

Learn to Jump from Pixels

Margolis, Gabriel B., et al. "Learning to jump from pixels." arXiv preprint arXiv:2110.15344 (2021).

Group 19

Jiajun Hu Romain Bernadat Heyun Luan

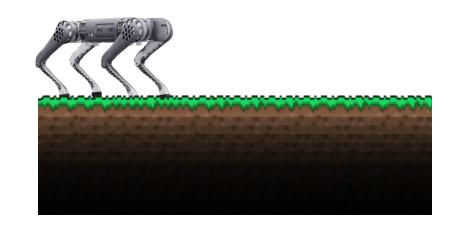
EPFL Introduction

Challenge:

 Robots need visual guidance to perform agile motions (e.g., jumping) on discontinuous terrains (e.g., gaps)

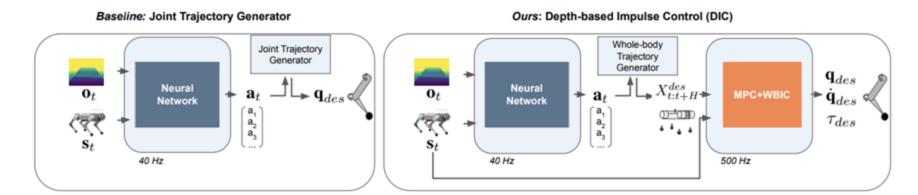
This Paper (Depth-based Impulse Control (DIC))

- Robot type: Quadruped
- Sensors: Depth camera + IMU
- Method: Vision-based hierarchical control
 - High level (RL) + Low level (MPC + WBIC)
- Gaits: Unconstraint gaits

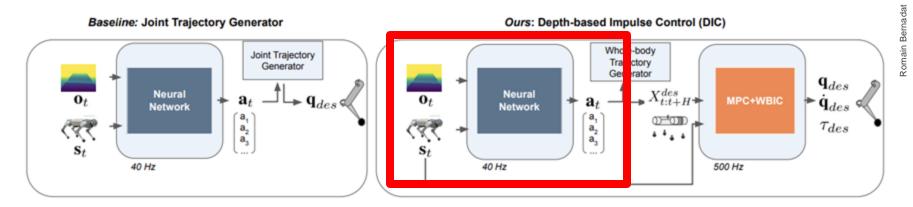


EPFL Method

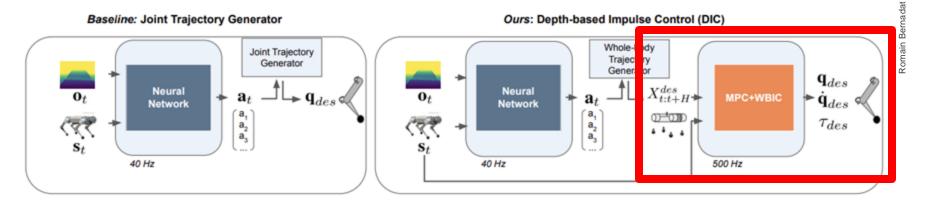
Depth-based Impulse Control (DIC) Architecture



- DIC combines model-based and learning-based control approaches
- Generate agile movements using depth data captured by an onboard depth camera



- A high-level controller that processes visual input to determine the desired trajectory of the robot's body and convert them into actions:
 - Body Velocity: Specifies both the forward and vertical speed, which influences the jump's height and span
 - Gait Schedule: Controls the timing of foot contacts with the ground. By adjusting the gait, the high-level controller can change the foot positioning dynamically to suit different obstacles

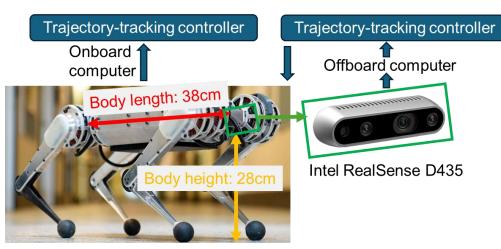


 A low-level controller that employs Whole-Body Impulse Control (WBIC) to convert high-level commands into ground reaction forces.

