'
"1

Legged Locomotion: Trajectory Optimization,
Machine Learning, and Bio-Inspired Control

Guillaume Bellegarda

08.10.2024

BIGROB

EPFL Biorobotics Laboratory

[LLocomotion Goals

Robustness
- \

Energetics

...1n stochastic environments (variability)

Robustness
unknown variability Agility

Energetics

G. Bellegarda, A. [jspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022
G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Robustness
unknown variability Agility

known variability

Energetics

M. Shafiee, G. Bellegarda, A. Ijspeert. “Viability Leads to the Emergence of Gait Transitions in Learning Agile Quadrupedal Locomotion on Challenging Terrains,” Nature Communications 2024.
G. Bellegarda, M. Shafiee, A. Ijspeert. “Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion,” ICRA 2024.
G. Bellegarda, K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020.

Robustness
nknown variability Agility
known variability

un

s Chergetics
= a5 efficient as practical

G. Bellegarda, K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019.
G. Bellegarda, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018.

Robotics Approaches

Model-based methods

1.e. trajectory optimization, model-predictive
control (MPC) Central Pattern Generators (CPGS)

Learning

1.e. reinforcement learning, imitation learning

\ %
\ ®

|

[Tan et al. 2018]

Humanoid:
27 DoFs, 21 Actuato

»n Dynamics

Xt al. 2017]

[Boston Dynamics 2018]

IRPL IE:H:! FAII!PI.EX

[Xiong et al. 2021] | " [DRC 2015] : " [Leeetal. 2020] [Yang et al. 2021]

Goals for Today

1. Insights into formulating trajectory optimization (model-predictive control) problems

k—1

min ZO [1Xit1 — Xit1 el Qi + [|ws] |,
1=

subject to x;41 = A;x; + Bu;,i=0...k—1

c; < Ciu; <c;,1=0...k—1

Dz-uz- =0,i=0...k—1

G. Bledt, P. Wensing, S. Ingersoll, S. Kim. Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains. ICRA 2018
G. Bledt, M. Powell, B. Katz, J. D. Carlo, P. Wensing, S. Kim. MIT Cheetah 3: Design and Control of a Robust, Dynamics Quadruped Robot. IROS 2018

Goals for Today

1. Insights into formulating trajectory optimization (model-predictive control) problems

2. Insights into training control policies with deep reinforcement learning

Robot State

state reward action
S, R, A,

_S.. | Environment

Actions

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998
J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter. Learning Quadrupedal Locomotion over Challenging Terrain. Science Robotics 2020

Outline

I. Motivation and Goals

II. Model-Predictive Control vs. Reinforcement Learning (same‘?)l

III. Model-based methods

I. Background on RoboSimian and designing skating motions
II. Trajectory optimization allowing wheel slip

IV. Learning-based methods
I. Action space in reinforcement learning [RoboSimian, Al]
II. Augmenting motion planning with deep reinforcement learning [A1]

V. Bio-inspired learning

VI. Conclusion

Common Setting: Closed-Loop Autonomous System

learning

agent
controller
decision maker

resources.

data, feedback

>

policy
control

decision

optimization

&

space,
computation...

cost
utility
reward

<

|

environment
controlled plant

dynamical system

_ model uncertainty:
perception deterministic,

stochastic,
adversarial...

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Reinforcement Learning Challenges

In RL, an agent learns by interacting with an environment

e unknown or changing environments
e delayed rewards or feedback
e enormous state and action space

® nonconvexity

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Terminology: State Space Model

o e

Dynamic Programming

i Oyl oo controlled plant

environment

m Optimal Control dynamical system

State and Action space: S, A

State and Control space: S,
State: xr € S,k=0,1,..

Control: ux € U,k =0,1,..

Dynamical System:

Lk+1 — f(CUk, uk) / stochastic

Tr+1 = f(@k, uk, Wg)
Output/observation (feature):

Yk = h(zk, ug) + nk

stochastic

State:

Action:

Reinforcement Learning =« /:

StES,tZO,l,...

atEA,t=0,1,...

MDP Transition (or simulation):
'Ejk =P(St+1 =1 | St = 3,0 = k)

Observation (feature):

p(o | st)

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Terminology: Optimization Objective

|

Reinforcement Learning /‘!
4

YT T—
Dynamic Programmin pOIiCy
adOpt alColol . COntr0|

Optimal Control decision
Cost: g(zk,ur) € R
Total cost function:
N
J($0;u07 <o ,UN) — Zg(xk'auk)
k=0

Control law: u(zg); u*(xk)

Th+1 = f(Tr, u(zk))
Ukt+1 = U(Th1)

Value function (minimal cost to go):

J*(xzg) = mmE 9(zk, u(xk, k

77 7

Reward: 7(s¢ a:) € R

Total reward (return):

J(s1;a1,...,a7) = % Z;‘F:l E[r(s¢, at)]

Policy: m(az | s¢); ™ (as | st)

p((St+1,at+1) | (s¢,at)) =

p(st+1 | 8t,ae)m(azy1 | Se41)

Value function (maximal return):

V*(s rfrlfLicTZE

8t7a't

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Principle of (Path) Optimality

Dido of Carthage..., Euler, Lagrange, Newton, Hamilton, Jacobi, Pontryagin, Bellman, Ford, Kalman

850 BC 1960 AC
J* ($3)

® ®

SEAISKES

XK FZEEA P
(KA D\ % (U DN%
\'//A\\‘!/ A

U Ul U2

LN

J" (@o) 2
.7/[&{

Principle of Optimality (Richard Bellman’54):
An optimal path has the property that any subsequent portion is optimal.

Dynamical Programming: A “Fixed-Point” Type Algorithm

J*(zx) = min [g(ze, uk) + T (f @k, ur))], Vo

'
Tr+1

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Terminology: Optimization Objective

Dynamic Programming Reinforcement \
and Optimal Control Learning

E Optimal Control Reinforcement Learning /
Value function and Q-function: A
J*(zx) = muinlg(wk,uk) + J*(f(xk,uk))l, Vap V*(st) = m;ax]EW [?(st+1 | st,atllr(st, a) + V*(st+1)J}, Vs;
Qe ur) T Q(s4,a0)

(many, many, many different ways to learn and solve them, depending on...)
Given the value or Q-function, the optimal control/policy and path:

uj = arg muin\[g(x}z,uk) + I (f (25, k)], n*(s¢) = arg max Q(s¢, az)

~~ Gz
Q(x;:;auk)

P(8t+1 | St 77*(31‘,))

ZZH — f(wl>27ul>::)

In practice, states can be replaced by observations or ‘features” to relate to control or action.

