

Efficient Bipedal Robots Based on Passive-Dynamic Walkers

Jeffrey, Nina and Cesar

.

How to stabilize 2 legged walking motion?

Trajectory control approach = precise planning and tracking of joint movements

- versatility (different terrains and tasks)
- energy inefficient
- complex, and require high-frequency controllers

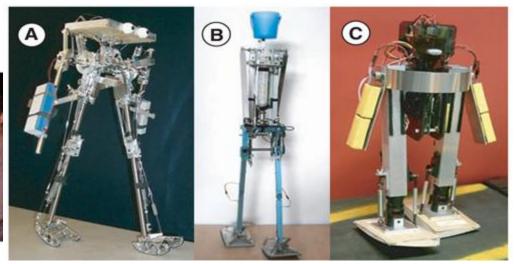
Asimo Honda robot

Passive walking approach = no actuation, stabilize using passive dynamics

- energy efficient
- + simple
- natural gait
- non controllable, need a slope to actuate

McGeer's passive dynamic walker [4]

Idea: take the best of both worlds


Addition of minimal actuation to passive-based robot designs

Natural human-like gait, energy efficient, and independent of gravitational

power

Martijn Wisse, Russ Tedrake, Steve Collins, and Andy Ruina [4]

Walkers inspired by passive walkers: (A) Comell biped (B) Delft biped (C) MIT learning biped [1] [4]

Cornell bipedal walker demo

Cornell bipedal walker - Overview

- Fully autonomous powered bipedal walker
 - 12.7 kg
 - 0.81m legs
- Mechanical design inspired from anthropomorphic geometry and mass distributions
- 5 internal degrees of freedom:
 - 1 hip, 2 actuated ankles, 2 locking knees
- Finite state machine controller:
 - Inputs: 8 switches
 - Outputs: on-off activations of solenoids/motors
 - 20 bits of information per step

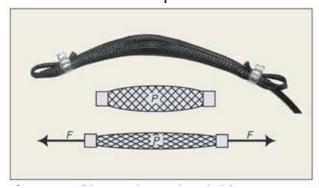
Cornell bipedal walker - Results

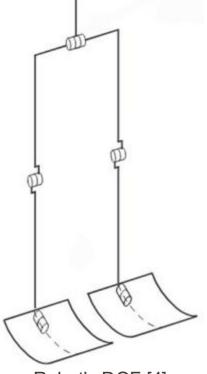
- Achieved steady human-like gait
- Forward velocity of 0.44 m/s with an average step period of 0.85 seconds
- Mildly unstable in heading, success rate of 30% of attempts
- Very efficient cost of transport

TABLE I ESTIMATED SPECIFIC COST OF TRANSPORT, c_{et} , AND MECHANICAL ENERGY EFFICIENCY, c_{mt} , OF SEVERAL LOCOMOTIVE DEVICES*.

		c_{et}	c_{mt}
Walking	Honda's Asimo $^{\alpha}$	3.2	1.6
Robots:	T.U. Delft's Denise $^{\beta}$	5.3	0.08
	MIT's Spring Flamingο ^γ	2.8	0.07
	Our Robot	0.20	0.055
	McGeer's Dynamite ^δ	-	0.04
Humans $^{\epsilon}$:	Walking ^C	0.2	0.05
Flying	Modern Helicopter ^η	1.6	0.4
Machines:	Wright Flyer θ	0.72	0.18
	Boeing 747 ^t	0.12	0.05
	Modern Glider ^k	-	0.02
Other ^{\(\lambda\)} :	Efficient Auto	0.06	0.015
	Cyclist	0.04	0.01
	Freight Train	0.012	0.003
	Freighter	0.004	0.001

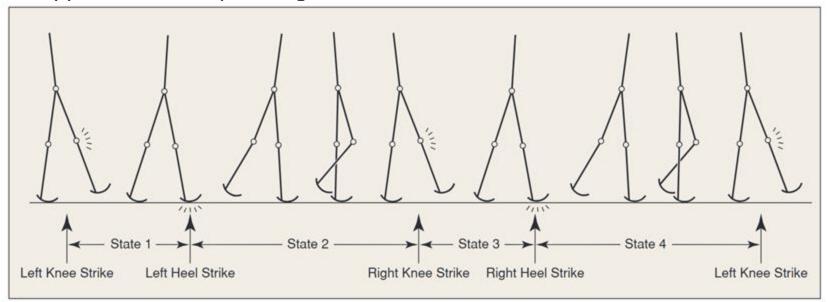
Table of cost of transport of different devices[2]


Introduction video - Delft


Delft Biped Robot - Mechanical Design

- 5 DOF:
 - 1 hip joint
 - 2 knees joints
 - 2 lateral ankle joints
- Pneumatic hip actuation

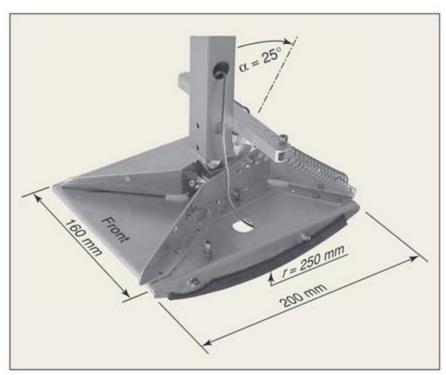
McKibben muscle operating principle. [4]



Robot's DOF [4]

Delft Biped Robot - Control

- Ground contact sensor on each foot, generates heel strike event
- Opposite knee unlatched
- Opposite muscle pulls leg forward



Controller: State machine with 4 states [4]

Delft Biped Robot - Stability

- Sufficient fore-aft swing leg actuation
 - sagittal + lateral balance
- Kinematic coupling in the ankle between leaning and steering motions:
 - Provides restoring moments, which helps lateral balance

Foot design: lateral ankle joint [4]

.

