

Generalized
Biped Walking
Control - Coros
et Al 2010

 École polytechnique fédérale de Lausanne

Novembre 2024

EPFL Main idea

- Develop a tool that simplifies the creation of realistic, physics-based motions in animation/video games.
- Strong control generalized for different gaits, types of motion, character proportions and more
- Real time control
- No tuning required
- Stable under perturbations

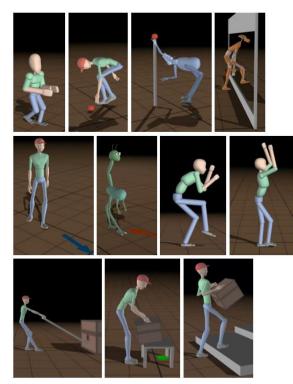


Figure 1: Real-time physics-based simulation of walking. The method provides robust control across a range of gaits, styles, characters, and skills. Motions are easily authored by novice users.

"Generalized biped walking control" (2010)

https://dl.acm.org/doi/10.1145/1778765.1781156

EPFL Key aspects

- Simulation of biped bodies
 - Different types of morphologies, doesn't have to be realistic of symmetric
- Performed tasks
 - Lifting and moving a crate
 - Navigation over and under obstacles
 - Climbing stairs
- Design method
 - Mathematical model and hand tuned

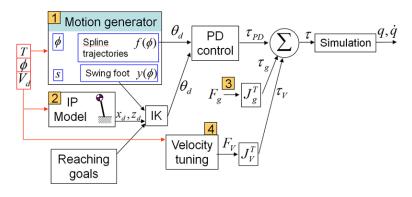
EPFL

Key aspects

Control

- PD controllers tracks target trajectories provided by motion generator
- Gravity compensation models adds torque compensation
- Inverted pendulum model for foot placement
- Jacobian transpose for balance adjustments

Gait type


- Wide range of different dynamically-simulated gaits
- Different parameters such as character proportions, forwards or backwards walking, turns, idling, stop behavior etc

EPFL Control Framework

Control

- PD controllers tracks target trajectories provided by motion generator
- Gravity compensation models adds torque compensation
- Inverted pendulum model for foot placement
- Jacobian transpose for balance adjustments

Figure 2: System Overview. Key components of the model are: (1) a motion generator for producing desired trajectories; (2) an inverted pendulum model for predictive foot placement; (3) a gravity compensation model for all links; and (4) velocity tuning for fine balance corrections.

EPFL Motion Generator

Characteristics

- Relative to parent joint or character coordinate frame
- \succ Model function of the phase step : $\phi \in [0,1)$
- Catmull-Rom splines
- Input of the PD controller:
 - Tracking torque
 - Easy to compute
 - Exact position

Robustness

- All angles equal zero
- Stance hip and Swing leg can be 0
- Swing foot height : $y(\phi)$ eq 0

Implementation

- \Rightarrow $\phi=t/T$, with T the period
- Next step : foot strike or t > T

Inverted Pendulum Foot Placement

Calculations with the constance of the energy sum

- \triangleright Desired stepping point : (x_d, z_d)
- d = distance from the future point of support = $v\sqrt{h/g} + v^2/(4g^2)$
- v = velocity, h = height

> v = 0 for next step, shorter step, velocity becomes more than zero

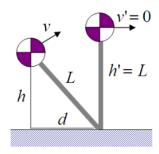


Figure 4: Left: Inverted pendulum model.

Specific case

- Can ignore 2 steps
- Impossible results : d = 0.6L, need of few steps of recovery

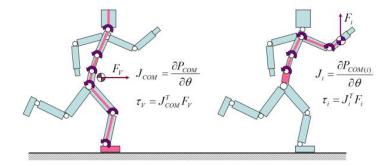
Results

- $> y(\phi) = \text{height of the step}$
- $x(\phi) = (1-\phi)x_0 + \phi x_d \text{ and } z(\phi) = (1-\phi)z_0 + \phi z_d$

EPFL Velocity Tuning and Gravity Compensation

Velocity Tuning

- Control with ground forces reaction and location of the center of pressure (zero moment point)
 - COP closer to toe, speed decrease
 - Balance feedback
- ightharpoonup Virtual forces in the two planes : $F_V = k_V (V_d V)$
- ightharpoonup Force total : $au_V = J_V^T F_V$, Jacobian of the center of mass


Gravity Compensation

- ➤ Lower PD gain
- ightharpoonup Virtual force : $F_i = -m_i g$
- \succ Jacobian on every link : $au_i = \ J_i^T F_i$

Turning and Limb Guidance

$$\omega_{max} = 2 \operatorname{rad/s}$$
 $\phi \in [0, 1)$

- Cartesian space trajectory to guide
- Risk of collision regulated

Figure 3: *Jacobians used for velocity tuning (left) and gravity compensation (right).*