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Closed-Loop Autonomous System (Formal)

(z, u)

(s,a) learning

> O»

J(z) agent
controller

decision maker

feedback

>

policy
control

decision

u(x) = arg mgn Q(z, u)

optimization #(a |) ¢ argmax Q(s, a)

8

g(x’ﬂuk)
r(s¢,at)

cost
utility
reward

<

l

environment
controlled plant

dynamical system

Tr+1 = fo(xk, uk)
p0(3t+1 | Staat)

perception/sa

mpling/exploration

(Tk, uk) or (Yk, uk)

(s¢,at) or (o4, ay)

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

From Principle to Computation

What to Compute, and How?

Optimal Control Reinforcement Learning

Optimal value function: J*(x), V*(s)
Optimal Q-function: Q" (x,u), Q*(s,a)
Optimal control/policy: u*(x), 7 (al|s) (oru*(y), m*(a|o))

System/model identification: f*(x,u), p*(s¢x1 | St,a)

Closed-form versus numerical solution (simulation & optimization)

LQR: J*(zx) = min [a:Zka + uZRuk + J*(Axge1 + B'u,k)]
Uk
The Riccati equation (Kalman Filter '60):

Ky = _(E + BT‘-'/L+1B)_IBTVY};+1421 (—18)
Vi=Q+AWip A~ AWV B(R+ BV B) ' BV;i A (49)

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Iy

Dynamic Programming
and Optimal Control

r 4 0‘0
. L .

Control vs. Learning

Optimal Control
LQR

Parallel parking
Chained form systems

Mechanical systems...

Conditions & Assumptions

@)
@)
@)
@)

clear model class/uncertainty
clear cost function

low to moderate dimension
continuous state/time...

Reinforcement Learning

Backgammon: Tesauro, 1992 =

Chess: Deep Blue, 1997
Go: Alpha Go, 2017

Video games, robots...

Conditions & Assumptions

@)
@)
O
@)

unknown models (but can sample)
uncertain, long-horizon return
large-scale, high-dimensional
discrete state/time...

Solutions that work for a broad class of problems v.s. a few (important) instances

Y1 Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Outline

I. Motivation and Goals
II. Model-Predictive Control vs. Reinforcement Learning (same?)

III._Model-based methods
I. Background on RoboSimian and designing skating motions |

II. Trajectory optimization allowing wheel slip

IV. Learning-based methods
I. Action space in reinforcement learning [RoboSimian, Al]
II. Augmenting motion planning with deep reinforcement learning [A1]

V. Bio-inspired learning

VI. Conclusion

JPL’s RoboSimian: Dexterous Quadruped

Four identical limbs, each with 7 degrees of
freedom (DOFs)

Joint motor speeds peak at 1 (rad/s)
* RoboSimian is stable, but very slow

Passive single-wheel skate mounted at each
forearm

* Increase efficiency, speed

6 actuated DOFs available to set 6-DOF
pose of each skate

* No sensing available at skate contact

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018

Modeling: Skating Kinematics

* Assumptions:

* No skid at wheel axis

* Free rolling perpendicular to no-
skid axis (no-slip)

* Wheel can rotate freely about a
point contact with the ground

-~
-~
LR

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018

Designing Skating Motions for a Dexterous Quadruped

0.5

Yee,i (m)

0 L

NN

0 5 10 15 20
Time(s)

‘ ‘ ——i=1

—1=2

.3

| | | —1=4

0 5 10 15 20
Time (s)

4 Limb Skating Straight Trajectory

mu=0.5, speed=2.5x

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018

Other Agile Trajectories

mu=0.5, speed=2.5x mu=0.5, speed=2.5x mu=0.5, speed=2.5x

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018

Skating on 0.2 (m) “Rough” Terrain

0.2m terrain, mu=0.3, speed=2.5x

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018

Outline

I. Motivation and Goals
II. Model-Predictive Control vs. Reinforcement Learning (same?)
III. Model-based methods
I. Background on RoboSimian and designing skating motions
‘ II. Trajectory optimization allowing wheel slip \
IV. Learning-based methods
I. Action space in reinforcement learning [RoboSimian, Al]

II. Augmenting motion planning with deep reinforcement learning [A1]
V. Bio-inspired learning

VI. Conclusion

minimize
to,tp .IE(t) ,’ll,(t)

subject to

Trajectory Optimization

trp
J(to,tp,a:(to),a:(tp)) —l—/ w(T,:r(T),u(T))dT

to
i(t) = f(t,z(t),u(t))
h(t,z(t),u(t)) <0
g(to, tp,z(tg), z(tr)) <0
Tiow < T(t) < Tupyp
Ulow < U(t) < Uypyp
tiow < to <tp < tupp
T0 10w < Z(to) < Z0 upp

L F,low < -T'(tF) < L F upp

System Dynamics

Path Constraint

Boundary Constraint

Path Bound on State

Path Bound on Control

Bounds on Initial and Final Times
Bound on Initial State

Bound on Final State

M. Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM 2017

Direct Collocation

minimize](fo,fp x(tg), (tp)) - /tp 'w('r,:n('r),u(T))dT)
to,tr,x(t),u(t) £s N

subject to z(t) = (z(t), u(t)) System Dynamics Ikﬁ;illl}}l;llzc N J (I N) +h Z u"(mkv uk)
h() <0 Path Constraint . k=1
g(thtFa'T(tO)aI(tF)) <0 Boundary Constraint ‘ subject to d(mk’ Uk> Th+1, Uk-{-l) =0, k=1.,N-1
Tisans 206 < Tusm Path Bound on State 6D(Tk uk) =0, k=1,..,.N
e 5 UL S Path Bound on Control Y (Ik, Uk) >0, k=1,...N
tiow S to <tr < tupp Bounds on Initial and Final Times
LS Tl0)S Torupp Bound on Initial State
TFhlow < T(tr) < TRupp Bound on Final State

Backward Euler integration:

d(.’L’k, Uk, Thyl, Uktl) = Thyl — (.’L’k + hf(Xkq1, Uk+1))

M. Posa, C. Cantu, R. Tedrake. A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact. IJRR 2013
M. Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM 2017

Wheel Model?

