

CONTROL OF DYNAMIC GAITS FOR A QUADRUPEDAL ROBOT

2013 IEEE International Conference on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6-10, 2013


Christian Gehring, Stelian Coros, Marco Hutter, Michael Bloesch, Markus A. Hoepftinger and Roland Siegwart Autonomous Systems Laboratory, ETH Zurich, Switzerland, gehrinch@ethz.ch Disney Research Zurich, Switzerland

Group 23Cyprien Lacassagne
Sven Profichet Julien Schluchter

Control of Dynamic Gaits for a Quadrupedal Robot

Christian Gehring, Stelian Coros, Marco Hutter, Michael Blösch, Markus A. Höpflinger, Roland Y. Siegwart

StarlETH www.leggedrobotics.ethz.ch

September 2012

OVERVIEW

Motivations:

- Reproduce quadrupedal animal-like locomotion
- Implement a controller framework that dynamically chooses the right gait to match a target speed, as animals naturally do

Challenges:

- Unassisted navigation in 3D space
- Unperceived 3D obstacles on the ground
- Smooth transition between gaits
- Recover from external significant pushes and terrain variations

INTRODUCTION

Type of robot:

StarlETH: quadruped robot

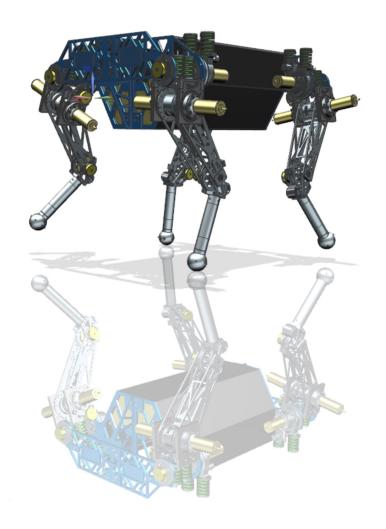
Type of control:

- Torque control for stance legs
- Position control for swing legs

Design method:

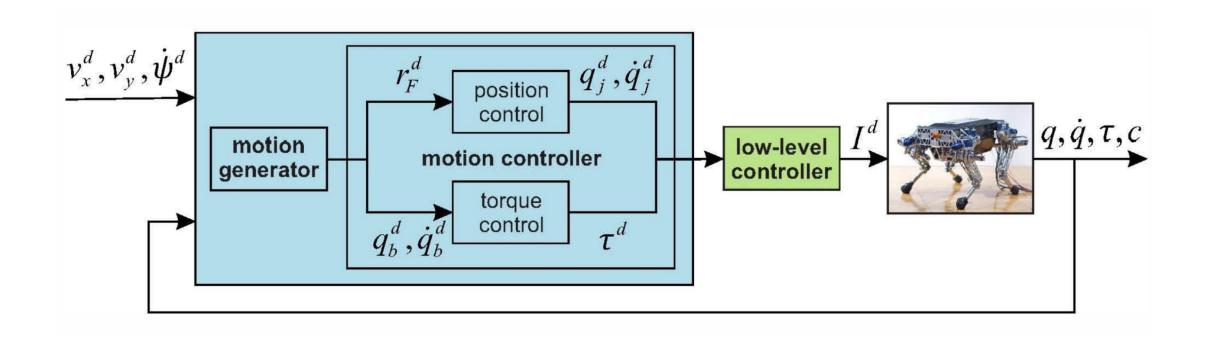
 Modular approach, based on biomechanical models (e.g., inverted pendulum for foot placement).

