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Motivation
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Dynamic Models Advantages Limitations

Linear Inverted Pendulum (LIP)
- Simplifies CoM dynamics

- Fast for predefined tasks

- Restricted base motions

- No flight phases or uneven terrain

Full Rigid-Body Dynamics

- High accuracy

- Captures vertical and complex 

motions

- Computationally expensive

- Complex to model

Centroidal Dynamics
- Balances simplicity and feasibility

- Handles flight phases

- Assumes minimal limb mass deviations

- Limited on uneven terrain

Contact Schedule Optimization Advantages Limitations

Integer Programming
- Optimizes contact schedules

- Useful for predefined tasks

- Relies on heuristics

- Computationally costly for large variables

Soft-Contact Models
- Models smooth force transitions

- Handles contact dynamics

- Stiffness affects convergence

- Unsuitable for highly uneven terrain

Linear Complementary Problem (LCP)
- Ensures feasible constraints

- Dynamic motion compatibility

- High computational cost

- Scaling issues with multi-legged systems

➢ Require predefining some aspects of the motion (gait sequence, foothold placement, or step timings)

➢ Struggle to balance computational efficiency and adaptability
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▪ A single optimization formulation that determines:

• Gait sequence (e.g., walk, trot, jump)

• Step timings

• Footholds

• Body motion in 6 dimensions (position, orientation)

• Forces at each foot

▪ Requires only the start & goal position, nb of steps, and terrain data

▪ Generates motion plans for arbitrary terrains and robot morphologies

▪ Maintains computational efficiency for practical online deployment



Demo video 
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Methodology
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▪ Optimization Model

• Nonlinear Programming (NLP)

• Decision variables: body motion, feet 
trajectories, and contact forces

• Constraints: friction cone, kinematic 
restrictions, and centroidal dynamics



Phase-Based Parameterization
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Challenge: Traditional methods require predefined gaits and foot 

sequences alternating between Swing phase and Stance phase

Solution:

▪ These phases are represented using polynomials

▪ Position and forces during each phase are described by cubic functions

▪ The algorithm optimizes the phases                                               
durations (ΔTi,j) and sequence to                                                     
generate arbitrary gaits

➢ Automatically adapts the gait to the terrain:

• Inserts flight phases when needed   
(e.g., for jumping gaps)

• Adjusts timing for rough terrain or   
steep inclines



Biped Gap Crossing
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Figure: A generated motion plan for 
bipedal robot crossing a wide gap



Limitations
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▪ Trade-offs between speed and solver efficiency

▪ Simplified Dynamics Model
• Model assumes light, immobile limbs

• May lead to inaccuracies for heavy or highly dynamic limbs

▪ Terrain Constraint Gaps
• Only applied at specific points along the trajectory

• May lead to collisions on irregular or complex surfaces

▪ Local Minima in Optimization
• The solver can get stuck in suboptimal solutions

• Can limit motion quality

▪ Possible improvements
• Refining the dynamics model

• Increasing the frequency of terrain constraint checks

• Fixing step timings to reduce the problem’s complexity for the solver



Exam Questions
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Question 1: What are the main advantages of using a centroidal dynamics model in this work compared to 
other dynamic models like the Linear Inverted Pendulum (LIP)?

Answer 1:

The centroidal dynamics model offers a middle ground between simplicity and complexity. Unlike the LIP 
model, which restricts vertical movement and assumes fixed contact points, the centroidal dynamics model:

▪ Accounts for vertical movements and changes in body orientation, enabling a wider range of dynamic 
motions.

▪ Explicitly models individual contact forces, which allows enforcement of friction cone constraints and 
ensures physically feasible motion.

▪ Supports the generation of motions with full-flight phases, essential for highly dynamic tasks such as 
jumping.

Question 2: How does the optimization framework handle transitions between contact and flight phases?

Answer 2:

The framework uses a continuous parameterization of foot forces and positions, where forces are 
automatically set to zero during flight phases and non-zero during contact. This approach avoids the 
complexity of integer programming and enables seamless transitions between contact and flight.
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