* Non-slip constraints can be violated!

* Account for slip, plan agile motions

* Existing wheel/tire models
* 1.€. Pacejka, Fiala, LuGre, Linear, Combined Slip, CarSim (?)

F, = Dsin(C tan"'(Ba — E(Ba — tan"*(Ba))))

Yw

* Slip angle a 1s difficult for optimization
1 v)’w
vx

<

a = tan
w
* Many works thus use different models for

planning and control X

L

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020

Friction as a Linear Complementarity Problem (LCP)

_d3 ‘ dy{ —dy

* Polyhedral friction cone/triangle: F(q) = { F,n + D3| F, >0, >0, ¢' 8 < uF,}

- F,, is the magnitude of the normal contact force

ve + DTt >0, B>0

c. - D is a matrix of direction vectors
* Inequalities:

puF, —efp >0, ~v>0 - B € R’ is a vector of weights
-e=[1,1,..,1]T e R’
T, k+1\T g .
. .. e+ D v =0 S
o Complementarlty conditions: (7) B v is the. global 2D planar velocity .Vector of the
T _ contact point at the end of the next time step
(uF, —e" B)y=0

v is a scalar roughly equal to the magnitude of the
relative tangential velocity at a contact

D. Stewart and J.C. Trinkle. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction. [CRA 2000
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020

Additional Modeling Details

e Body has point mass m; and inertia J,, and each skate has point mass m;
and inertia .J;

e Each floating skate’s coordinates are relative to the body frame

o q=[Tv, Y, 26, Ob, Ti, Yi, 2, 0;]T € R?° where i € {1,2,3,4}

U = [Ug,,Uy,,uz,,up,]T € R where i € {1,2,3,4}, since we can set
arbitrary configurations with inverse kinematics

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Trajectory Optimization Framework

find q,q,u, F,, Ftric at discrete timesteps k = 1...N
subject to minimize cost J
- State Constraints:
o(q,q,u, F,) =0
V(g q,u, F,) >0
- Dynamics Constraints:
M(q)§+ C(q,9)d + G(q)
+A(Q)"A = B(q)u + F, + J (@) Firic
- Friction Constraints (for each contact 7):
ve + DTt >0, B>0
pF, —ef'B>0, v>0
(ye + DT)3 =0
(uF,, — e B)y =0
Fitric, = Dp
- ZMP Constraints (RoboSimian Only)
- Gait Constraints (RoboSimian Only)

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Trajectory Optimization Framework

End Location Power
find ¢, q,u, Fy,, Ffric at discrete timesteps k = 1..N

subject to I minimize cost J I) SN)
. . 2
- State Constraints: J=Jr(an,qn) +h Z\/(%{Uk) + €
ql)(QaQauaFn) =0 k=1

w(q q Uu, Fn) 2 0 with
- Dynamics Constraints:

M(q)q+ C(g:4)q+ G(q)

+A(9)"\ = B(q)u + Fy + J(q)" Fyic
- Friction Constraints (for each contact 7):
ve + DRl >0, >0
pF,, —e'B>0, v>0

U =10,0,0,0,uy,,u,,, u.,,ug,]T € R? for i € {1,2,3,4}

e = 107° is a regularization term to help smooth the cost function

h = At is the time interval between time steps

e Jr(qn,qn) is a distance measure to a set of goal coordinates, such as:

(ve + DT T3 =0 Jr = az(xg — 2n)? + oy (yg — yn)* + o (0y — On)?
(uFn, — €' B)y =0
Ffrici = Dﬁ

- ZMP Constraints (RoboSimian Only)
- Gait Constraints (RoboSimian Only)

M. Srinivasan, Why walk and run: energetic costs and energetic optimality in simple mechanics-based models of a bipedal animal. Cornell University, Ithaca, NY, 2006.
G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Trajectory Optimization Framework

e ¢, q are bounded by ranges for placing each skate with inverse kinematics,

find gq,q,u, Fy, Ffric at discrete timesteps k = 1..N o o
as well as by joint limits

subject to _minimize cost J

- State Constraints: e u is bounded explicitly, as well as implicitly by ¢ ranges
d)(q,q, u, Fn) =0 e Known contact sequence, where F,, > 0 for each skate in contact, and
V(q, 4, u, F,) >0 F,, = 0 for skates not in contact

- Dynamics Constraints:
M(q)G+ C(q,q9)q+ G(q)
+ A(Q)" X = B(Q)u+ Fo + J(q)" Fric
- Friction Constraints (for each contact):
ve + DRl >0, >0
pF,, —e'3>0, v>0
(ve + DT+ 1T =
(nFn, — ' B)y =0
Ffric; = Dp
- ZMP Constraints (RoboSimian Only)
- Gait Constraints (RoboSimian Only)

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Trajectory Optimization Framework

find gq,q,u, Fy, Ffric at discrete timesteps k = 1..N

subject to minimize cost J
- State Constraints:

¢(q,q,u, Fr) =0
V(g ¢, u, Fr) >0 Qk+1 = qk + hqr41
- Dynamics Constraints: Gret1 = Gi + hijkin
M(q)j+ C(q,q)q + G(q)