Type of gait:

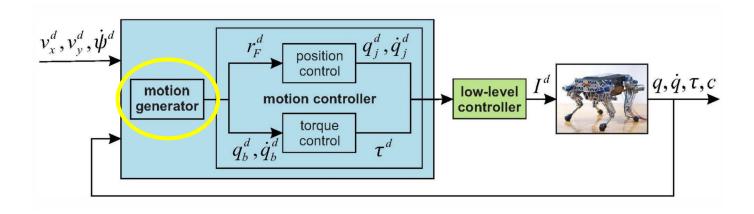

- Static walking
- Walking trot

Main sensors:

- Inertial Measurement Unit (IMU) for orientation.
- Pressure sensors in feet to detect ground contact.
- Motor Encoders
- Spring Deflection Sensors


Main actuators:

Series-Elastic Actuators (SEAs)


CONTROL FRAMEWORK

THE MOTION GENERATOR

- Terrain Estimation
- Swing Leg Configuration
- Stance Leg Configuration
- Main Body Configuration

TERRAIN ESTIMATION

No external sensors → Weighted average of two values:

- The vertical positions of the feet currently in contact with the ground
- The previous ground height estimate from the last time step

$$h_g(t) = \sum_{i=0}^{N=4} c_{\text{flag}i} (Ir_{F_i,z} \cdot \alpha + h_g(t - \Delta t) \cdot (1 - \alpha))$$

SWING LEG CONFIGURATION

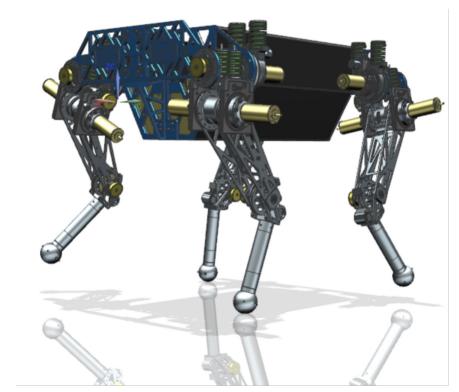
The target foothold:
$${}_{I}m{r}_{
m HF}={}_{I}m{r}_{
m HF}^{
m fb}+{}_{I}m{r}_{
m HF}^{
m ff}$$

The feedback component:

It corrects the leg's movement in real time, especially for balance.

$${}_{I}oldsymbol{r}_{ ext{HF}}^{ ext{fb}} = \eta ({}_{I}oldsymbol{v}_{ref} - {}_{I}oldsymbol{v}^d)\sqrt{rac{h}{g}}$$

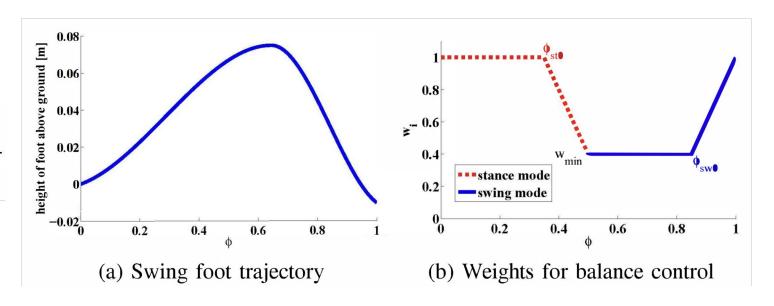
The feedforward component:


It adjusts the foot placement to maintain smooth and stable motion during forward movement.

$$_{I}oldsymbol{r}_{ ext{HF}}^{ ext{ff}}=rac{1}{2}{}_{I}oldsymbol{v}^{d}\Delta t_{st}$$

STANCE LEG CONFIGURATION

When a leg is in stance mode but loses ground contact, it slightly lowers to regain contact.

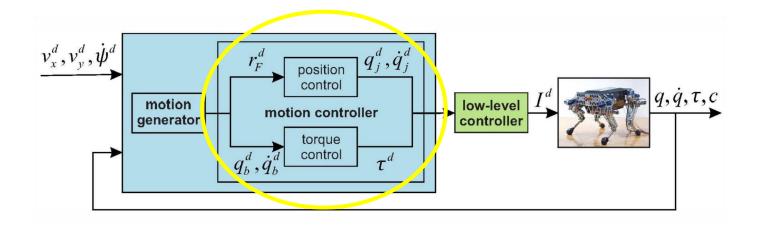

MAIN BODY CONFIGURATION

The robot's main body position depends on the location of its legs:

- Grounded legs
- Swing legs

Weighting functions help adjust the body's position, preparing it for transitions between leg phases. This design ensures the robot moves fluidly and maintains balance during complex actions.

