

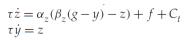
Legged Robots

Introduction, Content and organization of the course

Auke Jan Ijspeert

Cheetah-Cub

Amphibot

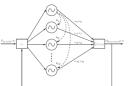


iCub

CoMan

Biorobots

Pleurobot

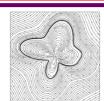


$$\tau \dot{x} = -\alpha_x x + C_c$$

$$\sum_{i=1}^{N} \Psi_i(x) w_i$$

$$f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0)$$

Dyn. movement primitives **Dynamical systems**



Adaptive frequency oscillators

Oncilla

Discrete and rhythmic pattern generator

Morphed oscillators

Pollution detection **Envirobot**

Applications

Search-and-rescue **NCCR**

Legged robots

ANYmal ETHZ, Switzerland

Aibo, SONY, Japan

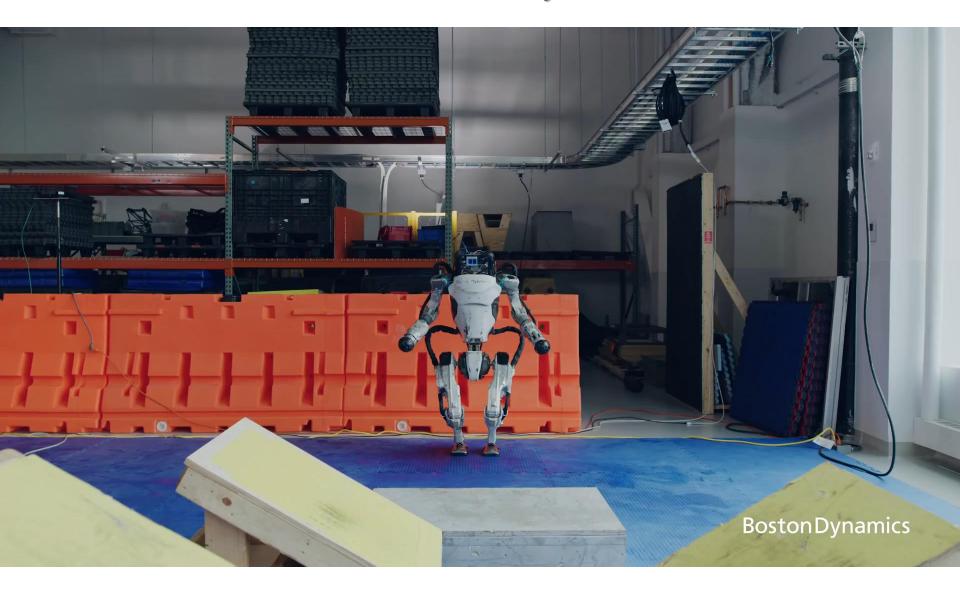
Go 2, UNITREE, China

ATLAS Boston Dynamics, USA

RHex robot, USA

Asimo, Honda, Japan

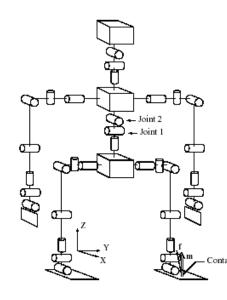
Digit, USA



Spot Boston Dynamics, USA 3

Mini Cheetah MIT

ATLAS Boston Dynamics



2015 DARPA Robotics Challenge Fails

The problems of legged locomotion control

- Underactuated problem: a robot cannot follow arbitrary motion commands (because it is not attached to the ground)
- Need to keep balance. Many robots are only dynamically stable (e.g. quadruped and biped robots) and require careful control for staying upright.

- Need to coordinate multiple degrees of freedom, most legged robots are redundant robots (i.e. more controllable DOFs than the state DOFs)
- Legged robots are highly nonlinear systems, with complex relationships between joint motor commands and robot posture.
- The control of legged robots is has to take into account the robot dynamics (not only the kinematics, as in wheeled robots).