+ A(9)" X = B(q)u + F, + J(q)" Fyric
- Friction Constraints (for each contact): (ri1 =]\Jk;ll (Bryitgsr + Frpyy + Jg+1Ff'rick+1 — Cri1Grs1 — Gry)
ve + DTyl >0, B>0
pF, —e™8>0, v>0
(ve + DTV HT3 =0
(uFn, — €' B)y=0
Ffric; = Dp
- ZMP Constraints (RoboSimian Only)
- Gait Constraints (RoboSimian Only)

with

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Trajectory Optimization Framework

find gq,q,u, Fy, Ffric at discrete timesteps k = 1..N
subject to minimize cost J
- State Constraints:
¢(q,q,u, Fr) =0
(g, ¢, u, Fr) 20
- Dynamics Constraints:
M(q)q+ C(g:4)q+ G(q)
+ A(q)" A = B(q)u+ F, + ()" Fyric
- Friction Constraints (for each contact):
ve+ DTt >0, B>0
pF,, —e'3>0, v>0
(ve + DTV HT3 =0
(uFn, — €T B)y =0 dy
Ffric; = Dp
- ZMP Constraints (RoboSimian Only)
- Gait Constraints (RoboSimian Only)

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020

Trajectory Optimization Framework

find q,q,u, Fy, Fyric at discrete timesteps k = 1...N Zero-Moment Point (ZMP): point on ground where the sum of all
subject to minimize cost .J moments of the active forces is equal to zero
- State Constraints:
¢(q,q,u, Frn) =0
¥(g,q,u, Fn) >0
- Dynamics Constraints:
M(q)q + C(q,9)q + G(q)
+ A(Q)" X = B(Q)u+ Fo + J(q)" Fric
- Friction Constraints (for each contact):
ve + DTl >0, B>0 — o
pF,, —e'3>0, v>0
(ve + DToF 1T =
(nFn, — ' B)y =0
Ftric, = D
I- ZMP Constraints (RoboSimian Only) I
- Gait Constraints (RoboSimian Only)

M. Vukobratovic, B. A. Borovac. Zero-Moment Point — Thirty Five Years of its Life. [JHR 2004
P. Ha and K. Byl. Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian. 2014

Trajectory Optimization Framework

find q,q,u, F,, Ffric at discrete timesteps k = 1...INV
subject to minimize cost J Static Trotting Gait

- State Constraints:
¢(q,q,u, Frn) =0
(g, q,u, Fr) 2 0
- Dynamics Constraints:
M(q)j+ C(q,d)q + G(q)
+A(9)" A = B(@)u+ Fy, + J(0)" Frric
- Friction Constraints (for each contact 7):
ve+ DTt >0, >0
pF,, —e'820, 72>0
(ve + DToF1)T 3 = 0
(1Fn; =" B)y =0
Firic, = Df3
- ZMP Constraints (RoboSimian Only)
I— Gait Constraints (RoboSimian Only) I

Static Walking Gait

Dynamic Parking Maneuver

* Goal: “park” at (x3, vy, 05) = (4, —1, —m), initialized at (0,0,0) with x;, = 4 (m/s)

-1.5 -

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Energy-Efficient Forward Locomotion

* Maximize final body position in the x-direction, while minimizing energy use

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Hybrid Rolling-Walking/Trotting (Animation!)

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Tracking Hybrid Rolling-Walking/Trotting

* Currently: calculate inverse kinematics along trajectories, joint PD control
* Dynamics mismatch due to RoboSimian’s heavy limbs

* Need a whole-body controller for better tracking

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

Applying the Optimization Framework to a Model Car

find q,q,u, F,, Fric at discrete timesteps k = 1...IN

subject to minimize cost J
- State Constraints:
o(q,4,u, Fn) =0
(g, q,u, Fy) =0
- Dynamics Constraints:
M(q)G+ C(q,q)q + G(q)
+A(@)"A = B(q)u + Fy + J(q)" Frric

- Friction Constraints (for each contact 7): y
ve + DTt >0, B>0
pF,, —e'3>0, v>0
(ve + DT HT3 =0 \
(uF,, —eTB)y=0 > |
Firic, = Dp

- ZMP Constraints (RoboSimian Only)
- Gait Constraints (RoboSimian Only)

G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020

Dynamic Parking Maneuvers
e Park at (xbryb' Hb) = (25,0, g), in 0.75 (S) * Park at (xb' Vb Hb) — (2708'0)9 in 1.0 (S)

Backward Skidding Parking, Full Speed: 0.00 (s)

1w | O Frontof Car
e Forward Skidding Parking, Full Speed: 0.00 (s) N
| O Frontof Car ‘ 0.6
0.2 -
0.4
0.2
-0.2
_0.4 | 1 | Il |
0 0.5 1 19 2 2.5

Framework Versatility

+ Task is still to “park” at (xp, yp, 6) = (2.5,0,)

* By varying the time horizon, the framework naturally discovers trajectories that
either exploit (short time horizons), or avoid slipping

-0.2

0.4

-0.8 |-

0 0.5 1 1.5 2 2.5
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020

Outline

I. Motivation and Goals

II. Model-Predictive Control vs. Reinforcement Learning (same?)

III. Model-based methods

I. Background on RoboSimian and designing skating motions
II. Trajectory optimization allowing wheel slip

IV. Learning-based methods

I. Action space in reinforcement learning [RoboSimian, Al]
II. Augmenting motion planning with deep reinforcement learning [A1]

V. Bio-inspired learning

VI. Conclusion

Reinforcement Learning as a Markov Decision Process (MDP)

An MDP is defined by:

= Set of states §]

= Set of actions 4 :[Agent J

= Transition function P(s’ | s, a) state| |reward -
= Reward function R(s, a, s°) S R, B A,

= Start state s, Lll Environment]<

= Discount factor vy : "

s Horizon H

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998
Deep RL Bootcamp. Berkeley CA, August 2017

S. Levine. Deep Reinforcement Learning Course. https://rail.eecs.berkeley.edu/deepricourse/

Reinforcement Learning as a Markov Decision Process (MDP)

An MDP is defined by:
= Set of states §

= Set of actions A4
N | Agent
= Transition function P(s’ | s, a)

= Reward function R(s, a, s°) state| |reward action
S, R, A,

= Start state s, e) I

= Discount factor y §<S,.. Environment J<_

s Horizon H

Return over a trajectory T = (Sg, ag, Sq, a1, ---

) o
R@ =) yin
t=0

Policy m(as|s;) maps from states s; to actions a; (Goal: find policy maximizing above return)
Value function: V*(s) = E,;[R(T)|sq = 5]

Action-value function: Q™ (s, a) = E.-;[R(T)|sqo = s5,a¢ = a]

Advantage function: A™(s,a) = Q™(s,a) — V™(s)

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998
Deep RL Bootcamp. Berkeley CA, August 2017

Many Existing Tools for Reinforcement Learning

* RL algorithm implementations

stable-baselines3 https://github.com/DILR-RM/stable-baselines3
ray[rllib] https://github.com/ray-project/ray

spinningup https://github.com/openai/spinningup

tianshou https://github.com/thu-ml/tianshou/

* ... many others!