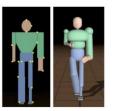
EPFL Implementation

No need to tune

- ➤ Kp and Kd scale to mass
- \rightarrow Friction = 0.8
- No need of torque limit

EPFL Results

Generalization across gait parameters


- Demonstrated capabilities :
 - Forward and backward walking
 - Adjustable walking speeds and step frequencies
- Application to varied characters
- Stop and start as a function of speed Vd

Generalization across styles

- Styles created by adjusting parameters like body tilt, knee movement, arm style
- Interactive parameter modification

Generalization across characters

- Generalizes across a variety of character dimensions and proportions
- Dynamically balanced motion generated immediately

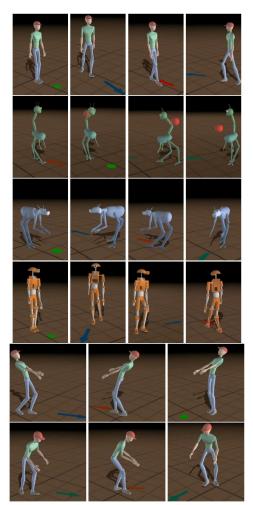


Figure 7: Interactive editing of character proportions and the resulting walking gait.

Figure 5: Direction Following

EPFL Results

Generalization across tasks

- Reaching: Picking up objects at varying heights/positions
- Pushing/pulling crates
- > Lifting/carrying
- > Navigation
- ➤ Stairs
- Crowd simulation

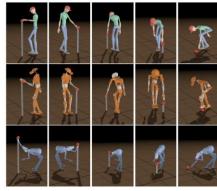
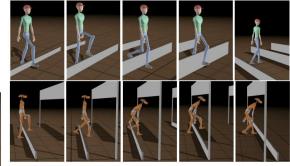
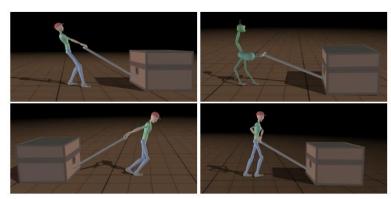


Figure 8: Reaching for objects

Figure 13: A dancing crowd with 16 characters.

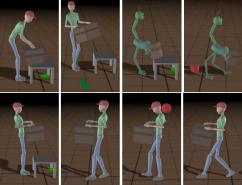

Figure 11: Navigating over and under obstacles. Top: Stepping over a sequence of obstacles of up to 45cm in height. Bottom: Stepping over a sequence of obstacles combined with ducking under obstacles, with varying offsets.

Figure 12: Walking to a crate, picking it up, climbing steps, stepping over obstacles, and coming to a stop.

Figure 9: Pulling and pushing a crate. Top: Pulling to the left. Bottom: Pulling and pushing to the right.

Figure 10: *Lifting and moving heavy crates.*

EPFL Article citations

Citations in Scopus: 144

FWCI (Field-Weighted citation impact): 5.28

Citations in Google Scholar: 353

EPFL Article citations

Article: Resolving Collisions in Dense 3D Crowd Animations, 06 September 2024, ACM Transactions on Graphics, Volume 43, Issue 5, Gonzalo Gomez-Nogales and Al.

"Forward dynamics methods compute joint torques and apply them to synthesize realistic movements [Hodgins et al. 1995; Coros et al. 2010; Yin et al. 2007], but they typically struggle with scenarios with multiple contacts."

Article: Imprecise dynamic walking with time-projection control, 9 novembre 2018, Salman Faraji, A.J. ljspeert

Concept taken up by the Atlas robot, for example: Implementation of CoP control and swing-hip joints tracking the desired footstep locations.

EPFL Pros and cons

Pros

- Robust generalization
 - Wide range of gait parameters, motion styles, and character proportions
 - Supports diverse tasks
- Integrated and adaptive control
 - Combines multiple control strategies
 - Simplifies configuration using approximate models, avoiding complex dynamic inversion calculations
- Ease of use for novice animators
 - Interactive interface allows users to modify character proportions and motion styles
- Robustness
 - Tolerates external disturbances, such as pushes

Cons

- Limitations in dynamic movements
 - Better suited for slow and balanced motions
- Inter-limb collisions
 - Occasional issues with leg intersections (swing/stance) in complex scenarios
- Limited generalization on complex terrain
 - Hasn't been tested on irregular terrains or highly realistic environments
- Lack of demonstration for non-biped morphologies

Possible exam questions

- ❖ What are the main components of the control framework proposed in the article, and how do they contribute to achieving generalized biped walking? (slide 6)
- What are the limitations of the generalized walking control approach presented in the paper? (slide 15)

Figures 1-13: Generalized Biped Walking Control, 2010, University of British Columbia, Stelian Coros and Al