$$_{I}oldsymbol{r}_{\mathrm{B}}^{d}=rac{\sum_{i=1}^{N}w_{i}(\phi)_{I}oldsymbol{r}_{\mathrm{F_{i}}}}{\sum_{i=1}^{N}w_{i}(\phi)}$$



THE MOTION CONTROLLER

Control Modes

- Position Control → Applied to swing legs
- Torque Control → Applied to stance legs

Gait Transitions

CONTROL MODES

Position Control:

Applied to swing legs: ensure accurate tracking of desired joint trajectories.
 The desired joint angles are obtained from the desired foot positions through inverse

kinematics

CONTROL MODES

Torque control:

- Applied to stance legs: generate the necessary forces for stability and body support.
- 1. Virtual force and torque computation for body stability: $\begin{bmatrix} {}_{B}\boldsymbol{F}_{\mathrm{B}}^{d} \\ {}_{B}\boldsymbol{T}_{\mathrm{B}}^{d} \end{bmatrix} = \boldsymbol{k_{p}}(\boldsymbol{q}_{b}^{d} \boldsymbol{q}_{b}) + \boldsymbol{k_{d}}(\dot{\boldsymbol{q}}_{b}^{d} \dot{\boldsymbol{q}}_{b}) + \boldsymbol{k_{ff}} \begin{pmatrix} v_{\mathrm{x}}^{d} \\ v_{\mathrm{y}}^{d} \\ 0 \\ 0 \\ \vdots \end{pmatrix}$ 2. Force distribution:

 $\boldsymbol{\tau} = J^T \boldsymbol{F}_{leg}$ 3. Mapping to joint torques:

EPFL

GAIT TRANSITIONS

- Linear interpolation of the parameter sets
- Can be initiated at any point of the stride cycle
- Initiated either by an operator or as a function of the desired speed
- Change gait seamlessly → enhance agility + adaptability

RESULTS: PARAMETER SETS

TABLE I
PARAMETER SETS FOR DIFFERENT GAITS

Parameter	Symbol	Static Walk	Walking Trot	Running Trot
gait graph				
stride duration	$T_s[s]$	1.5	0.8	0.7
min. leg weight for support polygon	w_{\min}	0.35	0.15	0.15
start of increasing the weight of a swing	$\phi_{ m sw,0}$	0.7	0.7	0.7
leg for support polygon				
start of decreasing the weight of the	$\phi_{ m st,0}$	0.7	0.7	0.7
stance leg for support polygon				
default left front swing leg offset	$_Boldsymbol{r}_{ m HF}^d[m]$	$[0, -0.01, 0]^T$	$[0, 0, 0]^T$	$[0, 0, 0]^T$
default left hind swing leg offset	$_Boldsymbol{r}_{ ext{HF}}^d[m]$	$[0, 0.14, 0]^T$	$[0, 0, 0]^T$	$[0, 0, 0]^T$
height of middle of hip AA joints	$h_H[m]$	0.39	0.44	0.44
virt. force proportional gain	$oldsymbol{k}_p$	$[500, 640, 600, 400, 200, 0]^T$	$[0,640,600,400,200,0]^T$	$[0,640,2600,400,200,0]^T$
virt. force derivative gain	$oldsymbol{k}_d$	$[150, 100, 120, 6, 9, 0]^T$	$[150, 100, 120, 6, 9, 0]^T$	$[90, 60, 120, 6, 9, 0]^T$
virt. force feed-forward gain	$oldsymbol{k}_{ff}$	$[25, 0, 1, 0, 0, 0]^T$	$[60, 0, 1, 0, 0, 0]^T$	$[25, 0, 1, 0, 0, 0]^T$
weights for matching the des. virt. forces	S	diag(1, 1, 1, 10, 10, 5)	diag(1, 1, 0.2, 20, 20, 5)	diag(1, 1, 0.2, 20, 20, 5)
weights for reducing joint torques	W	$\operatorname{diag}(0.00001\dots)$	$\operatorname{diag}(0.00001\dots)$	$\operatorname{diag}(0.00001\dots)$