* Physics simulators

 pybullet https://github.com/bulletphysics/bullet3
MuJoCo https://mujoco.org
RaiSim https://raisim.com
Isaac-Gym https://developer.nvidia.com/isaac-gym
... and others!

https://github.com/DLR-RM/stable-baselines3
https://github.com/ray-project/ray
https://github.com/openai/spinningup
https://github.com/thu-ml/tianshou/
https://github.com/bulletphysics/bullet3
https://mujoco.org/
https://raisim.com/
https://developer.nvidia.com/isaac-gym

Reinforcement Learning Considerations

Algorithm MDP Design Decisions
* On/off policy * Observation space
* Hyperparameters * Action space

 Network architecture | * Reward function

e Random seeds/trials

.1mplementation

dependent!

Environment Parameters
* Simulator dynamics

* Control gains —
joint/Cartesian

e Control/environment
time step

* Noise, latency

P. Henderson et al. Deep Reinforcement Learning that Matters. arXiv:1709.06560, 2017

State/Action/Reward Space?

St ?i.e. Agent
-body (z, 1, p, y) C]

-body velocities state| |reward action .
joint states s, | IR, A -motor positions/torques

547,?”] f s
<>z Environment

T ?i.e.
-body linear velocity
-energy penalty

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Training in Joint Space (PPO)

Action Space: a; = 71 _y

Policy after training 1 million time steps in joint space, Humanoid:
rewarding forward velocity 27 DoFs, 21 Actuators.

N. Heess et al. Emergence of Locomotion Behaviours in Rich Environments. arXiv:1707.02286, 2017
J. Schulman et al. Proximal policy optimization algorithms. arXiv.1707.06347, 2017
G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Training in Joint Space (PPO)

Action Space: a; = 71 _y

* Agent is essentially forced to learn
forward and inverse kinematics!

Policy after training 1 million time steps in joint space,
rewarding forward velocity

1000 Training Episode Length for Full System in Joint Space

800 -
600 -
400

200 -

Episode Length Mean

0 | | | | |
0 2 4 6 8 10

Number of Training Timesteps %10°

N. Heess et al. Emergence of Locomotion Behaviours in RichEnvironments.arXiv:1707.02286, 2017
J. Schulman et al. Proximal policy optimization algorithms. arXiv.1707.06347, 2017
G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

State/Action/Reward Space?

St ?i.e. ..l Agent l
_bOdy (Z) I, P, y)

-body velocities state| |reward action .
joint states s, | IR, A -motor positions/torques

DL . -Cartesian coordinates
<>z Environment

-

T ?i.e.
-body linear velocity
-energy penalty

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Training 1n Task Space (PPO)

Action Space: a; = [Vee;) Pee;] fori € {1,2,3,4}

Policy after training 1 million time steps in Cartesian space, Policy after training 1 million time steps in Cartesian space,
rewarding forward velocity rewarding forward velocity

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Episode Reward Mean

2000

p—
S
S
S

1

Training 1n Joint Space vs. Task Space

Episode Reward Mean vs. Training Time Step

~—FS inJS
—SS
—FSin CS
—Transfer SS policy to FS in CS
2 4 6 8 10
Number of Training Timesteps «10°

Episode Reward Mean

i
S
S
e}

W
S
S
S

\®)
S
S
-

—_—
S
S
ja)

S

Episode Reward Mean vs. Real Clock Time

L —FS in JS
—SS
—FS in CS, IK table
/
0 10 20 30 40 50 60 70 80

Clock Time (minutes)

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Hand-designed Trajectory vs. Trained Policy
over uneven terrain with varying coefficients of friction

Hand-designed trajectory to locomote Robosimian 5 meters forwards to (5,0) Policy trained 2 million time steps to locomote Robosimian to (5,0)
executed over uneven terrain with varying coefficients of friction executed over uneven terrain with varying coefficients of friction

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Hand-designed Trajectory vs. Trained Policy

Hand-Designed Skating Trajectory Sample Skating Trajectory

NN NN DN 02 S ONC NN DN DD
—i=1 = —i=1

. =)

- B -
—1=4 > —_—i=4

: , D P NN ANV AN IAN AN,
0 5 10 15 0 5 10 15

Time(s) Time(s)

' ' 02} | | :

= OOVIOUOIV NV 5 RS ssestdesty
- & 0 R ‘ ' ' [/ // |

AOAOOCA000A00CA0000N =

. : 0271 | | 1
5 10 15 0 5 10 15

Time (s) Time (s)

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

State/Action/Reward Space: Al

Se ?i.e. :l Agent I

_bOdy (Z) I, P, y) 3

-body velocities state| |reward adion %t »

joint states S, R, | A —motor.p05|t|ons/torques
| esr f . -Cartesian PD
<>z Environment

T ?i.e.
-body linear velocity
-energy penalty

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Learning 1n Joint Space (PPO)

Action Space: a; = q1 _n

e

Position Control vs. Cartesian PD Control (PPO)

Action Space: a; = g1 _n Action Space: a; = [xeei:}’eei:zeei]

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Robust to disturbances (10kg load, and 20% body mass/inertia variability)

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Robust to disturbances (10kg load, and 20% body mass/inertia variability)

V
,
" e

)

Robust to disturbances (6kg load, rough terrain up to 0.04m in height)

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Running at 4 m/s

Running at 3.5 m/s with a 10kg load

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Sim-to-Real Additions

e Reward function terms:

Name Formula Weight
Velocity reward 1 - |vpase — Vdes| 0.1
Feet swing reward 2 st~ tf—l —0.5) 0.2