Objectives

 Present the design, control, and applications of legged robots (from two, to four to more legs)

Learn to read the literature

- Critically read and present an article to the class
- Mini-project: model a simulated 2D walker, control a simulated ATLAS, and control a simulated quadruped robot. All in Python.

Pre-requisites

- Ideally:
 - Mobile Robots
 - Model Predictive Control (or other control courses)
- Programming in Python
- But the course is quite self-standing, so fine to follow without (by spending some time to catch up in Python programming)

Organization

- Series of lectures by guest lecturers and me for the first weeks
- Practicals and Mini-project, starting this afternoon
- Around weeks 8-12, student presentations + miniproject
- Written exam on December 10 2024.
- Use of Moodle. Key: "legs rock!" (lower case)
- **Grading**: Student presentations of articles 20% of grade, mini-project 50%, and written exam 30%. Work for the presentations and the mini-project will be done by groups of 3 students.

Content of lectures

- Brief history of legged robots
- Different types of legged robot structures, typical actuators and sensors
- Pros and cons of legged versus wheeled robots
- Defining and measuring locomotion metrics (e.g. stability, energy consumption, ...)
- Overview of different locomotion models
- Overview of different control approaches
- Guest lectures by experts

Different approaches to legged robot locomotion control in current robots

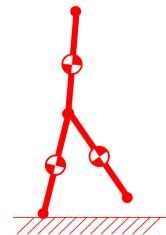
Model-based control:

- 1. Trajectory based methods (ZMP)
- 2. Heuristic control methods
 - 1. Virtual leg control (Raibert)
 - 2. Virtual model control (Pratt et al)
 - 3. Hybrid Zero Dynamics control
- 3. Planning methods (Little dog project)
- 4. Inverse dynamics

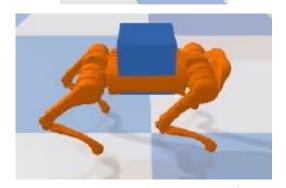
Optimization and learning:

- 1. Optimal control
- 2. Reinforcement learning

Biologically-inspired control:


- 1. Passive and dynamic walkers
- 2. Sensory-driven methods,
- 3. CPG-and-reflex based methods

Student presentations


- Chose <u>one article</u> among a list of key articles in legged robots. The list will be provided soon.
- Carefully read the article, critically analyze its pros and cons, and present it to the class.
- Work done in teams of 3. Each student should participate to the presentation
- Graded by the professor and teaching assistants (TAs).
- Schedule will be organized in the coming weeks.
- Counts for 20% of grade.

Mini-Project

- Modeling and controlling biped an quadruped robots in <u>Python</u>
- Teams of 3 students (same as for presentations)
- Done on your <u>own laptops</u>
- Grade based on <u>one report + code + videos</u>
- Counts for <u>50% of grade</u>
- Presentation by Guillaume today

Written exam

Will take place on December 10 2024

 Questions about the lectures <u>and</u> about the content of the student presentations

Examples of questions will be provided

30% of grade, each student will be graded individually.

To do list

- Find friends and create teams of 3 students.
 - Deadline Sept 24. Instructions will follow on how to transmit us the team members.
- Browse through article lists when available (very soon)
- Choose article (first come, first served)
- Choose date for student presentation (first come, first served)

Contacts

- Main communication tool: Forums on Moodle
- Professor: <u>auke.ljspeert@epfl.ch</u>
- Main teaching assistant: <u>Guillaume.Bellegarda@epfl.ch</u>
- Additional teaching assistants:
 - Astha.Gupta@epfl.ch
 - Milad.Shafiee@epfl.ch
 - Chuanfang.Ning@epfl.ch
 - Lixuan.Tang@epfl.ch
 - Serge.Elasmar@epfl.ch
 - Tim.Lucking@epfl.ch
 - Jad.Bhamdouni@epfl.ch

End of introduction

Next: Lecture 1

Moodle key: "legs rock!" (all lower case, no quotes)