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Figure 1: Video of real-world testing



Introduction
3

▪ Keywords: Bipedal Locomotion, Sim-to-Real 

Transfer, Long Short-Term Memory (LSTM), 

Proprioception

▪ Research aim: To make bipedal robots 

capable of navigating stairs using only 

proprioception, without relying on fragile 

external sensors like cameras

▪ Sim-to-Real Transfer: The training occurred 

entirely in simulation, randomizing stair 

features such as height, width, and slope, 

before transferring the policy to real-world 

testing

First successful 

demonstration of 

a bipedal robot 

traversing real-

world stairs using 

only 

proprioception 

and RL

Figure 2: Cassie – Bipedal robot by Orgeon 

State University and Agility Robotics 

Figure 3: Randomization of stair features



▪ Biped robot, human-scale

▪ Actuators: electrical

▪ Control: torque in the joints

▪ Sensors: Blind robot has no 

exteroceptive sensors

▪ Design: learns through sim-to-real 

Reinforcement Learning

o Built on reward-function

▪ Navigate Staircase with no specific gait

Key aspects
4

Figure 4: Real-world testing performed



5

Reinforcement learning formulation (1)

▪ State space:

1) Robot’s physical state: pelvis orientation and angular speed, joint 
positions and velocities

2) High level command inputs from human operator with 
randomization

3) 2 Cyclic clock inputs: to manage gait phases

▪ Action space: 

1) 10 PD targets for the joints

2) Clock delta: to regulate stepping frequency of the gait

Limited impact on performance
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Reinforcement learning formulation (2)

▪ Dynamics randomization: several dynamics quantities are 
randomized at the beginning of each episode to overcome 
possible modelling errors

▪ Policy representation and learning:

I. LSTM recurrent neural network for the goal policy

II. Feedforward neural network for ablation experiment

Proximal policy optimization (PPO), KL-threshold-termination variant, 
mirror loss term for symmetric gait

Memory improves 

performance for Partially 

Observable environments



Reinforcement learning formulation (3)
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▪ Reward function: 

I. Terms involving expectation: vary 
during gait cycle, penalization foot 
forces and foot velocities at key 
intervals → periodic foot lift

II. Terms to match a translational 
velocity and orientation

III. Terms to improve smoothness and 
energy efficiency and reduce pelvis 
shakiness

▪ Terrain randomization:

I. Stairs dimensions + noise

II. Ground friction

III. Stairs starting position

Figure 6: Randomization of stair features

Figure 5: Cyclic coeffient for the reward: expectation of random indicator functions

of the phase



Main results (1)
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▪ 4 policies groups trained: 

1. Stair LSTM

2. Stair FF (feedforward)

3. Flat ground LSTM 

4. Proximity LSTM → 1) + 

information nearby stairs

▪ Simulation results

1. Probability of successfully 
ascending/descending stairs

2. Energy efficiency

▪ Behavior analysis: 1st step up/down

1. Swing foot motion

2. Ground reaction forces

Figure 7: Video – Simulation training and real-world transfer



Main results (2): Ascending /descending probabilities 9

Success = reaching the top/ bottom without falling
▪ 150 trials,

▪ 5 steps, 

▪ 17 cm tread, 

▪ 30 cm depth

Figure 8: Comparison of success probabilities of step ascent and descent as a function of commanded speed between different policies 



Main results (3): Energy efficiency comparison
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Measure : Cost of transport

Cassie energy consumption : positive actuator work and resistive losses

Testing: 1 m/s on flat ground



Main results (4) : Swing foot motion
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Stair LSTM: 

- higher step

- steeper path

- faster leg retraction rate Emerging leg swing retraction even if not trained

Figure 9: Comparison of swing foot motion between different policies while locomoting at 1 m/s



