

# Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control

- Authors: Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae Kim
- Rayan Bouchallouf
- Christian Doimo
- Javier De Ramon Murillo

## Mini Cheetah

• 12 proprioceptive actuators (3 on each leg)

Integrated with hall-effect encoders for precise position sensing

Central IMU for body orientation and balance





#### Abstract

- Dynamic legged locomotion is a challenging topic because of the lack of established control schemes which can handle aerial phases, short stance times, and high-speed leg swings.
- Our controller combines whole body control (WBC) and model predictive control (MPC).



# Development of the hybrid control

**Proposed solution:** Combining MPC and WBIC to get the strengths of both techniques

#### **MPC**

- **Strength**: Long-term planning ⇒ Excellent for anticipation
- **Weakness**: Low update frequency (40 Hz) ⇒ Cannot handle sudden perturbations effectively

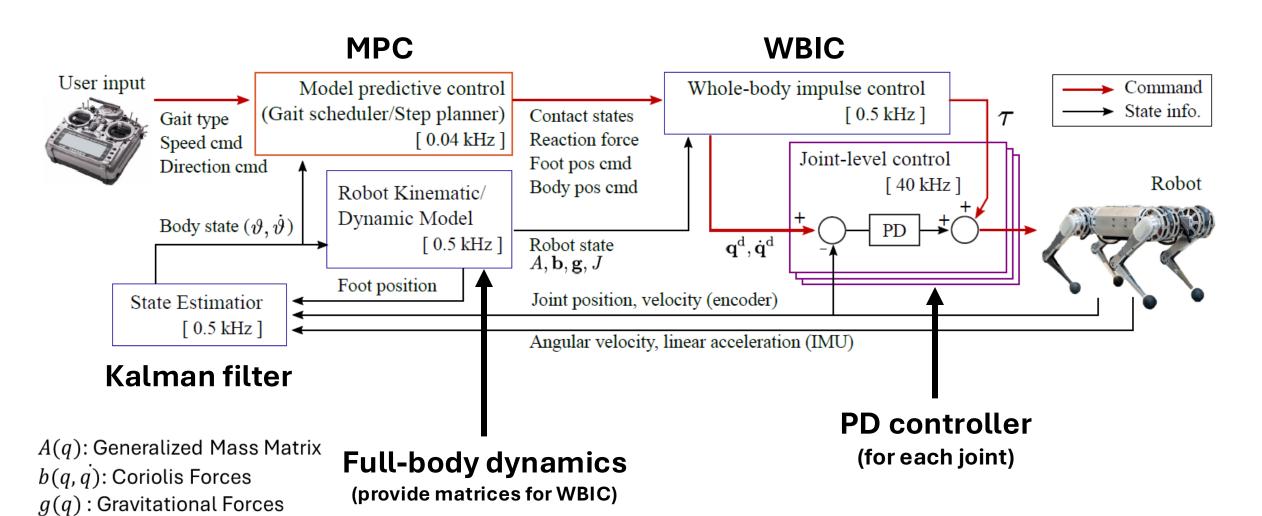
#### **WBIC**

- **Strength**: High-frequency, precise control (500 Hz) ⇒ Excellent for managing perturbations in real-time
- Weakness: Lacks long-term planning ⇒ Limited in anticipation



# Previous existing methods

- Existing WBCs focus more on following the CoM
- Idea of reaction force tracking originates from the impulse planning used in Cheetah 2


"High-speed bounding with the MIT Cheetah 2: Control design and experiments" H.-W. Park, P. M. Wensing, and S. Kim  Convex MPC can perform various dynamic gaits at high speed on both Cheetah 3 [1] and Mini-Cheetah [2].

"Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control", J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim

"Mini Cheetah- A Platform for Pushing the Limits of Dynamic Quadruped Control." B. Katz, J. Di Carlo, and S. Kim,



#### Architecture



J(q): Jacobian



### MPC

- Simplified model ⇒ Enables faster computation at 40 Hz
- Provides optimal reaction forces over a long horizon ⇒ Enhances planning and anticipation of dynamic gaits
- **Predefined contact sequence and gait patterns** ⇒ Keeps the formulation convex (fast computation and unique global minimum solution)

Model equation: 
$$x(k+1) = A_k x(k) + B_k \hat{f}(k) + \hat{g}$$

Minimize: 
$$\min_{\mathbf{x}, \mathbf{f}} \sum_{k=0}^{m} ||\mathbf{x}(k+1) - \mathbf{x}^{\text{ref}}(k+1)||_{\mathbf{Q}} + ||\mathbf{f}(k)||_{\mathbf{R}}$$

Constraint : 
$$|f_x| \le \mu f_z, \quad |f_y| \le \mu f_z, \quad f_z > 0 \quad \longleftarrow$$
 Friction force

Final output provided to the WBIC: 
$$\mathbf{x}^{des}$$
 and  $\mathbf{f}^{MPC}_{r}$   $\hat{\mathbf{f}} = \begin{bmatrix} \mathbf{f}_1 & \cdots & \mathbf{f}_n \end{bmatrix}^{\top}$ 