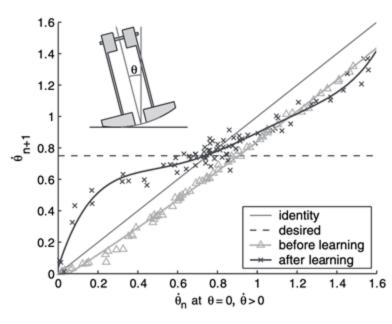
Delft Biped Robot - Results

- Natural human like gait
- Energy efficient: Specific Mechanical Cost Of Transport = 0.08
- Can handle floor disturbances up to 6 mm (leg length=0.7 m)
 - On a normal carpeted office floor, takes on average 20 steps before falling.

MIT bipedal walker - Introduction video

MIT bipedal walker - Technical design

- Inspired by simple ramp walkers
- 6 internal degrees of freedom:
 - 1 at the hip and two at the ankle for each leg
- 2.75kg, 43cm tall
- Actuators: two servo motors in each ankle
- Sensors: potentiometers at each joint + tilt sensors
 + rate gyros
- Uses reinforcement learning to adopt a control policy (tuning of 35 parameters)
 - Inputs: body angle & angular velocity
 - Outputs: target angles for the ankle servo motors
 - Cost function : penalizes deviations from reference controller



Improvements made through training

- Before learning (△) :
 - energy loss at each step
 - poor performance
 - angular velocity converges to

- After learning (x):
 - efficiency increase
 - approaching ideal performance
 - satisfying performance obtained in reasonable timeframe (~10 min or 600 steps)

Fig. 3. Step-to-step dynamics of the MIT biped walking in place on a level surface. before (△) and after (x) learning. Shown is the roll angular velocity when the right foot collides with the ground ($\theta = 0, \dot{\theta} > 0$) at step n + 1 versus step n. Intersections of the plots with the solid identity line are fixed points. The horizontal dashed line is the theoretical ideal: the robot would reach $\dot{\theta} = 0.75 \text{ s}^{-1} \text{ in one}$ step. This ideal cannot be achieved due to limitations in the controllability of the ac-

tuation system. On a level surface, before learning, the robot loses energy on every step $(\dot{\theta}_{n+1} < \theta_n)$, eventually coming to rest at $\dot{\theta} = 0$. After learning, the robot quickly converges near $\dot{\theta} = 0.75 \text{ s}^{-1}$ for $0 \le \dot{\theta}_0 \le 1.7 \text{ s}^{-1}$.

Results of the learning, shown in [1]

External Citations

- Cited 2629 times
- A. J. Ijspeert, "Central pattern generators for locomotion control in animals and robots: A review," *Neural Networks*, vol. 21, no. 4, pp. 642–653, 2008, doi: 10.1016/j.neunet.2008.03.014.
 - References the paper for examples of reflex based motion and importance of design with resonant frequency
- Wilson, A. D., & Golonka, S. (2013). Embodied Cognition is Not What you Think it is. Frontiers in Psychology, 4, 35621. https://doi.org/10.3389/fpsyg.2013.00058
 - Describes how walking has specific forms derived from passive dynamics
- Asbeck AT, De Rossi SMM, Holt KG, Walsh CJ. A biologically inspired soft exosuit for walking assistance. The International Journal of Robotics Research. 2015;34(6):744-762. doi:10.1177/0278364914562476
 - Applies the analysis of passive walkers towards design of exosuits
- J. Reher and A. D. Ames, "Dynamic Walking: Toward Agile and Efficient Bipedal Robots," Annual Review of Control, Robotics, and Autonomous Systems, vol. 4, pp. 535–572, 2021, doi: 10.1146/annurev-control-071020-045021.
 - Uses the examples from the paper to illustrate the benefits of passive walkers compared to ZMP

Pros and Cons

Pros:

- Cornell and Delft robots have very high efficiency and low control complexity
- MIT robot is able to quickly learn simple control policy
- Natural human-like walking

Cons:

- Only traverses level ground
- Cornell and Delft robots lack heading stability and versatility in task performance
- The learning process is powerdemanding

-

Exam Questions

- 1. How do powered dynamic walkers differ from trajectory controlled robots, and what are their benefits and drawbacks? Slides 3-4
- 2. What method does the MIT robot use to learn its control policy? What are the inputs needed and the outputs of such method? Slide 16

EPFL

Bibliography

- [1] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, "Efficient Bipedal Robots Based on Passive-Dynamic Walkers," *Science*, vol. 307, no. 5712, pp. 1082–1085, 2005, doi: 10.1126/science.1107799.
- [2] S. H. Collins and A. Ruina, "A Bipedal Walking Robot with Efficient and Human-Like Gait," *Proceedings of the 2005 IEEE International Conference on Robotics and Automation*, Barcelona, Spain, 2005, pp. 1983-1988, doi: 10.1109/ROBOT.2005.1570404.
- [3] Collins, Steven H., Andy Ruina, Russ Tedrake, and Martijn Wisse. "SUPPORTING ONLINE MATERIAL for Efficient bipedal robots based on passive-dynamic walkers." *Mechanical Engineering, University of Michigan* (2005): 1-8.
- [4] Marjin Wisse, Guillaume Feliksdal, Jan Van Frankenhuyzen, "Passive-Based Walking Robot", 2007