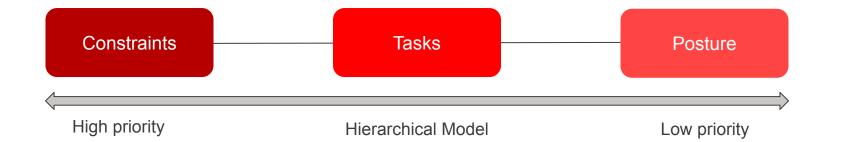


Whole Body Control Framework for Humanoids

Mathéo Taillandier Alessandro Lupi

 École polytechnique fédérale de Lausanne

EPFL

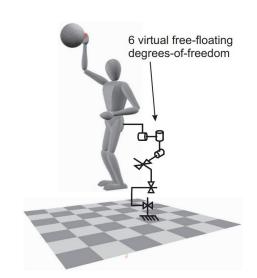

Asimo Robot

https://www.youtube.com/watch?v=O4ma1p4DK5A

Executive Summary

This article implements the control of a biped (humanoid) robot using a hierarchical separation of control primitives. It applies impedance and hybrid (position and force) control using this new framework. The robot is modeled as a 6 virtual DOFs free-floating structure and incorporates non-contact constraints, including joint limits, self-collision, and near-body obstacles.

Control Primitives (low level tasks):

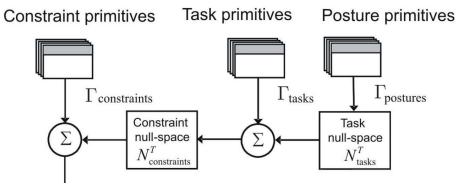

- Constraints primitive: Prevent the controlled robot from violating physical constraints (joint limitation, collisions, etc.)
- Operational Tasks primitive: Execute specific (simple?) actions, such as grabbing an object or moving the head change line of sight
- Posture primitives: Use the residual redundancies for different purposes, such as mimicking humans or minimizing torque effort.

Whole-Body Kinematics (use of a free-floating model of the robot):

 Task and posture kinematics are defined with respect to the origin of the free floating model

•
$$x_{\text{task}} = T(x_{\text{base}}, q), \quad \theta_{\text{posture}} = T(x_{\text{base}}, q)$$

 Traditional control approaches use local Jacobians defined with respect to the reference frame at the origin of the limb


I - Whole-Body Control Framework

Control Hierarchy:

Using null-space projection, the control hierarchy enforces the constraints of each lower-level control primitive

$$\Gamma = \Gamma_{\text{constraints}} + N_{\text{constraints}}^T \left(\Gamma_{\text{tasks}} + N_{\text{tasks}}^T \Gamma_{\text{postures}} \right)$$

$$\Gamma = \left(J_{\text{constraints}}^T F_{\text{constraints}} \right) + \left(J_{t|c}^T F_{t|c} \right) + \left(J_{p|t|c}^T F_{p|t|c} \right)$$

I - Whole-Body Control Framework

Hybrid Control and Impedance Control

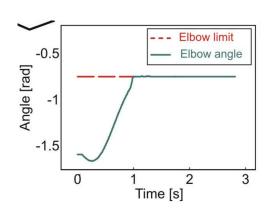
Impedance control - controlled interaction with environment

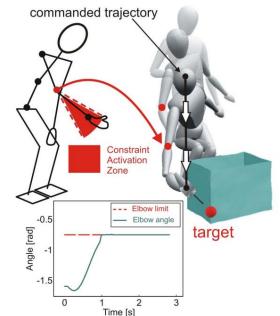
•
$$M_{\text{des}}(\ddot{x}_{\text{task}} - a_{\text{des}}) + D_{\text{des}}(\dot{x}_{\text{task}} - v_{\text{des}})$$

