EPFL

ETH Zurich, Robotic Systems Lab, "ETH Zurich Testing ANYmal C's Advanced Locomotion Capabilities in Unstructured Natural Terrain," ANYbotics, last modified June 3, 2020, https://www.anybotics.com/news/advancing-legged-robotics-research/.

■ École polytechnique fédérale de Lausanne **MICRO-507: Legged Robots**

Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-Effector Parameterization

By Alexander W. Winkler, C. Dario Bellicoso, Marco Hutter, and Jonas Buchli

Théo Heng
Aubin Sabatier
Luca Sidoti Pinto

26 November 2024

Motivation

Dynamic Models	Advantages	Limitations
Linear Inverted Pendulum (LIP)	- Simplifies CoM dynamics - Fast for predefined tasks	Restricted base motionsNo flight phases or uneven terrain
Full Rigid-Body Dynamics	High accuracyCaptures vertical and complex motions	- Computationally expensive - Complex to model
Centroidal Dynamics	Balances simplicity and feasibilityHandles flight phases	- Assumes minimal limb mass deviations - Limited on uneven terrain

> Require predefining some aspects of the motion (gait sequence, foothold placement, or step timings)

Contact Schedule Optimization	Advantages	Limitations
Integer Programming	Optimizes contact schedulesUseful for predefined tasks	Relies on heuristicsComputationally costly for large variables
Soft-Contact Models	Models smooth force transitionsHandles contact dynamics	Stiffness affects convergenceUnsuitable for highly uneven terrain
Linear Complementary Problem (LCP)	Ensures feasible constraintsDynamic motion compatibility	High computational costScaling issues with multi-legged systems

Struggle to balance computational efficiency and adaptability

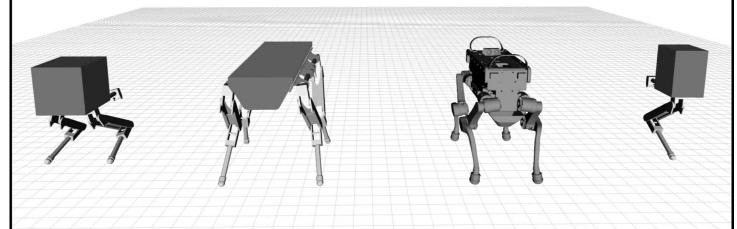
New Approach

- A single optimization formulation that determines:
 - Gait sequence (e.g., walk, trot, jump)
 - Step timings
 - Footholds
 - Body motion in 6 dimensions (position, orientation)
 - Forces at each foot
- Requires only the start & goal position, nb of steps, and terrain data
- Generates motion plans for arbitrary terrains and robot morphologies
- Maintains computational efficiency for practical online deployment

Demo video

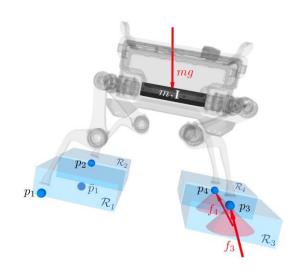
Gait and Trajectory Optimization for Legged Systems through Phase-based Endeffector Parameterization

A. W. Winkler, C. D. Bellicoso, M. Hutter, J. Buchli Robotics and Automation Letters (RA-L), 2018



Methodology

- Optimization Model
 - Nonlinear Programming (NLP)
 - Decision variables: body motion, feet trajectories, and contact forces
 - Constraints: friction cone, kinematic restrictions, and centroidal dynamics



