.  Ground friction
lll. Stairs starting position

=PFL Reinforcement leaming formulation (3) |
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Figure 5: Cyclic coeffient for the reward: expectation of random indicator functions
of the phase
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Figure 6: Randomization of stair features



= 4 policies groups trained:
1. Stair LSTM
2. Stair FF (feedforward)
3. Flat ground LSTM
4. Proximity LSTM 2> 1) +
information nearby stairs

= Simulation results

1. Probability of successfully
ascending/descending stairs

2. Energy efficiency

= Behavior analysis: 1st step up/down
1. Swing foot motion
2. Ground reaction forces

Mainresuits (1)

Blind Bipedal Stair Traversal
via Sim-to-Real Reinforcement Learning

Jonah Siekmann*', Kevin Green*, John Warila*, Alan Fern*, Jonathan Hurst*"

*Collaborative Robotics and Intelligent Systems Institute
Oregon State University

*Agility Robotics
agilityrobotics.com

Robotics: Science and Systems 2021

Figure 7: Video — Simulation training and real-world transfer



=PFL Main results (2): Ascending /descending probabilities

Success = reaching the top/ bottom without falling
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Figure 8: Comparison of success probabilities of step ascent and descent as a function of commanded speed between different policies
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Main results (3): Energy efficiency comparison

m

Measure : Cost of transport = Co Mgd

Cassie energy consumption : positive actuator work and resistive losses

max

T . ¥
G e[ (Dm0 S0
i i

Testing: 1 m/s on flat ground

Policy Group Mean CoT  Sid. CoT

k Proximity LSTM (stairs) Q4D 0.0086

Stair LSTM 0.46 0.0323
Proximity LSTM (flaty (03D 0.0257
Flat Ground LSTM 0.38 0.0205
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=PFL Main results (4) : Swing foot motion
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Figure 9: Comparison of swing foot motion between different policies while locomoting at 1 m/s
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Main results (5) : Transfer to hardware ’
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Figure 10: Training pipeline from simulation to hardware
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=PFL Inﬂuence on Literature Citations: 194

FWCI: 12.69

= Bipedal Locomotion:

o Cassie cited as one of the few successful biped robots handling outdoor rough
terrains, despite high hardware demands

o Described stair-climbing as a fundamental skill for future bipedal research

= Randomization of Dynamics:

o Positively referenced on numerous occasions for the use of Domain
Randomization

o Some research found better results with FF policies vs LSTM in narrow
randomization ranges (Singh et al., 2023)

= Quadrupedal Locomotion:
o Mentions of robustness, benefits of sim-to-real transfer and RL implementation

o Criticism of use of only proprioceptive sensors and speed of robot (Takahiro et al.,
2022) (Margolis et al., 2024)



=P7L  Advantages and limitations -

Advantages Limitations
= Highly robust, visionless walking = Need of memory
controller _ _
= Climbs a wide variety of real- * High energy requirement
world stairs = Higher failure rate on slatted
= Use existing reward functions stairs

= Didn't require additional
information to build a control
policy either

= adapted well to other unknown
terrains beyond stairs

= Random tests proved highly
effective

Figure 11: Slatted stairs
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PFL  Possible exam questions

= Which is the main innovative contribution of this work?

The authors managed to obtain a highly robust walking controller capable of
climbing a variety of stairs using only proprioceptive sensing (blind robot). This
was achieved using an existing reward strategy for walking without adding any
stair-specific rewards terms, but just adding randomized stairs to the training
environment. A key feature to learn this behavior is a memory component in the
policy representation.

= How is the success rate for ascending/descending linked to the approach
speed? (Slide 9)

The policies fail more frequently at low approach speed as they might not have
enough momentum to compensate and push the robot when the foot placement is
not ideal. Similarly higher failure rates are observed at high speeds due to a high
momentum which makes it harder to control precisely in case of small errors in
foot placement or leg angles. Besides reduced contact time and increased forces
are also possible causes for a less stable gait.

15






=PFL Detalls on reinforcement leaming formulation

= Policy representation and learning:

LSTM recurrent NN: 2 reccurrent
hidden layers of dimension 128.

= Randomization of control
commands in the state space:

Command Probability of Change  Range Batches of episodes

Forward Speed 1/300 [-0.3m/s, 1.5m/s] )

Sideways Speed  1/300 [-0.3m/s, 0.3m/s Feedforward NN : two layers of
Turn Rate 1/300 [-90deg/s, 90deg/s] | dimension 300, with tanh activation.

At each timestep they are altered with a
given probability

New command is sampled from uniform
distribution

Advantage: give policies during training
a good variety of speeds and approach
angles to start with

Batches of timesteps

In this method proposed by Yu et al.[Yu et al. 2018], the

create a symmetry loss defined as follows: Figure 11: Reference

» for mirror loss
T .
Leym(6) = Z lIa(st) — Ma g (Ms(se D) component in PPO

r=1

and optimize this as an auxiliary loss in addition to the def
loss:

mg = argmin Lppo(8) + “"Lsym{ﬂ}-
[}

300 timesteps per episode, 7.5 s
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» Reward function

Weight | Cost Component

0.140 | 1 —E[fen force (0] - exp(—.01||F||)
0.140 1 _E[Iﬂghl Inr{r{:lf':l] E?Lpl:—ﬂ]”ﬂ,”:l
0.140 | 1 —Elheqi vetocity (¢)] - exp(—||w]])

0.140 1 _E[Iﬂghl v:]::»tll’_-:'i'i'}']'Expf_”"’r”j
0.140 I —expl—&,)

0.140 1 —exp( —|%gesired — Factual|)

0.078 1 —expl —|Vdesired — Vactuat|)

0.028 1 —exp(—5-||la; —a,_||)

0.028 1 —exp(—0.05-||t]))

0.028 I —exp(—0.1(||pelvis_, || + [|pelvis .|| )]
€ =3(1 = 7" qooay)> +10((1 = 7" q)* + (1 - 3" ¢:))

Details on reinforcement learming formulation

I;(¢) Binary-valued random indicator function
1 - active interval
0 = inactive interval

Expectation used for more stable learning

18



=F7L  Detalls on training settings m

= 300 millions timesteps sampled from simulation using Mujoco

= 50’000 timesteps for replay buffer

= 64 episodes (LSTM ) / 1024 (FF) batch size

= Replay buffer sampled up to 5 epochs

= Optimization termination if 0.2 maximum KL threshould reached

= Adam optimizer, 0.0005 learning rate for both actor and critic (learned separately)



=PFL  Main results (6) : Ground reaction forces, 10cmstep
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Flgure 12: Comparison of ground reaction forces and cumulative impulses between different policies when
going up or down a 10 cm step
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