 $+ K_{\text{des}}(x_{\text{task}} - x_{\text{des}}) = \hat{f}_{\text{int}}$

Hybrid control - simultaneous force and position control

•
$$F_{\text{task}}^* = \Omega_m F_m^* + \Omega_f F_f^*$$

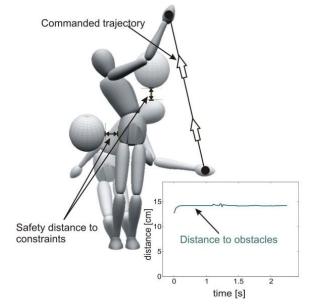

II - Non-contact Constraints


Joint Limits

Direct joint-limit monitoring and activation of constraint-avoidance control

$$\Gamma = (J_{\text{task}}^T F_{\text{task}}) \Longrightarrow$$
 "upon activation" \Longrightarrow

$$\Gamma = (J_{\text{iointLimits}}^T F_{\text{jointLimits}}) + (J_{t|c}^T F_{t|c})$$

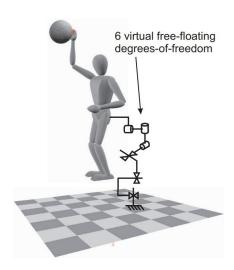


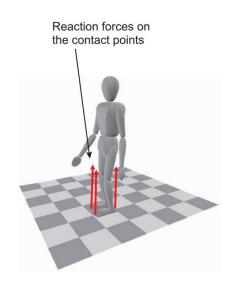
II - Non-contact Constraints

Near-Body Obstacle Avoidance for short range manipulation or near-body obstacles

 Highest priority level, and therefore the controller can detect feasibility

$$\Gamma = \left(J_{\text{obstacle}}^T F_{\text{obstacle}}\right) + \left(J_{t|c}^T F_{t|c}\right)$$





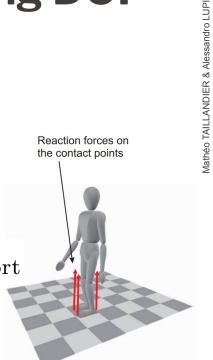
III - Accounting for Free Floating DOF and supporting contacts

The framework accounts for **Free Floating dynamics** and **supporting contacts**:

- Gravity grounds body parts into the support contacts
- Make indirect use of support to balance

III - Accounting for Free Floating DOF and supporting contacts

The Free Floating Jacobian of the Task:


$$J_{\text{taskFF}} = J_{\text{task}}(\overline{S}_{\text{act}}S_{\text{act}})$$

which we prioritize using the support null-space:

$$J_t = J_{\text{taskFF}} N_{\text{support}} = J_{\text{task}} (\overline{S}_{\text{act}} S_{\text{act}}) N_{\text{support}}$$

and incorporate the constraints which gives:

$$J_{t|c} = J_{\text{task}} N_{\text{constraints}} (\overline{S}_{\text{act}} S_{\text{act}}) N_{\text{support}}.$$

Article citations

- 309 citations on Google Scholar
- 190 citations on Scopus
- Has influenced other labs and has been used on other robots
- Is widely adopted as an example of hierarchical whole-body control on bipeds.

Scopus metrics

190 99th percentile

Citations in Scopus

Cited in: Perceptive Locomotion Through Nonlinear Model-Predictive Control

Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshidian, and Marco Hutter

- The approach was used in this article to control the ANYmal robot through rough terrain.
- "A high-frequency whole-body controller (WBC) is used to convert the desired acceleration tasks into torque commands" p.11

Soft constraints "critic"

- "Optimization Based Full Body Control for the Atlas Robot"
 Siyuan Feng, Eric Whitman, X Xinjilefu and Christopher G. Atkeson, 2014
- "Optimization-based Full Body Control for the DARPA Robotics Challenge" Siyuan Feng, Eric Whitman, X. Xinjilefu, and Christopher G. Atkeson, 2014

Pros and Cons

Pros:

- Builds a solid structure for whole-body control
- Accounts for constraints, task, posture optimization and both free floating DOF and reaction forces
- Makes for a safe and reactive humanoid robot perfect for unpredictable human environment.

Cons:

- Usage of hard constraints over soft constraints.
- Very theoretical paper and little detail about how to actually implement certain solutions

Exam Questions

How is the Whole-Body Framework structured?

 Hierarchically separated into control primitives going from high priority to low priority: constraints, tasks, posture

How are joint limits implemented?

 The task control is projected into the null space of the joint limit upon activation (constant joint limit monitoring). Activation happens when reaching a user-set constraint activation zone.