WBIC calculates the forces each foot should apply to achieve the trajectory

- Model Predictive Control (MPC): Computes desired forces at each foot to follow the planned body trajectory
- **Differential Inverse Kinematics**: Uses the computed forces to generate target joint angles and velocities for each leg

Experiment Setup



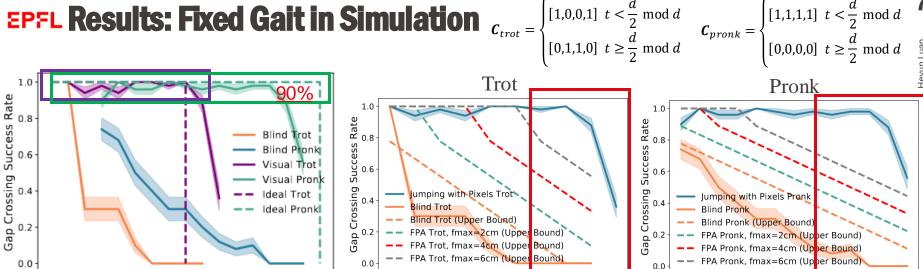
MIT Mini Cheetah

Hardware Platform

Simulation Platform

- Training Set:
 - Gap: uniform random width, $W_{min} = 4$ cm, $W_{max} \in [10,20,30]$ cm
 - Flat segments: random width 0.5 to 2.0m
- Test dataset contains novel terrains drawn from the same distribution

EPFL Results: Fixed Gait in Simulation $c_{trot} =$



- DIC succeeds at above 90% of gap-crossing attempts for both trotting and pronking.
- DIC outperforms blind locomotion and local foot adaptation (FPA), especially on large gaps.

Gap Width (ch)

- Comparison:
 - Blind motion: follows probabilities of gap parameters
 - Ideal performance: theoretical limits

10 12 14 16 18 20 22 24 26 28 30

Gap Width (cm)

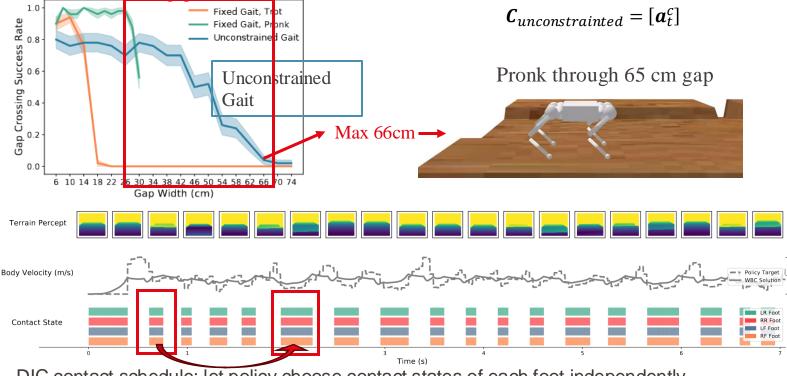
Foot position adaptation (FPA) by local foothold adaptation baseline: model-based baseline, adapt foothold with safety heuristic.

https://sites.google.com/view/jumpingfrompixels/

12 14 16 18

22 24 26

Wide gaps



- DIC contact schedule: let policy choose contact states of each foot independently
- Unconstrained gait policies outperform those with fixed gait, crossing gaps that are much wider.
 - Trained with wide gaps >40cm: variable-bounding contact schedule, max 66cm
 - Trained with gap <40cm: variable-timing pronking gait

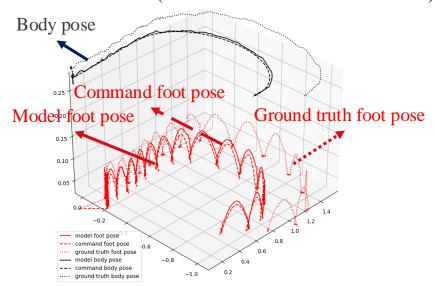


- Consecutive pronking across three 15cm gaps
 - Successful gap crossings up to 16cm with the onboard estimator and depth images
 - Able to cross gaps up to 26cm with ground-truth state information instead of an estimator

