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Introduction 2

Challenge: 

● Robots need visual guidance to perform agile motions (e.g., jumping) on discontinuous 

terrains (e.g., gaps)

This Paper (Depth-based Impulse Control (DIC))

● Robot type: Quadruped

● Sensors: Depth camera + IMU

● Method: Vision-based hierarchical control

● High level (RL) + Low level (MPC + WBIC)

● Gaits: Unconstraint gaits



▪ DIC combines model-based and learning-based control approaches

▪ Generate agile movements using depth data captured by an onboard 
depth camera

Method
3

Depth-based Impulse Control (DIC) Architecture
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▪ A high-level controller that processes visual input to determine the 
desired trajectory of the robot’s body and convert them into actions:

• Body Velocity: Specifies both the forward and vertical speed, which influences 
the jump’s height and span

• Gait Schedule: Controls the timing of foot contacts with the ground. By adjusting 
the gait, the high-level controller can change the foot positioning dynamically to 
suit different obstacles
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▪ A low-level controller that employs Whole-Body Impulse Control (WBIC)
to convert high-level commands into ground reaction forces.

WBIC calculates the forces each foot should apply to achieve the trajectory

• Model Predictive Control (MPC): Computes desired forces at each foot to follow 
the planned body trajectory

• Differential Inverse Kinematics: Uses the computed forces to generate target 
joint angles and velocities for each leg
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Hardware Platform Simulation Platform

• Training Set:

• Gap: uniform random width, 𝑊𝑚𝑖𝑛 = 4cm, 𝑊𝑚𝑎𝑥 ∈ 10,20,30 cm

• Flat segments: random width 0.5 to 2.0m

• Test dataset contains novel terrains drawn from the same distribution

Experiment Setup
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▪ DIC succeeds at above 90% of gap-crossing attempts for both trotting and pronking.

▪ DIC outperforms blind locomotion and local foot adaptation (FPA), especially on large 
gaps.

➢Comparison:
• Blind motion: follows probabilities of gap parameters

• Ideal performance: theoretical limits

• Foot position adaptation (FPA) by local foothold adaptation baseline: model-based baseline, adapt 
foothold with safety heuristic.

Results: Fixed Gait in Simulation
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90% Trot Pronk
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• DIC contact schedule: let policy choose contact states of each foot independently

• Unconstrained gait policies outperform those with fixed gait, crossing gaps that are much 
wider.

• Trained with wide gaps >40cm: variable-bounding contact schedule, max 66cm

• Trained with gap <40cm: variable-timing pronking gait

Results: Unconstrainted Gait in Simulation
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Unconstrained 

Gait

Wide gaps

Max 66cm 

Pronk through 65 cm gap

𝑪𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑒𝑑 = 𝒂𝑡
𝑐

https://sites.google.com/view/jumpingfrompixels/
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▪ Successful gap crossings up to 16cm with the onboard estimator and depth images

▪ Able to cross gaps up to 26cm with ground-truth state information instead of an estimator

Results: Real World Performance
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Consecutive pronking across three 15cm gaps 

16cm

Onboard estimator

26cm

Ground-truth

https://sites.google.com/view/jumpingfrompixels/

https://sites.google.com/view/jumpingfrompixels/


▪ Drift in state estimation caused by sensor noise and imprecise knowledge of 
contact timing

▪ Violation of the assumption made by the low-level controller that the robot’s feet do 
not slip while in contact with the floor, especially during aggressive motion.

Results: Sim-to-Real Gap
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Model foot pose

Command foot pose

Ground truth foot pose

Body pose

Body and foot position tracking with 

onboard state estimator (IMU + Kinematics + Kalman Filter)
1 2

3 4

Feet make contact but slip due to insufficient contact force

Contact ☺

.. But slip 

https://sites.google.com/view/jumpingfrompixels/
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Related Works 
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Directly predict target joint angles from egocentric depth without constructing metric elevation maps

Legged Locomotion in Challenging

Terrains Using Egocentric Vision (2022)

𝒎𝒕 = scan dots

𝒅𝒕 = depth graph



Neural Volumetric Memory (NVM)

for Visual Locomotion Control (2023)

Put current and previous depth picture into NVM to estimate the terrain below robots
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Related Works 



Conclusion
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▪ Pros:

• Could plan motion trajectories in advance based on visual information

• Adaptive gait

• Hierarchical control enables the robot to simultaneously achieve high performance and 
robustness

▪ Cons:

• Assumes no slippage at the contact points. This discrepancy leads to low performance 
in real-world deployment 

• Use only the current depth graph, so robot just get the front information

• Cannot deal with drift in state estimation
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1.What is Depth Based Impulse Control (DIC), and how does it enable a 
robot to perform agile movements like jumping? (Answer on slides 3-5)

2.What caused the huge sim-to-real gap when deploying the Depth-based 
Impulse Control (DIC) with onboard state estimator? (Refer to slide 10)

Possible exam questions
14
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▪ Margolis, Gabriel B., et al. "Learning to jump from pixels." arXiv preprint 
arXiv:2110.15344 (2021).

▪ Project web: https://sites.google.com/view/jumpingfrompixels/

▪ Agarwal, Ananye, et al. "Legged locomotion in challenging terrains 
using egocentric vision." Conference on robot learning. PMLR, 2023.

▪ Yang, Ruihan, Ge Yang, and Xiaolong Wang. "Neural volumetric 
memory for visual locomotion control." Proceedings of the IEEE/CVF 
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Thank you

• Quadruped robot

• Depth-based Impulse Control (DIC)
• Learning-based control

• Model-based control

• Adaptive gait

• Depth camera
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