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▪ Objective

• Development of learning methods for getting parkour abilities in low-

cost quadrupedal robots

▪ Methodology 

• Extensive experiments in simulation and the real world

• Generalization to different robots

▪ Contribution

• Open-source system for robot parkour learning

• Two-stage RL method, uses simple reward function

Main Ideas
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A1, Unitree Robotics

Go1, Unitree Robotics
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Climb Leap

Crawl Tilt



▪ Robot: low-cost quadrupedal robot (Unitree A1 and Go1)

▪ Control:

• Parkour policy (50Hz) with GRU for Temporal Reasoning and MLP for Action Generation

• Vision based control (10Hz) with CNN for Depth Embedding

• Joint PD Control (1000Hz) with torque limiting

▪ Design method: two-stage reinforcement learning (pre-training and fine tuning) + distillation

▪ Gait: parkour skills

• Running (default gait)

• Climbing

• Leaping

• Crawling

• Squeezing through (tilting)

▪ Sensors:

• Depth camera (Intel RealSense D435 depth camera)

• Proprioception:

▪ Joint Positions (at each of the 12 joints in the robot)

▪ Joint Velocities

▪ Base Orientation (roll, pitch and yaw)

▪ Base Angular Velocities

Executive Summary of Key Aspects
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1. Virtual RL Pre-Training
• Soft Constraints: Simulated robot can go through obstacles
• Negative Reward for going through obstacles
• Training gets harder progressively by larger gaps, higher cliffs, etc. 

2. Virtual RL Fine-Tuning
• Hard Constraints: Robot can no longer go through obstacles
• Fine-tune the behaviors learned in the pre-training stage with realistic 

dynamics

3. Distillation of final policy
• Expert demonstration from the specialized policy
• Final policy doesn’t need privileged information

Stages of Policy Development
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▪ Challenging learning environment ⇛ generic RL algorithms not 

effective

▪ Pre-training with soft constraints: robot is permitted to violate, but with 

penalty
• Keeps training going even when local minima cause collisions

• Negative reward gradually enforces constraints with automatic curriculum

▪ Reward:

▪ 𝑝: collision points, 𝑑 𝑝  :penetration depth

𝟙 𝑝 : indicator function

▪ Multiplied by 𝑣𝑥 to prevent cheating by 

sprinting through obstacle

Soft Constraints
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▪ Obstacles start easy, difficulty grows as scores improve

▪ Threshold on penetration reward used to modulate difficulty: 

• Reward higher than a threshold: difficulty score 𝑠 raised by a unit

• Reward lower than a threshold: difficulty score 𝑠 lowered by a unit

▪ Obstacle property set by 1 − 𝑠 𝑙𝑒𝑎𝑠𝑦 + 𝑠𝑙ℎ𝑎𝑟𝑑

Automatic Curriculum 
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▪ Fine-Tuning

• Enforce all dynamics constraints and fine-tune the behaviors learned in 
the pre-training stage with realistic dynamics

▪ Conditions

• No penetrations are allowed in the Fine-Tuning process

• Choose obstacle properties(height, gap, clearance, gap width) randomly for 
each skill

RL Fine-Tuning
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Before RL Fine-tunning After RL Fine-tunning



▪ Merges the 5 specialized parkour policies into a single vision-based policy

• Doesn’t use privileged visual (𝑒𝑡
𝑣𝑖𝑠) and physics (𝑒𝑡

𝑝ℎ𝑦
) information, contrary to the 

specialized policies

▪ Implemented using DAgger (Dataset Aggregation)

• Trains the single policy by iteratively improving it using expert demonstration from 

the specialized policies

Distillation
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▪ Samples obstacles types and 

properties and assigns the 

corresponding specialized 

skill policy to teach the 

parkour policy how to act at a 

state Parkour training 
environment in 
simulation during 
distillation



▪ Policy parametrized as GRU (Gated Recurrent Unit), with input:
• Recurrent latent state

