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Challenge:

e Robots need visual guidance to perform agile motions (e.g., jumping) on discontinuous
terrains (e.g., gaps)

This Paper (Depth-based Impulse Control (DIC))
e Robot type: Quadruped
e Sensors: Depth camera + IMU
e Method: Vision-based hierarchical control
e High level (RL) + Low level (MPC + WBIC)
e Gaits: Unconstraint gaits
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Depth-based Impulse Control (DIC) Architecture

Baseline: Joint Trajectory Generator Ours: Depth-based Impulse Control (DIC)
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= DIC combines model-based and learning-based control approaches

= Generate agile movements using depth data captured by an onboard
depth camera

Romain Bernadat
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Baseline: Joint Trajectory Generator
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= A high-level controller that processes visual input to determine the
desired trajectory of the robot’s body and convert them into actions:

Ours: Depth-based Impulse Control (DIC)
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» Body Velocity: Specifies both the forward and vertical speed, which influences
the jump’s height and span

» Gait Schedule: Controls the timing of foot contacts with the ground. By adjusting
the gait, the high-level controller can change the foot positioning dynamically to

suit different ob

stacles

Romain Bernadat
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Baseline: Joint Trajectory Generator
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Ours: Depth-based Impulse Control (DIC)

= Alow-level controller that employs Whole-Body Impulse Control (WBIC)
to convert high-level commands into ground reaction forces.

WBIC calculates the forces each foot should apply to achieve the trajectory

« Model Predictive Control (MPC): Computes desired forces at each foot to follow
the planned body trajectory

» Differential Inverse Kinematics: Uses the computed forces to generate target
joint angles and velocities for each leg

Romain Bernadat
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« Training Set:
- Gap: uniform random width, W,,;,, = 4cm, W4, € [10,20,30]cm
« Flat segments: random width 0.5 to 2.0m
« Test dataset contains novel terrains drawn from the same distribution

Heyun Luan
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= DIC succeeds at above 90% of gap-crossing attempts for both trotting and pronking.

= DIC outperforms blind locomotion and local foot adaptation (FPA), especially on large

gaps.
> Comparison:

=== Blind motion: follows probabilities of gap parameters

foothold with safety heuristic.

£ Ideal performance: theoretical limits
» Foot position adaptation (FPA) by local foothold adaptation baseline: model-based baseline, adapt

https://sites.qoogle.com/view/jumpingfrompixels/
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Pronk through 65 cm gap
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DIC contact schedule: let policy choose contact states of each foot independently
Unconstrained gait policies outperform those with fixed gait, crossing gaps that are much

wider.

« Trained with wide gaps >40cm: variable-bounding contact schedule, max 66cm

* Trained with gap <40cm: variable-timing pronking gait

https://sites.qoogle.com/view/jumpingfrompixels/
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=PFL  Results: Real World Performance
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Consecutive pronking across three 15cm gaps Gap Width (cm)

= Successful gap crossings up to 16cm with the onboard estimator and depth images
= Able to cross gaps up to 26¢cm with ground-truth state information instead of an estimator
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=PFL  Results: Sim-to-Real Gap

Feet make contact but slip due to insufficient contact force

Heyun Luan

Body and foot position tracking with
onboard state estimator (IMU + Kinematics + Kalman Filter)
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= Drift in state estimation caused by sensor noise and imprecise knowledge of
contact timing

= Violation of the assumption made by the low-level controller that the robot’s feet do
not slip while in contact with the floor, especially during aggressive motion.
https://sites.qgoogle.com/view/jumpingfrompixels/
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Related wo“(s Legged Locomotion in Challenging

Terrains Using Egocentric Vision (2022)
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Directly predict target joint angles from egocentric depth without constructing metric elevation maps
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Related wo“(s Neural Volumetric Memory (NVM)

for Visual Locomotion Control (2023)
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Put current and previous depth picture into NVM to estimate the terrain below robots



B Group 19 - Learn to Jump from Pixels

EPFL - Conclusion

= Pros:
« Could plan motion trajectories in advance based on visual information
« Adaptive gait
 Hierarchical control enables the robot to simultaneously achieve high performance and
robustness

= Cons:

« Assumes no slippage at the contact points. This discrepancy leads to low performance
in real-world deployment

« Use only the current depth graph, so robot just get the front information
« Cannot deal with drift in state estimation

13
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Possible exam questions

1.What is Depth Based Impulse Control (DIC), and how does it enable a
robot to perform agile movements like jumping? (Answer on slides 3-5)

2.What caused the huge sim-to-real gap when deploying the Depth-based
Impulse Control (DIC) with onboard state estimator? (Refer to slide 10)
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