

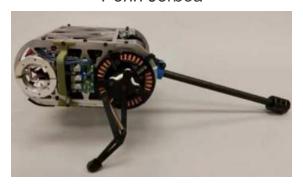
Minitaur robot

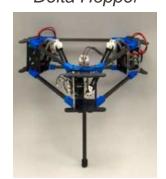
Penn Jerboa robot

https://www.youtube.com/watch?v=wvYthkpRFfk

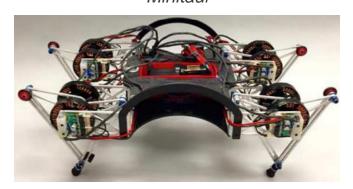
https://www.youtube.com/watch?v=kQ_sIcIAP18

Direct Drive definition


Direct-Drive (DD): Actuation where motor torque is directly applied to the load, eliminating gears, belts, or chains.


source: Al generated

Types of robots that use DD:


Tailed Biped:
Penn Jerboa

Monoped:
Delta Hopper

Quadruped: *Minitaur*

source: this paper "Design principles for a family of direct drive legged robots"

Why use DD for legged locomotion?

Transparency:

Direct motor dynamics → Quickly influenced by external forces

No gearbox → Eliminates backlash and viscous friction

Mechanical Performance:

Robustness & Efficiency → No gears to protect from impulses & no mechanical loss from gear reduction

Dynamic Isolation → Coupled to legs via motor's air gap and bearings **Control** → Lagrangian dynamics enabled by reduced complexity

<u>High-bandwidth Signal Flow:</u>

Better Sensing & Actuation → Reduces low-pass filtering effects. **Tunable Compliance** → Achieved at kHz timescales for precise control.

Specific Power:

Peak Performance → Higher than geared counterparts (no power loss from gear reduction)

DD Setbacks

No Gearbox → Can't amplify the output torque and decrease the output speed

<u>High Torque/Low Speed</u> → Significant Joule heating

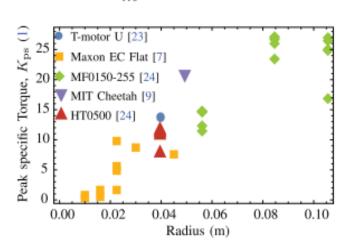
<u>Peak Performance</u> → Actuators operate far from peak power and efficiency

<u>Thermal Inefficiency</u> → Increased energy loss due to heating

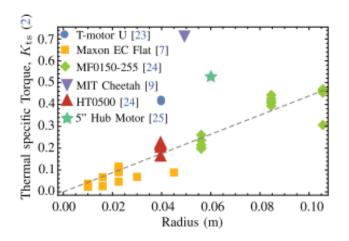
Metrics needed to classify DD motors

Peak Specific Torque

(instantaneous performance)


limited by flux saturation of the motor's core

Thermal Specific Torque

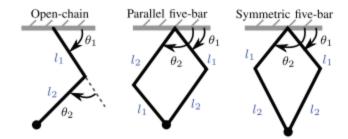

(steady performance)

limited by the winding enamel's maximum temperature at stall

$$K_{ps} := \frac{K_t i_p}{m}$$
 (in units of $\frac{Nm}{kg}$)

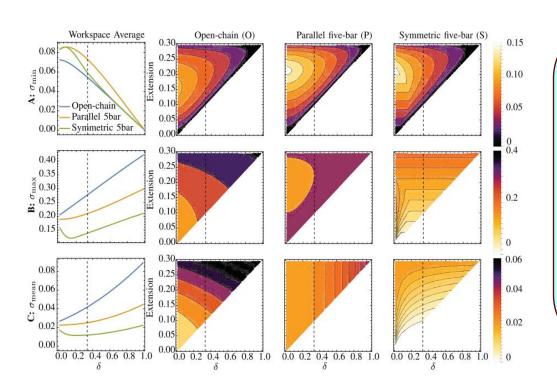
$$K_{\text{ts}} := \frac{K_t}{m} \sqrt{\frac{1}{R_{\text{th}}R}}, \quad \text{(in units of } \frac{Nm}{kg\sqrt{\circ C}})$$

Both plots have a quite linear trend between specific torque and gap radius


Actuator Recruitment via Leg Design

Explored various leg designs with 1 to 3 actuated Degrees of Freedom (DOF)

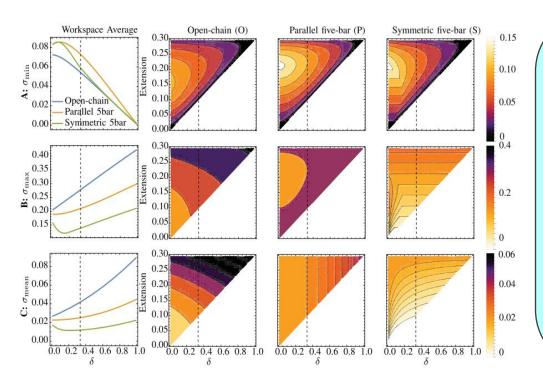
We define:


We define: 1.Design Space (delta)
$$\delta = rac{r_{\min}}{r_{\max}} = rac{|l_1 - l_2|}{l_1 + l_2}$$

2. Workspace variable y (radial extension of the leg) Different 2-DOF simple kinematics

Measuring & Plotting results

Metrics used:


- <u>Proprioceptive Sensitivity (σmin):</u> Minimal speed of the toe in any direction for a given motor angular velocity
- Force Production (σ_{max})

Degree to which an arbitrary external force can be resisted by the actuators

• Thermal Cost of Force (σmean):