Energy penalty i tt+1 |7 - q|dt -0.008
Orientation penalty |w — (0,0,0,1)|| -0.1
Lateral drift penalty ly| -0.1
Height penalty |z — 0.3] -0.1

* Dynamics randomization:

e Terrain randomization, observation noise

Parameter Lower Bound Upper Bound
Mass (each body link) 80% 120%
Added mass 0 kg 5 kg
Added mass base offset [-0.15,-0.05,-0.05] m [0.15,0.05,0.05] m
Coefficient of friction 0.5 1

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Experimental Results

A Iy

e e A

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

unning with a Skg Load

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Running Over Different Terrains

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022

Outline

I. Motivation and Goals
II. Model-Predictive Control vs. Reinforcement Learning (same?)

III. Model-based methods
I. Background on RoboSimian and designing skating motions
II. Trajectory optimization allowing wheel slip

IV. Learning-based methods
I. Action space in reinforcement learning [RoboSimian, Al]

II. Augmenting motion planning with deep reinforcement learning [A1] |

V. Bio-inspired learning

VI. Conclusion

How can we combine trajectory optimization and deep learning?

* Use learning to improve trajectory optimization

Feedforward trajectory optimization ii TO + Learning
".
: ' 0.33x 0.33x I

0.5

Nonlinear trajectory optimization Feedforward execution Feedforward execution with |: Our method:
generates jumping motions disturbances — doesn’t work! :: Trajectory Optimization + DRL

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Jumping Task (Robust?)

Q. Nguyen, M. Powell, B. Katz, J. D. Carlo, S. Kim. Optimized Jumping on the MIT Cheetah 3 Robot. ICRA 2019
G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Baseline Jumping

Optimization

94,94, T}

*---

Pa, vd}i Joint PD
Controller

|
I
|
\ 4

Cartesian PD
Controller

A |
{q,q} m——————— - » Robot [
{p, v}

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Nonlinear trajectory optimization

Optimization generates jumping motions
i : 0.33x
94, 9a, 74}
N Joint PD
Controller
I - E ZS
| o O
-
______ __, | Cartesian PD =X 0 5 ;
Controller
A : T
9.9} e » Robot —
{p v}

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

0.33x

Optimization

94,94, Ta}

|
|
|
I
Pavah Joint PD
i : | Controller i
T | l
I i |
1 | I ‘ Feedforward controller tracks
:_l _____ _,| Cartesian PD I jumping motions...
] Controller i
A |
I{CI; q} o Leee--Xl-osl Robot [
] P, I
]]

I miss Belieg 2 pdanCuisy yeum® - Heﬂoﬂ)ﬂpﬁrling via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

0.33x

Optimization
I I
i . :
! 144,94, Ta}!
|F----*-----q
| [
Pa vl] | JointPD :
! Controller
T | |
I i l
1 | I ‘ Feedforward controller tracks
:_l _____ _,| Cartesian PD I jumping motions...
] Controller i
l{q, q) L. -—» Robot I ---butonly works under
: ey
I {p,v} I ideal conditions!
I]

I miss Belieg 2 pdanCuisy yeum® - Heﬂoﬂ)ﬂpﬁn‘ing via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

How to improve jumping with learning?
* Jumping involves very specific joint trajectories

all-leg contact phase rear-leg contact phase flight phase
(T=0.5s) (T=0.35s) (T is task-dependent)

* Difficult to learn from scratch..
* Imitate trajectory?
* Reward function tuning..

* Already have an approximate solution in i1deal case
* Learn to modify existing trajectories for robustness (residual learning)

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Pa; ”d}i

-

RL

Tg(a;|ss)

~

I

I I

ar =1 Apo Ap1 - Apy}
(Entire trajectory offsets)

I
Optimization l
i I
da
4a; qd;Td}i' -------- =]T(qd) 14p;
v | N
' I
JOiIlt PD : Aqd
| Controller [~ i
' I
: [
: L
______ __,| Cartesian PD |
Controller
Y l
T
{a.9} I .
{p,v}

Robot

with DRL

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Augment Optimization

s; = {Initial state, desired trajectory state}

|
v

e e

Pa, v}

Optimization
| | a
- . d
' {qa qa Ta} BACH
| ¥ |
' I
J oint PD : A qd
: | Controller [~~ 1 I
: , I
i : l
i L
Lo __,| Cartesian PD |
Controller
A |
T
{a.9} I .
{p,v}

s; = {Initial state, desired trajectory state}

| |
'

~

=

@ g(a;|s;)
~_

RL

o e e e

v

DRL learns to modity

Robot —

foot trajectories...

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

s; = {Initial state, desired trajectory state}

| |
'

Optimization

r-q--------

: [
{qd, !d,l'd}i'----clci———b]T(qd) re(atlst)

|]
' Joint PD
Pava + Controller ""

I '
a; ={ Apo Apl APN}

I

| | i
! . L
| i |
! i Cartesian PD I ...which are added to
m————— - R < ‘ the original feedforward

Controller]

] I controller

~
',_Q
Q
—
|
|
|
|
|
|
|
|
|
|
?d
Q
H

{p,v}

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Example Simulation Result

* Jumping height and distance: (0.4, 0.7) m
* Mass and inertia uncertainty: 5%

* Ground uncertainty: 0.1 m block under rear feet

Baseline - Pure Trajectory Optimization Our method — Trajectory Optimization + DRL
0.33x 0.33x

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Example Hardware Result

* Jumping height and distance: (0.2, 0.6) m

* Ground uncertainty: 0.06 m block under front feet

Baseline - Pure Trajectory Optimization Our method — Trajectory Optimization + DRL

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Outline

I. Motivation and Goals

II. Model-Predictive Control vs. Reinforcement Learning (same?)

III. Model-based methods

I. Background on RoboSimian and designing skating motions
II. Trajectory optimization allowing wheel slip

IV. Learning-based methods
I. Action space in reinforcement learning [RoboSimian, Al]
II. Augmenting motion planning with deep reinforcement learning [A1]