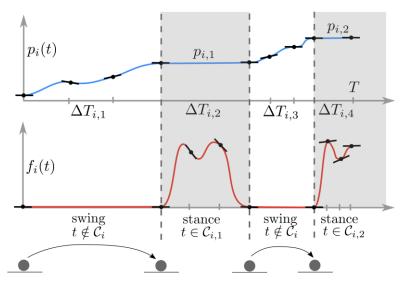
```
\mathbf{r}(t) \in \mathbb{R}^3
                                                                            (CoM linear position)
           \boldsymbol{\theta}(t) \in \mathbb{R}^3
                                                                                 (base euler angles)
           for every foot i:
                 \Delta T_{i,1} \dots, \Delta T_{i,2n_{s,i}} \in \mathbb{R}
                                                                                     (phase durations)
                \mathbf{p}_i(t, \Delta T_{i,1}, \dots) \in \mathbb{R}^3
                                                                                          (foot position)
                \mathbf{f}_i(t, \Delta T_{i,1}, \dots) \in \mathbb{R}^3
                                                                                          (force at foot)
s.t. [\mathbf{r}, \boldsymbol{\theta}](t=0) = [\mathbf{r}_0, \boldsymbol{\theta}_0]
                                                                                             (initial state)
           \mathbf{r}(t=T)=\mathbf{r}_a
                                                                                           (desired goal)
           [\ddot{\mathbf{r}}, \dot{\boldsymbol{\omega}}]^T = \mathbf{f}_d(\mathbf{r}, \mathbf{p}_1, \dots, \mathbf{f}_1, \dots)
                                                                                     (dynamic model)
           for every foot i:
                \mathbf{p}_i(t) \in \mathcal{R}_i(\mathbf{r}, \boldsymbol{\theta}),
                                                                                   (kinematic model)
                 if foot i in contact:
                     \dot{\mathbf{p}}_i(t \in \mathcal{C}_i) = \mathbf{0}
                                                                                                     (no slip)
                     p_i^z(t \in \mathcal{C}_i) = h_{terrain}(\mathbf{p}_i^{xy})
                                                                                         (terrain height)
                     \mathbf{f}_i(t \in \mathbf{C}_i) \cdot \mathbf{n}(\mathbf{p}_i^{xy}) \ge 0
                                                                                        (pushing force)
                     \mathbf{f}_i(t \in \mathcal{C}_i) \in \mathcal{F}(\mu, \mathbf{n}, \mathbf{p}_i^{xy})
                                                                                          (friction cone)
                 if foot i in air :
                      \mathbf{f}_i(t \notin \mathbf{C}_i) = \mathbf{0}
                                                                                      (no force in air)
                 \sum_{i=1}^{2n_{s,i}} \Delta T_{i,j} = T
                                                                                         (total duration)
```


Phase-Based Parameterization

Challenge: Traditional methods require predefined gaits and foot sequences alternating between **Swing** phase and **Stance** phase

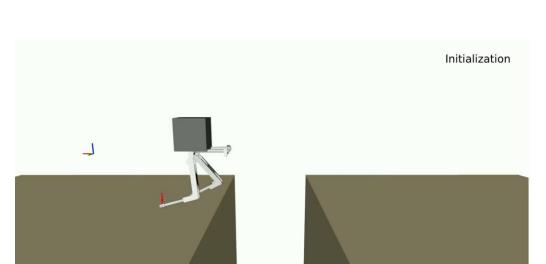
Solution:

- These phases are represented using polynomials
- Position and forces during each phase are described by cubic functions
- The algorithm optimizes the phases durations (ΔTi,j) and sequence to generate arbitrary gaits
- Automatically adapts the gait to the terrain:
 - Inserts flight phases when needed (e.g., for jumping gaps)
 - Adjusts timing for rough terrain or steep inclines



ETH zürich

Biped Gap Crossing



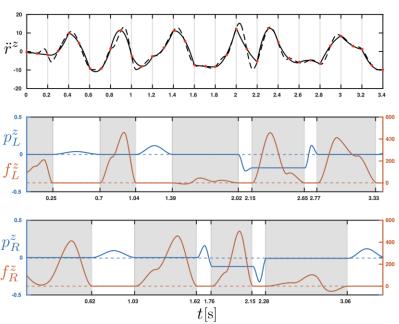


Figure: A generated motion plan for bipedal robot crossing a wide gap

1.0x

Limitations

Trade-offs between speed and solver efficiency

Simplified Dynamics Model

- Model assumes light, immobile limbs
- May lead to inaccuracies for heavy or highly dynamic limbs

Terrain Constraint Gaps

- Only applied at specific points along the trajectory
- May lead to collisions on irregular or complex surfaces

Local Minima in Optimization

- The solver can get stuck in suboptimal solutions
- Can limit motion quality

Possible improvements

- Refining the dynamics model
- Increasing the frequency of terrain constraint checks
- Fixing step timings to reduce the problem's complexity for the solver

MICRO-507: Legged Robots

Exam Questions

Question 1: What are the main advantages of using a centroidal dynamics model in this work compared to other dynamic models like the Linear Inverted Pendulum (LIP)?

Answer 1:

The centroidal dynamics model offers a middle ground between simplicity and complexity. Unlike the LIP model, which restricts vertical movement and assumes fixed contact points, the centroidal dynamics model:

- Accounts for vertical movements and changes in body orientation, enabling a wider range of dynamic motions.
- Explicitly models individual contact forces, which allows enforcement of friction cone constraints and ensures physically feasible motion.
- Supports the generation of motions with full-flight phases, essential for highly dynamic tasks such as jumping.

Question 2: How does the optimization framework handle transitions between contact and flight phases?

Answer 2:

The framework uses a continuous parameterization of foot forces and positions, where forces are automatically set to zero during flight phases and non-zero during contact. This approach avoids the complexity of integer programming and enables seamless transitions between contact and flight.

MICRO-507: Legged Robots