Main results (5) : Transfer to hardware
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▪ Robust, error-correcting , reliable behavior 

for stairs  → missteps

▪ Robustness to unven terrains, logs and 

curbs → not trained

▪ Robustness to inclines and deformable 

terrains → wet grass field, small hill

▪ 80% success for ascending, 100% for 

descending

Figure 10: Training pipeline from simulation to hardware



Influence on Literature
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▪ Bipedal Locomotion:
o Cassie cited as one of the few successful biped robots handling outdoor rough 

terrains, despite high hardware demands

o Described stair-climbing as a fundamental skill for future bipedal research

▪ Randomization of Dynamics:
o Positively referenced on numerous occasions for the use of Domain 

Randomization

o Some research found better results with FF policies vs LSTM in narrow 
randomization ranges (Singh et al., 2023)

▪ Quadrupedal Locomotion:

o Mentions of robustness, benefits of sim-to-real transfer and RL implementation

o Criticism of use of only proprioceptive sensors and speed of robot (Takahiro et al., 
2022) (Margolis et al., 2024)

Citations: 194

FWCI: 12.69



Advantages and limitations
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Advantages

▪ Highly robust, visionless walking 
controller

▪ Climbs a wide variety of real-
world stairs

▪ Use existing reward functions

▪ Didn't require additional 
information to build a control 
policy either

▪ adapted well to other unknown 
terrains beyond stairs

▪ Random tests proved highly 
effective

Limitations

▪ Need of memory

▪ High energy requirement

▪ Higher failure rate on slatted 

stairs

Figure 11: Slatted stairs



Possible exam questions
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▪ Which is the main innovative contribution of this work? 

The authors managed to obtain a highly robust walking controller capable of 
climbing a variety of stairs using only proprioceptive sensing (blind robot). This 
was achieved using an existing reward strategy for walking without adding any 
stair-specific rewards terms, but just adding randomized stairs to the training 
environment.  A key feature to learn this behavior is a memory component in the 
policy representation.

▪ How is the success rate for ascending/descending linked to the approach 
speed? (Slide 9)

The policies fail more frequently at low approach speed as they might not have 
enough momentum to compensate and push the robot when the foot placement is 
not ideal. Similarly higher failure rates are observed at high speeds due to a high 
momentum which makes it harder to control precisely in case of small errors in 
foot placement or leg angles. Besides reduced contact time and increased forces 
are also possible causes for a less stable gait. 
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▪ Randomization of control 

commands in the state space:

At each timestep they are altered with a 
given probability

New command is sampled from uniform 
distribution

Advantage: give policies during training 
a good variety of speeds and approach 
angles to start with

Details on reinforcement learning formulation

▪ Policy representation and learning:

LSTM recurrent NN:  2 reccurrent 
hidden layers of dimension 128. 
Batches of episodes

Feedforward NN : two layers of 
dimension 300, with tanh activation. 
Batches of timesteps

Mirror loss term

300 timesteps per episode, 7.5 s 

Figure 11: Reference 

for mirror loss

component in PPO



▪ Reward function

Details on reinforcement learning formulation
18

𝐼𝑖(𝜙) Binary-valued random indicator function 

1 → active interval

0 → inactive interval

Expectation used for more stable learning



▪ 300 millions timesteps sampled from simulation using Mujoco

▪ 50’000 timesteps for replay buffer

▪ 64 episodes (LSTM ) / 1024 (FF) batch size

▪ Replay buffer sampled up to 5 epochs

▪ Optimization termination if 0.2 maximum KL threshould reached

▪ Adam optimizer, 0.0005 learning  rate for both actor and critic (learned separately)

Details on training settings
19



Main results (6) : Ground reaction forces, 10 cm step
20

A. Maximum nominal leg 

force quite constant →

well adjusted policy 

Increased force second 

bump for descent

B. Oscillations match policy 

evaluation frequency →

Hp: policy controlling 

pelvis attitude

C. Higher vertical impulse for 

stepping up → cheaper to 

lift down

D. Larger horizontal impulse 

for stepping down →

predicted by leg swing 

retraction
Figure 12: Comparison of ground reaction forces and cumulative impulses between different policies when

going up or down a 10 cm step



Video
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