V. Bio-inspired learning

VI. Conclusion

-

B

\
\
-

100%

‘ From Lecture 4 ‘

Descending

modulation

|0JJU0D JOJOW Ul
9|0y 9AI0adsay

- q
(= 9))
(O] S
=5 p 5
S G o %
= (S) >
g © a
o O (S} 2
|m..l.e - o
Ong (S} ©
o 9 o ©
@) y =
IS o Q
= GH =
Q. & ©
Q © <
x =
= =
©
oc

human

salamander at

lamprey

Traditional Central Pattern Generators for Quadruped Locomotion

Trot

Amplitude:

Phase:

Output:

Fi =a(% (ﬂi—ri)—f’i)

9,’ =wi+erw,-jsin(0j—9i—¢,-j), w; = {
J

Wswing

Wgtance

if0<6; <n
ifr<6;<2nr

Xfoot,i = —dstepr ; c0s(6;)

—h + g.sin(8;) if sin(6;) > 0
Zfoot,i =
8T+ gpsin(f;) otherwise

Ie
i

-0.1

0 0.1

A. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007

Traditional Central Pattern Generators for Quadruped Locomotion

Pace

Amplitude:

Phase:

Output:

Fi =a(% (ﬂi—ri)—f’i)

9,’ =wi+erw,-jsin(0j—9i—¢,-j), w; = {
J

Wswing

Wgtance

if0<6; <n
ifr<6;<2nr

Xfoot,i = —dstepr ; c0s(6;)

—h + g.sin(8;) if sin(6;) > 0
Zfoot,i =
8T+ gpsin(f;) otherwise

Ie
i

-0.1

0 0.1

A. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007

Traditional Central Pattern Generators for Quadruped Locomotion

Walk

Amplitude:

Phase:

Output:

Fi =a(% (ﬂi—rz‘)—f’i)

éi =wi+erw,-jsin(0j—9i—¢,-j), w; = {
J

Wswing

Wgtance

if0<6; <n
ifﬂ'SOi<27T

Xfoot,i = _dstepr ; c0s(6;)

—h + g.sin(8;) if sin(6;) > 0
Zfoot,i =
8T+ gpsin(f;) otherwise

Ie
i

-0.1

0 0.1

A. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007

Traditional Central Pattern Generators for Quadruped Locomotion

Can we improve the general capabilities of CPGs with deep reinforcement learning?

a
Amplitude: ri=a (Z (Wi —ri) — fi)

: L FR
Phase: 0; = w; + E Tiwiisin(l; — 0, — ¢ij) , w; = .
j a)stance lfﬂ S 91 < 271'

¢

Xfoot,i = _dstepri cos(6;) @ @
Output: —h + g.sin(8;) if sin(8;) > 0
Zfoot,i —

i : HL HR
—h + g, sin(6;) otherwise

M. Ajallooeian, S. Pouya, A. Sproewitz, A. Ijspeert. Central Pattern Generators Augmented with Virtual Model Control for Quadruped Rough Terrain Locomotion. ICRA 2013

Training Control Policies with Deep Reinforcement Learning

e Training in joint space with task-minimalistic reward functions gives rise to
unnatural gaits

o Reward function:
: ’,l Agent
+ Track base velocity command (v, vy, w;)
. o state| [reward action
- Penalize other base velocities (v, wy, wy) s, | |R, A
. : R.. (
- Penalize energy <] Environment]4

o Add terms for:
+ Track base height h
+ Reward foot air time

Training Control Policies with Deep Reinforcement Learning

o With extensive reward shaping, more natural behaviors can emerge
> Reward function:

definition weight
Linear velocity tracking ~ ¢(vy ., — Vpzy) 1dt
Angular velocity tracking ¢(wf , — wy,2) 0.5dt

Linear velocity penalty Vi, Adt
Angular velocity penalty —||wp 2y ||? 0.05dt
Joint motion —||q;||? —||q;||* 0.001dt
Joint torques —||71)? 0.00002dt
Action rate —| |q;‘ Ik 0.25dt
Collisions —Neollision 0.001dt

Feet air time E‘}:O (tair,f —0.5) 2dt

N. Rudin, D. Hoeller, P. Reist, M. Hutter. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. CORL 2021

Training Control Policies with Deep Reinforcement Learning

o However:
- What has been learned? (interpretability?)
- How should we weight and shape reward functions for this (or other) tasks?
- Can we specify a desired swing foot ground clearance?
- Can we draw any connections to biological systems?

N. Rudin, D. Hoeller, P. Reist, M. Hutter. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. CORL 2021

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

) g
{U1.4, 01 4, 1/11..4}) Pa IK,

Polic ———
Y @ @ PD Control
7
HL HR
{r; 0; ¢) 1.') 91 ¢}
Command . . .
(v, vy, @) Subset of: IMU (base orientation/velocity), State
R motor angles/velocities, foot contact booleans Estimation

In this work, we propose to learn to modulate the neural oscillator intrinsic
amplitude and frequency of each oscillator that together forms a Central Pattern
Generator with deep reinforcement learning.

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

SRS
{14 01 4, P14} N Pa IK,
/@ @ PD Control
HL HR

Subset of: IMU (base orientation/velocity), State

motor ang?(ities, foot contact booleans Estimation

i‘iza(%(ui—ri)—m)
0; =w;

bi =1;

Policy

Command
{Vx, Uy, 0, }

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

) g
{I~¢1..4;0')1..4»1111..4}> Pa| | IK,

Policy

~. PD Control
; & =
HL HR
{r; 0;) / |
Command 7
(v, vy, 0, Subset of: IMU (base orientation/velocity), State \ |
e motor angles/veloCities, foot contact booleans Estimation
0.15 , . ,

A A

. a . 0.1 1 :

Ti=a(1(ui—ri)—rz‘> 2008 :

02' =Ww; ol

b =; 0.05 ' ' S e v

-0.1 0 0.1 A
X (m)

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

SRS
{14 01 4, P14} N Pa IK,
/@ @ PD Control
HL HR

Policy

Command

(v, vy, @) Subset of: IMU (base orientation/velocity), State
R motor angles/veloCities, foot contact booleans Estimation
0.15 , . ,

5 4
.. a . 0.1 1 :
Ti=a(1(ui—ri)—rz‘> —_ :
- > 0 i h
02' =Ww; N ol
¢'i o ¢Z 0.05 _0"1 O Oil q;{——" \4