RESULTS: ROBUSTNESS

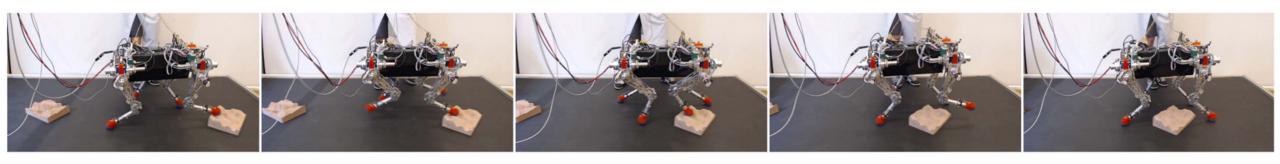
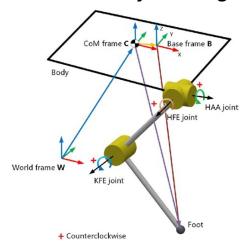


Fig. 5. StarlETH performs a walking trot while dealing with unperceived obstacles.

How to assess robustness?


Run experimental tests while varying the configurations.

- Walk and trot gaits on flat ground
- 5cm high soft (foam) unanticipated obstacles
- Test recovery from external pushes

Maximum speed in walking trot: 0.7m/s


Diagnose the source of failure:

Limited HAA joint angle

RESULTS: PUSH RECOVERY

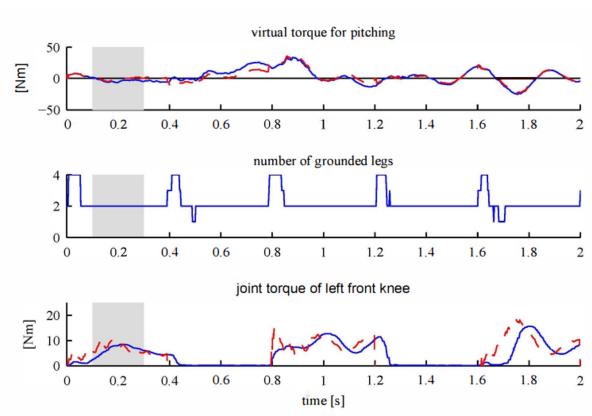


Fig. 4. Experimental results of a push that was applied in sagittal direction during 0.2s as indicated by the grey area.

StarlETH's INFLUENCE ON RESEARCH

242 citations

- High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah, DJ. Hyun, S. Seok, J. Lee, S. Kim - The International Journal of Robotics Research, 2014
- MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot,
 G. Bledt, MJ. Powell, B. Katz, J. Di Carlo... IROS, 2018
- High-slope terrain for locomotion for torque-controlled quadruped robots, M. Focchi,
 A. Del Prete, I. Havoutis... Autonomous Robot, 2017
- Mechanism, actuation, perception, anc control of highly dynamic multilegged robots: a review, J. He, F. Gao - Chinese Journal of Mechanical Engineering, 2020

PROS & CONS

Pros:

- Flexible Control System
- Smooth Transitions Between Gaits
- Robustness to Disturbances
- Real-World Implementation
- Building on Existing Research
- Modular and Intuitive Tuning

Cons:

- Limited Variety of Gaits
- Lack of Quantitative Evaluation
- Parameter Tuning Not Systematic
- Assumption of Flat Terrain

POSSIBLE EXAM QUESTIONS

- Explain the solution used on StarlETH to achieve smooth gait transitions.
 - The parameters such as controller gains and force distribution coefficients are tuned iteratively until the robot finds its balance. A set of those parameters can be established for each gait. Then, linearly interpolating between two gaits' parameter sets leads to a more or less smooth transition.
- What are the main components of the control framework used on StarlETH?
 - Motion generator:
 - Terrain estimation
 - Swing/stance leg configuration
 - Main body configuration
 - Motion controller:
 - Position control for swing legs
 - Torque control for stance legs