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=Pl Main Ideas ’

= Objective
* Development of learning methods for getting parkour abilities in low-
cost quadrupedal robots
= Methodology
* Extensive experiments in simulation and the real world

* Generalization to different robots

= Contribution Gol, Unitree Robotics
* (Open-source system for robot parkour learning

* Two-stage RL method, uses simple reward function
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=PFL  Executive Summary of Key Aspects

® Robot: low-cost quadrupedal robot (Unitree A1 and Gol)

= Control:
®* Parkour policy (50Hz) with GRU for Temporal Reasoning and MLP for Action Generation
® Vision based control (10Hz) with CNN for Depth Embedding
® Joint PD Control (1000Hz) with torque limiting

= Design method: two-stage reinforcement learning (pre-training and fine tuning) + distillation

=  Gait: parkour skills
®* Running (default gait)
®* Climbing
®* Leaping
¢ Crawling
®* Squeezing through (tilting)
= Sensors:
®* Depth camera (Intel RealSense D435 depth camera)
®* Proprioception:
®  Joint Positions (at each of the 12 joints in the robot)
®  Joint Velocities
®  Base Orientation (roll, pitch and yaw)
®  Base Angular Velocities
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=PFL Stages of Policy Development

1. Virtual RL Pre-Training

* Soft Constraints: Simulated robot can go through obstacles

* Negative Reward for going through obstacles

* Training gets harder progressively by larger gaps, higher cliffs, etc.
2. Virtual RL Fine-Tuning

* Hard Constraints: Robot can no longer go through obstacles

* Fine-tune the behaviors learned in the pre-training stage with realistic

dynamics

3. Distillation of final policy

* Expert demonstration from the specialized policy

* Final policy doesn’t need privileged information
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Soft Constraints

Challenging learning environment = generic RL algorithms not
effective
Pre-training with soft constraints: robot is permitted to violate, but with

penalty
* Keeps training going even when local minima cause collisions
* Negative reward gradually enforces constraints with automatic curriculum

Reward:

rpenetrate - Z (045 * 1 [p] + Qg * d (p)) * Uy
p

p: collision points, d(p) :penetration depth
1[p]: indicator function

Multiplied by v, to prevent cheating by

sprinting through obstacle

a°°'"s;f"; Penetration
POl Depth
d(p)

Figure 4: We show collisions points on the robot.
Collision points that penetrate obstacles are in red.



=PrL  Automatic Cumiculum

= Obstacles start easy, difficulty grows as scores improve

= Threshold on penetration reward used to modulate difficulty:
« Reward higher than a threshold: difficulty score s raised by a unit
« Reward lower than a threshold: difficulty score s lowered by a unit

= Obstacle property set by (1 — s)legsy + Slhara

training, measured in meters.

¥
ks : S . . Training Ranges  Test Ranges

ﬁ I‘ »l Skll] ObStaCIG Propert]es ([leasya lhard]) ([leasy: lhard])
9 : - Climb obstacle height [0.2, 0.45] [0.25, 0.5]
é o Leap gap length [0.2, 0.8] [0.3, 0.9]
u Crawl clearance [0.32,0.22] [0.3,0.2]
5 . Tilt path width [0.32, 0.28] [0.3, 0.26]
: =
< — i ' - Table 1: Ranges for obstacle properties for each skill during
5 {
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=F7L RL Fine-Tuning

= Fine-Tuning
* Enforce all dynamics constraints and fine-tune the behaviors learned in
the pre-training stage with realistic dynamics

= Conditions
* No penetrations are allowed in the Fine-Tuning process

» Choose obstacle properties(height, gap, clearance, gap width) randomly for
each skill

Before RL Fine-tuning with
Hard Dynamics Constraints

Before RL Fine-tuning with
Hard Dynamics Constraints

Crawl Tilt : Crawl Tilt

Before RL Fine-tunning After RL Fine-tunning

B ROBOT PARKOUR LEARNING



=PrL

B ROBOT PARKOUR LEARNING

Distillation
= Merges the 5 specialized parkour policies into a single vision-based policy

- Doesn’t use privileged visual (ef*) and physics (e”"™) information, contrary to the
specialized policies

= Implemented using DAgger (Dataset Aggregation)

 Trains the single policy by iteratively improving it using expert demonstration from
the specialized policies

= Samples obstacles types and
properties and assigns the
corresponding specialized
skill policy to teach the
parkour policy how to act at a N A AN NS A
State 7 v : g 50 , A‘ ‘ Parkour training
-2 pey W S il Pl A environment in

simulation during
distillation
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Distilling the Policy "

Policy parametrized as GRU (Gated Recurrent Unit), with input:
* Recurrent latent state
» Proprioception s?"°P"
* Previous action a;_4
depth

- Latent embedding of depth image I, , processed by a CNN
Distillation objective:
proprio depth specialized { proprio vis _.phy

argmin [Est,at~rcparkour,sim [D (T[parkour (St » At—1, It )  Ts, (St yAe—1,€¢ € ))]

eparkour

= Oparkour- NEtwork parameters of the parkour policy
sim: simulator with hard dynamics constraints
D: divergence function, binary cross entropy loss
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Sim-to-Real and Deployment

= Distillation can bridge the sim-to-real gap in physical dynamics properties
= Overcome differences between the rendered depth image in simulation

and the onboard depth image in the real world

« Apply depth-clipping, pixel-level Gaussian noise and random artifacts to
rendered depth images

