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Introduction

The article introduces an end-to-end
guadrupedal locomotion system that
uses a single front-facing depth
camera for visual navigation.

The system is designed to enable a
small quadruped robot to traverse
challenging terrains like stairs, curbs,
stepping stones, and gaps without
relying on elevation maps or pre-
programmed gait patterns.

Using a combination of reinforcement
learning and supervised learning, the
robot can develop adaptive gait patterns
and remember past visual information
to navigate complex terrain.

Legged Locomotion in Challenging Terrains using Eg
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Robot article key points

Robot Type: Medium-size quadruped with 12 actuated joints

Control Type: Joint angle control with position commands sent by a policy network,
converted to torques using a PD controller.

Learning Methodology: Two-Phase Training

1. Reinforcement Learning (RL) in simulation using simplified depth
representation (“scandots”) to learn locomotion without predefined gaits

2. Supervised Learning with real depth data from the onboard camera to refine
joint angles for deployment

Type of Gait: Emergent, adaptive gait suitable for walking and obstacle traversal

Sensors: Single front-facing Intel RealSense depth camera and proprioceptive
feedback, with the depth data used to remember recent terrain for foot placement

Environments: Indoor and outdoor terrains, including stairs, ramps, rocky trails, and
obstacles like stepping stones

Performance: The robot achieves high success rates in various challenging terrains,
however there are some instances where the reality gab still occur
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= Two models based on gated
recurrent unit (GRU) used for short
term memory
= Monolithic Architecture:
« Simpler
* Implicit track of y, and z, in the
weights — hard to disentangle
* GRU as the controller
= RMA (Rapid Motor Adaptation)
Architecture
* Direct access to y, and z,
— possibility of swapping sensors
* MLP as the controller
* No need to retrain the controller

Phase 1 (in Simulation)
Reinforcement Learning
with privileged information

Phase 2 (in Simulation)
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Supervised Learning to
learn from onboard sensing

RMA Architecture
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Training phases

= During phase 1, use of PPO algorithm with specific rewards:
« Absolute work penalty : minimize energy consumption
« Command tracking penalty
« Behavioral and environnemental penalties
 Survival Bonus

During phase 2, supervised learning to distil the phase 1 policy :

* Monolithic Architecture: Minimize RMS of the difference between predicted and
ground thruth actions

* RMA Architecture: Minimize RMS of the difference between predicted and ground
thruth y, and z,

Trained on IsaacGym (IG) simulator on large terrain maps with 100 sub-terrains
arranged in a 20x10 grid.

Different sets of terrain of varying difficulty level.

Two other models trained to be used as baselines:
« Blind : visual observations removed to only rely on proprioception informations

* Noisy : trained with noiseless elevation maps and distilled with large noise added to the elevation
map

Speaker
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Results

= Results of the 2 models and the baselines (Noisy and Blind)

Average x-Displacement (1) Mean Time to Fall (s)

Terrain
RMA  MLith Noisy Blind RMA MLith Noisy Blind
Slopes 43.98 4409 36.14 3472 88.99 85.68 70.25 67.07
Stepping Stones 18.83 20.72 1.09 1.02 343 41.32 2.51 2.49
Stairs 31.24 42.4 6.74 16.64 69.99 90.48 15.77 39.17
Discrete Obstacles  40.13 28.64 29.08 3241 85.17 57.53 59.3 66.33
Total 134.18 135.85 73.05 84.79 27845 27501 147.83 175.06

= Results in specific scenarios: We observe a clear improvement between
the blind and the proposed model for each case except for the “downstairs”
case where the blind model succeeds. The proposed model has great
recovery skills and is able to climb obstacles almost high as the robot

Upstairs Downstairs Stepping Stones Gaps
17cm high, 30cm deep 17cm high, 30cm deep 30cm wide, 15cm apart 26cm apart
—_—— ’ ez (N =1 S :
o | —— - L -
hadt y o .
Success | #Stairs Success | #Stairs Success | #Stones Success
Ours 100% 13 Ours 100% 13 Ours 94% 9.4 Ours 100%
Blind 0% 2.2 Blind 100% 13 Blind 0% 0 Blind 0%
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Influence, Adoption, and Critique of the Paper

A,

= CoRL 2022 Best Systems Paper Award W
= Cited 188 times (MIT, Carnegie University, Sandford, ETH, DeepMind, etc...) CoRL 2022

= Overall remarks: Advances in Egocentric Vision, Hybrid Learning
= Neural Volumetric Memory for Visual Locomotion Control,
Ruihan Yang et al. 2023 : exploiting further the 3D structure
of the environment

= Learning Robust and Agile Legged Locomotion Using Adversarial
Motion Priors, Jinze Wu et al. 2023 : critic on low/moderate speed over
challenging terrains, legged movements are unnatural and jerky
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PROS & CONS
- PROS: =j=

First end-to-end learning-based
system enabling quadruped robots
to navigate complex terrains

Effective use of egocentric vision,
not elevation map (prone to noise),
depth camera-based

Tws)—Phase Training Efficiency (RL +
SL

Minimal compute requirements
Robustness Across Terrains

= CONS: m=
 Limited Field of View and Sensory

Data (narrow perspective)

Challenges with Simulation-to-Real
World Transfer (needs sometimes
further retraining or fine-tuning,
recreate specific failure scenarios)

Cannot interact with its surroundings
in meaningful ways (possible future
work on articulated arm to enable
interaction)
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Possible exam
questions

= Q: How does the system in the

paper enable the robots to retain
past information for foot
planning?

= A: The system uses a recurrent

neural network (RNN) to store
recent visual and proprioceptive
data, allowing the robot to retain
information about terrain it has
already passed. This enables
accurate foot placement, even
when the terrain is no longer
visible in its current view.

= Q: What were the key elements

that the paper introduced that
differentiates it from previous
approaches in robotic
locomotion?

A: Egocentric vision over
elevation maps, simpler
hardware, reduced noise, less
computation, but limited camera
view, terrain changes may be
missed.
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