• Proprioception 𝑠𝑡
𝑝𝑟𝑜𝑝𝑟𝑖𝑜

• Previous action 𝑎𝑡−1
• Latent embedding of depth image 𝐼𝑡

𝑑𝑒𝑝𝑡ℎ
, processed by a CNN

▪ Distillation objective:

argmin
𝜃𝑝𝑎𝑟𝑘𝑜𝑢𝑟

𝔼𝑠𝑡,𝑎𝑡~𝜋𝑝𝑎𝑟𝑘𝑜𝑢𝑟,𝑠𝑖𝑚 𝐷(𝜋𝑝𝑎𝑟𝑘𝑜𝑢𝑟 𝑠𝑡
𝑝𝑟𝑜𝑝𝑟𝑖𝑜

, 𝑎𝑡−1, 𝐼𝑡
𝑑𝑒𝑝𝑡ℎ

, 𝜋𝑠𝑡
𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑒𝑑

𝑠𝑡
𝑝𝑟𝑜𝑝𝑟𝑖𝑜

, 𝑎𝑡−1, 𝑒𝑡
𝑣𝑖𝑠, 𝑒𝑡

𝑝ℎ𝑦
)

▪ 𝜃𝑝𝑎𝑟𝑘𝑜𝑢𝑟: network parameters of the parkour policy

▪ 𝑠𝑖𝑚: simulator with hard dynamics constraints

▪ 𝐷: divergence function, binary cross entropy loss

Distilling the Policy
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▪ Distillation can bridge the sim-to-real gap in physical dynamics properties

▪ Overcome differences between the rendered depth image in simulation 
and the onboard depth image in the real world

• Apply depth-clipping, pixel-level Gaussian noise and random artifacts to 
rendered depth images

• Apply depth-clipping, hole-filling and spatial and temporal smoothing to real 
world depth images

▪ Refresh rate of images is 10Hz, parkour policy at 50Hz uses the latest 
embedding of the depth image processed by the CNN

▪ Output actions of the policy are target joint positions converted to torques 
at 1000Hz through PD controller (𝐾𝑝=50, 𝐾𝑑=1)

▪ Torque limits of 25Nm for safe deploying

Sim-to-Real and Deployment
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Results, Simulation experiments
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▪ Blind vs Ours →Visual information is crucial for learning parkour behavior

▪ w/o Soft Dyn vs w/ Soft Dyn(Ours)  → Pre-training with soft dynamics enables robots to learn 

every parkour skills with higher success rate (around 95%)

▪ No Distill vs Ours → Distillation is effective for Sim2Real



Results, Real-world experiments
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▪ Emergent Re-trying Behaviors

▪ Proposed policy achieves 

the best performance in 

any parkour skills (Climb, 

Leap, Crawl, and Tilt) 

▪ Failure cases

• Failed to climb very high obstacles of 

0.8m(Three times of robot’s height)

• Failed to leap on low-friction platform

• Failed to climb a high and soft 

obstacle



▪ Influences

• Zhuang, Ziwen et al. “Humanoid Parkour Learning.” ArXiv abs/2406.10759 (2024): same 

group, uses similar strategy on humanoids

▪ Criticism

• Chane-Sane, Elliot et al. “SoloParkour: Constrained Reinforcement Learning for Visual 

Locomotion from Privileged Experience.” ArXiv abs/2409.13678 (2024): assert that 

assumption of privileged information being reconstructed from history of depth images is 

unrealistic

• Luo, Shixin et al. “PIE: Parkour With Implicit-Explicit Learning Framework for Legged 

Robots.” IEEE Robotics and Automation Letters 9 (2024): similar criticism, privileged 

information associated with geometric properties. If terrain can’t be described by these, 

then robot cannot cope

• Cheng, Xuxin et al. “Extreme Parkour with Legged Robots.” 2024 IEEE International 

Conference on Robotics and Automation (ICRA) (2023): Geometrical privileged 

information does not generalize, they use scandots instead. Also, they criticize the 

complexity of the curriculum

External Citations
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Pros

• Easy-to-understand reward functions

• Emergence of re-trying behaviours

• Ability to use on low-cost robots with raw depth images and proprioception 

• Generalization to different robots

Cons

• New skills cannot be learned easily because the simulation environment
needs to be manually constructed

• Not generalizable to terrain that cannot be described by the privileged 
information (rough surfaces, unmodelled features)

Pros and Cons
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• What are the advantages of soft constraints used in reinforcement 
learning pre-training of curricula with obstacles?

• Soft constraints allow a larger exploration space during the early stages of 
the training process when the controller has a high chance of collision. 

• The training episode can continue even after a collision with a soft constraint, 
which allows that episode to be useful 

• What important aspect of the sim-to-real transfer is overcome by the 
distillation phase?

• The trained specialized policies require privileged physics and visual 
information as inputs, in order to select the best action, but that information is 
not available in the real world. The distillation generates a single parkour 
policy that runs by only accessing proprioception information and visual 
information from the depth camera.

Possible Exam Questions
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Thank You!

Questions?
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