« Apply depth-clipping, hole-filling and spatial and temporal smoothing to real
world depth images

= Refresh rate of images is 10Hz, parkour policy at 50Hz uses the latest
embedding of the depth image processed by the CNN

= Qutput actions of the policy are target joint positions converted to torques
at 1000Hz through PD controller (K,=50, K;=1)

= Torque limits of 25Nm for safe deploying
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=P*L " Results, Simulation experiments

= Blind vs Ours —Visual information is crucial for learning parkour behavior

= w/o Soft Dyn vs w/ Soft Dyn(Ours) — Pre-training with soft dynamics enables robots to learn
every parkour skills with higher success rate (around 95%)

= No Distill vs Ours — Distillation is effective for Sim2Real

RL fine-tuning starts for Ours

‘ Success Rate (%) 1 Average Distance (m) 1 Lo 2@ Oracios w 5ot Dyn (Ows)
Climb Leap Crawl Tilt Run | Climb Leap Crawl Tilt Run = Oracles wjo Soft Dyn

Blind 0 0 13 0 100 | 153 186 201 162 36 B =

MLP 0 1 63 43 100 | 159 174 327 231 36 &

No Distill 0 0 73 0 100 | 1.57 175 276 1.86 3.6 gos

RMA [8] - - - 74 - - - - 2.7 - g .-/A
© [Ours (parkour policy) |86 80 100 73 100 | 2.37 _3.05 3.6 268 36 | g
z Oracles w/o Soft Dyn 0 0 93 8 100 | 154 173 358 173 3.6 !
z Oracles 95 82 100 100 100 | 3.60 3.59 36 278 3.6 0.0 = s e
E:‘ Table 2: We test our method against several baselines and ablations in the simulation with a max distance of . . Training progress
3 3.6m. We measure the success rates and average distances of every skill averaged across 100 trials and 3 random Figure 7 Cop.’lparlson of SPCClahzed ora-
X seeds. Our parkour policy shows the best performance using only sensors that are available in the real world. cles trained with soft dynamics constraints
< We evaluate on the test environments with obstacles proprieties that are more difficult than the ones of training with baselines averaged across every skill and
- environments shown in Table 1. three trials.
2
o
X
]



=P7L  Results, Real-world experiments

Climb Leap Crawl Tilt
0.2 ~0.5m 0.4 ~0.7m 0.32 ~0.15m 0.32 ~ 0.25m
: ‘ " — -

* Proposed policy achieves
the best performance in
any parkour skills (Climb,
Leap, Crawl, and Tilt)

robot height robot length robot height robot width

100
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obstacle height [m] gap length [m] clearance [m] path width [m]
=@- Ours  =fe= Blind MPC (Al default) ~ =she= MPC (A1 special mode)

Success Rate (%]

Figure 6: Real-world indoor quantitative experiments. Our parkour policy can achieve the best performance,
compared with a blind policy and built-in MPC controllers. We control the MPC in Al special mode by
teleoperating the robot lower down or tilt the body during crawling and tilt respectively.

= Emergent Re-trying Behaviors = Failure cases

 Failed to climb very high obstacles of
0.8m(Three times of robot’s height)

» Failed to leap on low-friction platform

» Failed to climb a high and soft
obstacle
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=PFL  Extemal Citations

= Influences

« Zhuang, Ziwen et al. “Humanoid Parkour Learning.” ArXiv abs/2406.10759 (2024): same
group, uses similar strategy on humanoids

= Criticism
« Chane-Sane, Elliot et al. “SoloParkour: Constrained Reinforcement Learning for Visual
Locomotion from Privileged Experience.” ArXiv abs/2409.13678 (2024): assert that

assumption of privileged information being reconstructed from history of depth images is
unrealistic

» Luo, Shixin et al. “PIE: Parkour With Implicit-Explicit Learning Framework for Legged
Robots.” IEEE Robotics and Automation Letters 9 (2024): similar criticism, privileged
information associated with geometric properties. If terrain can’t be described by these,
then robot cannot cope

« Cheng, Xuxin et al. “Extreme Parkour with Legged Robots.” 2024 IEEE International
Conference on Robotics and Automation (ICRA) (2023): Geometrical privileged
information does not generalize, they use scandots instead. Also, they criticize the
complexity of the curriculum
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Pros and Cons

Pros
» Easy-to-understand reward functions
« Emergence of re-trying behaviours
« Ability to use on low-cost robots with raw depth images and proprioception
» Generalization to different robots

Cons

* New skills cannot be learned easily because the simulation environment
needs to be manually constructed

» Not generalizable to terrain that cannot be described by the privileged
information (rough surfaces, unmodelled features)

15
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Possible Exam Questions

- What are the advantages of soft constraints used in reinforcement
learning pre-training of curricula with obstacles?

 Soft constraints allow a larger exploration space during the early stages of
the training process when the controller has a high chance of collision.

» The training episode can continue even after a collision with a soft constraint,
which allows that episode to be useful

- What important aspect of the sim-to-real transfer is overcome by the
distillation phase?

* The trained specialized policies require privileged physics and visual
information as inputs, in order to select the best action, but that information is
not available in the real world. The distillation generates a single parkour
policy that runs by only accessing proprioception information and visual
information from the depth camera.
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Thank You!

Questions?
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