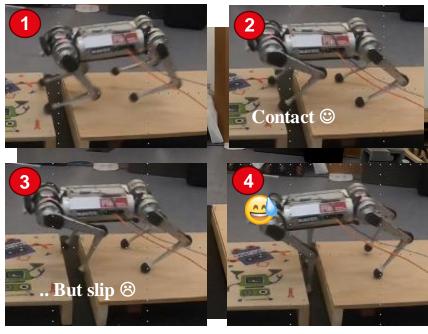
EPFL

Results: Sim-to-Real Gap

Body and foot position tracking with onboard state estimator (IMU + Kinematics + Kalman Filter)



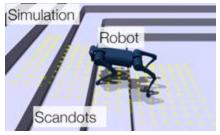
Feet make contact but slip due to insufficient contact force

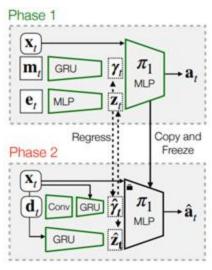


- Drift in state estimation caused by sensor noise and imprecise knowledge of contact timing
- Violation of the assumption made by the low-level controller that the robot's feet do not slip while in contact with the floor, especially during aggressive motion.

Related Works

Legged Locomotion in Challenging Terrains Using Egocentric Vision (2022)



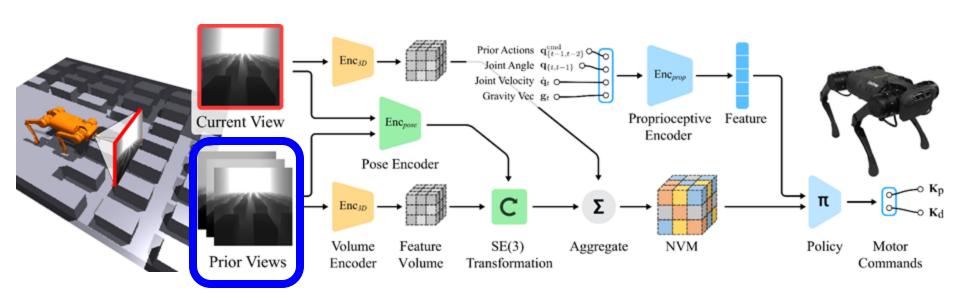


 m_t = scan dots d_t = depth graph

Directly predict target joint angles from egocentric depth without constructing metric elevation maps

Related Works

Neural Volumetric Memory (NVM) for Visual Locomotion Control (2023)



Put current and previous depth picture into NVM to estimate the terrain below robots

Pros:

- Could plan motion trajectories in advance based on visual information
- Adaptive gait
- Hierarchical control enables the robot to simultaneously achieve high performance and robustness

Cons:

- Assumes no slippage at the contact points. This discrepancy leads to low performance in real-world deployment
- Use only the current depth graph, so robot just get the front information
- Cannot deal with drift in state estimation

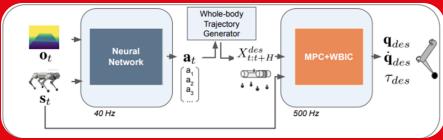
Possible exam questions

- 1. What is Depth Based Impulse Control (DIC), and how does it enable a robot to perform agile movements like jumping? (Answer on slides 3-5)
- 2. What caused the huge sim-to-real gap when deploying the Depth-based Impulse Control (DIC) with onboard state estimator? (Refer to slide 10)

Bibliography

- Margolis, Gabriel B., et al. "Learning to jump from pixels." *arXiv preprint arXiv:2110.15344* (2021).
- Project web: https://sites.google.com/view/jumpingfrompixels/
- Agarwal, Ananye, et al. "Legged locomotion in challenging terrains using egocentric vision." Conference on robot learning. PMLR, 2023.
- Yang, Ruihan, Ge Yang, and Xiaolong Wang. "Neural volumetric memory for visual locomotion control." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

Thank you



- Quadruped robot
- Depth-based Impulse Control (DIC)
 - Learning-based control
 - Model-based control
- Adaptive gait
- · Depth camera