## **WBIC**

**1. Computes joint positions and velocities** through task prioritization (null-space projection of the Jacobian) using MPC body and foot pos:

$$\begin{split} \mathbf{q}_{j}^{\mathrm{cmd}} &= \mathbf{q}_{j} + \Delta \mathbf{q}_{i-1} + J_{i|pre}^{\phantom{\dagger}\dagger} \left( \mathbf{e}_{i} - J_{i} \Delta \mathbf{q}_{i-1} \right) \\ \dot{\mathbf{q}}_{i}^{\mathrm{cmd}} &= \dot{\mathbf{q}}_{i-1}^{\mathrm{cmd}} + J_{i|pre}^{\phantom{\dagger}\dagger} \left( \dot{\mathbf{x}}_{i}^{\mathrm{des}} - J_{i} \dot{\mathbf{q}}_{i-1}^{\mathrm{cmd}} \right) \\ \ddot{\mathbf{q}}_{i}^{\mathrm{cmd}} &= \ddot{\mathbf{q}}_{i-1}^{\mathrm{cmd}} + \overline{J_{i|pre}^{\mathrm{dyn}}} \left( \ddot{\mathbf{x}}_{i}^{\mathrm{cmd}} - \dot{J}_{i} \dot{\mathbf{q}} - J_{i} \ddot{\mathbf{q}}_{i-1}^{\mathrm{cmd}} \right) \end{split}$$

**3. Computes joints torque** using  $f_r$  and  $\ddot{q}$  from quadratic programming :

$$egin{bmatrix} au_f \ au_j \end{bmatrix} = A \ddot{f q} + {f b} + {f g} - J_c^{ op} {f f}_r \end{bmatrix}$$

**2. Quadratic Programming**  $\Rightarrow$  Use  $f_r^{MPC}$  and  $\ddot{q}^{cmd}$  to minimize  $f_r - f_r^{MPC}$  and  $\ddot{q} - \ddot{q}^{cmd}$ :

$$\min_{oldsymbol{\delta_{\mathbf{f}_r}},oldsymbol{\delta_f}} \quad \delta_{\mathbf{f}_r}^ op Q_1 \delta_{\mathbf{f}_r} + \delta_f^ op Q_2 \delta_f$$

Constraint:

$$S_f\left(A\ddot{\mathbf{q}} + \mathbf{b} + \mathbf{g}\right) = S_f J_c^{\mathsf{T}} \mathbf{f}_r$$
 (floating base dyn.)
$$\ddot{\mathbf{q}} = \ddot{\mathbf{q}}^{\mathrm{cmd}} + \begin{bmatrix} \delta_f \\ \mathbf{0}_{n_j} \end{bmatrix}$$
 (acceleration)
$$\mathbf{f}_r = \mathbf{f}_r^{\mathrm{MPC}} + \delta_{\mathbf{f}_r}$$
 (reaction forces)
$$W\mathbf{f}_r \geq \mathbf{0},$$
 (contact force constraints)

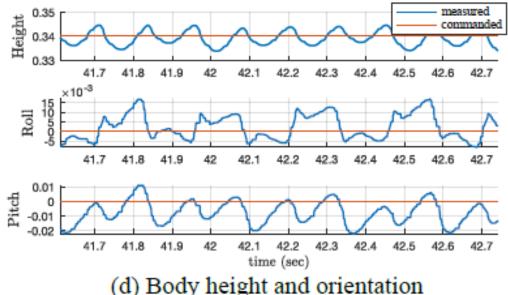
**Final output** provided to the PD controllers : au,  $q_j^{cmd}$ ,  $\dot{q}_j^{cmd}$ 

# Experimental Results



| Task             | $\mathbf{k}_p \ (\mathrm{s}^{-2})$ |     |                   | $\mathbf{k}_d \ (\mathrm{s}^{-1})$ |    |                  |
|------------------|------------------------------------|-----|-------------------|------------------------------------|----|------------------|
| Body Orientation | [100                               | 100 | $100]^{\top}$     | [10                                | 10 | $10]^{\top}$     |
| Body Position    | [100                               | 100 | $100$ ] $^{\top}$ | [10                                | 10 | $10$ ] $^{\top}$ |
| Foot Position    | [100                               | 100 | $100$ ] $^{\top}$ | [10                                | 10 | $10$ ] $^{\top}$ |

TABLE I TASK AND GAIN SETUP


Table summarizing task setup and feedback gains of WBIC used in the experiments.

For the QP problem,  $Q_1 = 1$ ,  $Q_2 = 0.1$ .

Joint feedback controllers:

$$K_p = 3Nm/rad$$
 and  $K_d = 0.3Nms/rad$ 

- Maximum forward speed of 3.7m/s (one of the fastest untethered quadruped robots running speed)
- The hardware capability is fully utilized in the test.
  - Max commanded joint velocity = 34rad/s
  - Max commanded torque at the hip joints = 25,5 Nm.
  - Max joint velocity=40rad/s
  - Max torque= 17 Nm





### **Outdoor tests**

- Various gaits with different speeds over 1m/s:gallop, bounding, pronking,trot,pacing...
- Robustness of the controller over different types of terrain(slippery/rough...)

# Strong and weak points

- +Robust navigation even over hard terrain
- +Flexible and efficient execution of complexly dynamic gaits
- -Computationally heavy which might limit it utilization of integrated systems
- -Might require modifications if visual inputs are considered



### Conclusion

- New Control Scheme for quadrupled robots
- Research's where the article was cited:
  - 1. 'Whole-body MPC for highly redundant legged manipulators: experimental evaluation with a 37 DoF dual-arm quadruped' (2023)
  - 2. Quadrupedal Locomotion via Event-Based Predictive Control and QP-Based Virtual Constraints" (2020)
  - 3. "Whole-Body Nonlinear Model Predictive Control Through Contacts for Quadrupeds" (2017):



# Questions for exam

- 1. What is the advantage of combining MPC and WBIC?
  - Slide 4
- 2. What techniques the article uses to allow the MPC computed in real-time?
  - Slide 7