Measuring & Plotting results

Results:

- Higher values of σmin are favorable:
 The two parallel mechanisms have better proprioception through a larger portion of their workspace
- Lower values of σ_{max} are favorable:
 The symmetric five-bar does consistently better than the other two mechanisms
- The symmetric five-bar has superior design-averaged performance than the others

9

Comparing with conventional gear design

Direct Drive motor: T-Motor U8

Maxon EC-45

Transparency

TABLE I
COMPARISON OF SPECIFIC CONVENTIONAL AND DD ACTUATORS

	EC45-70W, 23:1	U8
Mass (kg)	0.35	0.25
$K_v \left(\frac{\text{rev}}{V \text{sec}} \right)$	0.188	1.67
Continuous Torque (Nm)	2.95	0.855
Peak Torque (Nm)	18.86	3.5
Max Continuous Power @15V (W)	12.18	35.63
Reflected Inertia (kg-m ²)	0.0096	0.0001
Static Friction (Nm)	0.218	0.056
Kinetic Friction (Nm)	0.088	0.023
Viscous Friction $(\frac{Nm}{rad/s})$	0.0071	0.00013
Backlash (deg)	0.8	0

Results:

Advantages of the Direct Drive U8 Motor:

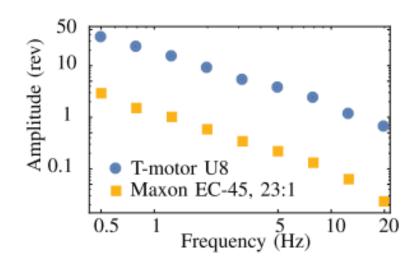
- Reflected inertia 96x higher
- Static friction 3.98x higher
- Kinetic friction 3.83x higher
- Viscous drag. 54.6x higher

Advantages of the Maxon EC-45 Motor:

- Continuous torque 2.5x higher
- Peak specific torque 5.39x higher

Actuation Bandwidth

Experiment:


Command motors with open-loop sinusoïdal voltage at various frequencies.

Measurement:

Output shaft of the motor in revolutions

Results:

U8 performed better with 17.4x more rotations than the EC-45.

EPFL

Performance Metrics

- Steady velocity: Vss
- Vertical Specific agility: $\alpha_v = h_{\max}g$
- Minimal continuous vertical acceleration: $a_{
 m mcv} := rac{ au_c n_l}{mg} \left(\min_q \Gamma_v(q)
 ight) 1$
- Cost of Transport: $CoT := \frac{Vi}{Mgv_{ss}}$

TABLE II
PHYSICAL PROPERTIES OF THE MACHINES OF INTEREST (II-C)

TABLE III
PERFORMANCE MEASURES OF THE MACHINES OF INTEREST (II-C)

Robot	Legs	DOF	L (m)	M (kg)	Mot. (%)	G	Robot	$v_{\rm ss}$ (m/s, LL/s)	$\alpha_v~(\text{m/s})^2$	$a_{ m mcv}$ [DD] (g)	CoT
Minitaur	4	8	0.2	5	40	N/A	Minitaur	1.45, 7.25	4.70	0.69	2.3
Delta Hopper	1	3	0.2	2.0	38	N/A	Delta Hopper	N/A	3.44	0.59	N/A
Jerboa	2	4	0.105	2.5	40	N/A	Jerboa	1.52, 14.5	1.37	0.39	2.5
MIT Cheetah	4	12	0.275	33	24	5.8	MIT Cheetah	6,21.8	4.91	1.33[-0.60]	0.51
XRL	6	6	0.2	8	11	23	XRL	1.54, 7.7	4.17	1.14 [-0.91]	0.9
ATRIAS	2	6	0.42	60	11	50	ATRIAS	2.53, 6.00	N/A	2.03 [-0.94]	1.46
StarlETH	4	12	0.2	23	16	100	StarlETH	0.7, 3.5	3.09	0.37 [-0.99]	2.57
Cheetah Cub	4	8	0.069	1	16	300	Cheetah Cub	1.42, 20.8	0.20	19.38 [-0.93]	9.8

Conclusion

PROS

- Transparency
- Easy control with Lagrangian dynamics
- Little to no mechanical loss thanks to the absence of a gearbox
- Higher peak performance

<u>CONS</u>

- Significant Joule heating
- Actuators operate far from peak performance range
- High heat production

Article Citations

Source: IEEE Robotics and Automation Letters

- Google Scholar:
 - → 221 cites in paper
 - → 2 cites in patents
 - → 12701 full text views
- Scopus: 236 cites in paper

Influence on some other labs:

- Paper: "Design and Experimental Verification of a Jumping Legged Robot for Martian Lava Tube Exploration", by: Jørgen Anker Olsen, Kostas Alexis
- Paper: "Design and Characterization of 3D Printed, Open-Source Actuators for Legged Locomotion", by: Karthik Urs, Challen Enninful Adu, Elliott J. Rouse, Talia Y. Moore

Possible exam questions

Question 1:

Why is transparency an important advantage of Direct Drive actuation?

Answer:

Transparency is important because direct motor dynamics allow quick responses to external forces, and the absence of a gearbox eliminates backlash and viscous friction, improving control and interaction with the environment (Slide 3).

Question 2:

2)What are the two types of specific torque used to classify Direct Drive motors and what limits each?

Answer:

Peak Specific Torque: Limited by the flux saturation of the motor's core Thermal Specific Torque: Limited by the maximum temperature of the winding enamel at stall (Slide 5)