X (m)

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

Body Height and Swing Foot Height can be adjusted on the fly

Body Height: 0.3 (m) 0.19 (m) 0.3 (m)

FL@ FR
A
: 1.4, 014, @ .
Policy H1.4 01,4, P14} R Pa . IK, :
@ @ PD Control .
HL HR : h

(r.6,9,7,6,¢} | :
Command . . . v

Subset of: IMU (base orientation/velocity), State

{vy, Uy, w,} — . .

motor angles/velocities, foot contact booleans Estimation

Body Height and Swing Foot Height can be adjusted on the fly

FL FR
. {14, 014 P14} @ @ Pa IK, T
Policy >

PD Control
T 1 HI@ | 6J>HR

I {r,6,¢,7,6,$}
Command]))
(Ve vy, @05} Subset of: IMU (base orientation/velocity), State

motor angles/velocities, foot contact booleans Estimation

\ 4

0.1

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

What sensory information should be in the observation space?

FL FR
1.4, ©1.4, 1/’1..42 @ @ Pa IK,
PD Control
t ‘ o L® ®HR
{r,0,¢,7,0,¢p) |

Command
{(vy, vy, 0, } Subset of: IMU (base orientation/velocity), State .
motor angles/velocities, foot contact booleans Estimation

Policy

H

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

What sensory information should be in the observation space?

FL FR
. { 4, W1 4, . @ @ Pad
Policy K14, @1 4,1 43 IK,
@ @ PD Control
A
‘ .. HL HR
{r,0,¢,r,0, ¢} |
Co nd
WerVy 6} oricntaten/velocitv), State .
e Estimation

e Similar to the “Tegotae” feedback idea:
éi = Wi + z 7"JWUSII'1(0] — Hi — ¢l]) — O'Ni COS Hi

D. Owaki et al. A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach
G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

Observation space: {Foot contact booleans, CPG states}

* No domain randomization or noise during training

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

What sensory information should be in the observation space?

FL FR
{14, w1..4»‘/’1..42 @ @ Pa IK,
PD Control
o I@HR

Policy

H

I ‘ (r,0,¢,7,0, ¢}

Command

{(vy, vy, 0, } Subset of: IMU (base orientation/velocity), State .
motor angles/velocities, foot contact booleans Estimation

Necessary?

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

Full Obs. Space, v, , = 0.3 [m/s] Medium Obs. Space, v;, , = 0.8 [m/s]

(No joint states in obs. space)

q"

G. Bellegarda. A. Iispeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion.” RA-L 2022

Dynamically Added Mass (5+5+2 5+1.25=13.75 kg)

Medlum Observation Space vb ,» = 0.8 [m/s]

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

Omnidirectional Locomotion

Full Obs. Space, wp, , = 0.5 [rad/s] Medium Obs. Space, v}, ,, = 0.5 [m/s]

—— -

&

S A0y |

R R R R

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

Omnidirectional Locomotion

* Command: vy, = 0.4 [m/s]

| T r— T 7 e

G. Bellegarda, A. [jspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

1verse robots

d

1 }% s

ing

-_ ~«

8 3:3

;r

—
o
B!
-
@)
Q
€
o
Q
e
&,
<
Q
e
Q
h

le locomotion po

A sing

M. Shafiee, G. Bellegarda, A. Ijspeert. “ManyQuadrupeds: Learning a Single Locomotion Policy for Diverse Quadruped Robots,” ICRA 2024

ManyQuadrupeds

Visual CPG-RL

G. Bellegarda, M. Shafiee, A. Ijspeert. “Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion,” ICRA 2024
M. Shafiee, G. Bellegarda, A. [jspeert. “Viability Leads to the Emergence of Gait Transitions in Learning Anticipatory Quadrupedal Locomotion Skills,” Nature Communications 2024
M. Shafiee, G. Bellegarda, A. [jspeert. “Learning Anticipatory Quadrupedal Locomotion Based on Interactions of a Central Pattern Generator and Supraspinal Drive,” ICRA 2023

CPG-RL Summary

* CPG-RL: integrated abstract oscillators into the deep reinforcement learning
framework to learn quadruped locomotion

* Online modulation of body height and swing foot height

* Robust sim-to-real transfer (115% nominal mass load, uneven terrain)
* Minimal proprioceptive sensing (only contact Booleans)

* Training without any dynamics randomization or noise

* Can learn a single policy for Many Quadrupeds!

* Vision in-the-loop for navigation and gap crossing = emergence of gait transitions

Outline

I. Motivation and Goals
II. Model-Predictive Control vs. Reinforcement Learning (same?)

III. Model-based methods
I. Background on RoboSimian and designing skating motions
II. Trajectory optimization allowing wheel slip

IV. Learning-based methods
I. Action space in reinforcement learning [RoboSimian, Al]
II. Augmenting motion planning with deep reinforcement learning [A1]

V. Bio-inspired learning

VI. Conclusion

Conclusion

* Presented several methods for agile robot locomotion:

* Designed skating trajectories [RoboSimian]
* 3-vs. 4-limb skating on flat vs. “rough” terrain

* Trajectory optimization methods [RoboSimian, car]
* Novel wheel model to exploit or avoid slipping, gaits

* Deep learning (incorporating ideas from control)
» Simple methods like forward/inverse kinematics can have a huge benefit for learning [RS, Al]
* Augmented jumping TO with DRL for improved robustness [A1]

* Bio-inspired learning
* Oscillators in the loop greatly simplify and robustify the sim-to-real transfer [A1,Gol]

* Explored trade-offs relating to our goals of robustness, agility and efficiency

Possible Exam Questions

* How are model-based methods and learning-based methods similar? How are they
different?

* When might you consider using a model-based controller over a learning-based
controller, and vice-versa?

* Assume you need to design a locomotion controller with trajectory optimization.
What would your cost function include? What kind of constraints do you need?

* Assume you need to train a locomotion controller with deep reinforcement
learning. How will you structure the Markov Decision Process (1.e. observation
space, action space, reward function)?

* What makes reinforcement learning challenging? What might you consider when
applying reinforcement learning to a new problem?

