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Locomotion Goals

Robustness Agility

Energetics

…in stochastic environments (variability)



Robustness
Agilityunknown variability

Energetics

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022
G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Robustness
Agilityunknown variability

known variability

Energetics

M. Shafiee, G. Bellegarda, A. Ijspeert. “Viability Leads to the Emergence of Gait Transitions in Learning Agile Quadrupedal Locomotion on Challenging Terrains,” Nature Communications 2024.
G. Bellegarda, M. Shafiee, A. Ijspeert. “Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion,” ICRA 2024.
G. Bellegarda, K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020.



Robustness
Agility

Energetics

unknown variability

as efficient as practical

known variability

G. Bellegarda, K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019.
G. Bellegarda, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018.



Robotics Approaches
Model-based methods

i.e. trajectory optimization, model-predictive 
control (MPC), Central Pattern Generators (CPGs)

Learning
i.e. reinforcement learning, imitation learning

[Park et al. 2017] [Boston Dynamics 2017]

[Xiong et al. 2021]

[Kim et al. 2019] [Boston Dynamics 2018]

[DRC 2015] [Yang et al. 2021][Lee et al. 2020]

[Hwangbo et al. 2019][Ji et al. 2022]

[Tan et al. 2018][Heess et al. 2017]

How can we build generalizable, agile, robust, and safe systems?



Goals for Today

G. Bledt, P. Wensing, S. Ingersoll, S. Kim. Contact Model Fusion for Event-Based Locomotion in Unstructured Terrains. ICRA 2018
G. Bledt, M. Powell, B. Katz, J. D. Carlo, P. Wensing, S. Kim. MIT Cheetah 3: Design and Control of a Robust, Dynamics Quadruped Robot. IROS 2018

1. Insights into formulating trajectory optimization (model-predictive control) problems 



Goals for Today

1. Insights into formulating trajectory optimization (model-predictive control) problems 
2. Insights into training control policies with deep reinforcement learning 

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998
J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, M. Hutter. Learning Quadrupedal Locomotion over Challenging Terrain. Science Robotics 2020

Robot State 

Actions
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Common Setting: Closed-Loop Autonomous System

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021



Reinforcement Learning Challenges

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021



Terminology: State Space Model

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Optimal Control Reinforcement Learning



Terminology: Optimization Objective

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Optimal Control Reinforcement Learning



Principle of (Path) Optimality

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021



Terminology: Optimization Objective

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Optimal Control Reinforcement Learning



Closed-Loop Autonomous System (Formal)

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021



From Principle to Computation

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Optimal Control Reinforcement Learning



Control vs. Learning

Yi Ma. EE290-005: Integrated Perception, Learning, and Control. UC Berkeley 2021

Optimal Control Reinforcement Learning
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JPL’s RoboSimian: Dexterous Quadruped

• Four identical limbs, each with 7 degrees of 
freedom (DOFs)
• Joint motor speeds peak at 1 (rad/s)

• RoboSimian is stable, but very slow
• Passive single-wheel skate mounted at each 

forearm
• Increase efficiency, speed

• 6 actuated DOFs available to set 6-DOF 
pose of each skate
• No sensing available at skate contact

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018



Modeling: Skating Kinematics

• Assumptions:
• No skid at wheel axis
• Free rolling perpendicular to no-

skid axis (no-slip)
• Wheel can rotate freely about a 

point contact with the ground

free rolling

no slip
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G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018



Designing Skating Motions for a Dexterous Quadruped
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G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018



Other Agile Trajectories

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018



Skating on 0.2 (m) “Rough” Terrain

G. Bellegarda, K. van Teeffelen, K. Byl. “Design and Evaluation of Skating Motions for a Dexterous Quadruped,” ICRA 2018
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Trajectory Optimization

M. Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM 2017



Direct Collocation

Backward Euler integration:

M. Posa, C. Cantu, R. Tedrake. A Direct Method for Trajectory Optimization of Rigid Bodies Through Contact. IJRR 2013
M. Kelly. An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. SIAM 2017
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Wheel Model?

• Non-slip constraints can be violated!
• Account for slip, plan agile motions
• Existing wheel/tire models 

• i.e. Pacejka, Fiala, LuGre, Linear, Combined Slip, CarSim (?)

𝐹! = 𝐷 sin 𝐶 tan"# 𝐵𝛼 − 𝐸 𝐵𝛼 − tan"# 𝐵𝛼

• Slip angle 𝛼 is difficult for optimization

𝛼 = tan!"
𝑣#!
𝑣$!

• Many works thus use different models for 
planning and control

free rolling

no slip

?
!
" no skid

no slip #

$ = !"

free rolling

no slip

?

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020
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• Polyhedral friction cone/triangle:

• Inequalities:

• Complementarity conditions:

Friction as a Linear Complementarity Problem (LCP)

D. Stewart and J.C. Trinkle. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction. ICRA 2000
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020



Additional Modeling Details

𝜃!𝜃"
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G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Trajectory Optimization Framework

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Trajectory Optimization Framework

M. Srinivasan, Why walk and run: energetic costs and energetic optimality in simple mechanics-based models of a bipedal animal. Cornell University, Ithaca, NY, 2006.
G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019

PowerEnd Location



Trajectory Optimization Framework
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G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Trajectory Optimization Framework

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Trajectory Optimization Framework
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G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019
G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020



Trajectory Optimization Framework

M. Vukobratovic, B. A. Borovac. Zero-Moment Point – Thirty Five Years of its Life. IJHR 2004
P. Ha and K. Byl. Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian. 2014

Zero-Moment Point (ZMP): point on ground where the sum of all 
moments of the active forces is equal to zero



Trajectory Optimization Framework

LH
LF
RF
RH

LH
LF
RF
RH

Static Trotting Gait

Static Walking Gait



Dynamic Parking Maneuver

• Goal: “park” at 𝑥(, 𝑦(, 𝜃( = (4,−1,−𝜋), initialized at (0,0,0) with 𝑥̇( = 4 (m/s) 
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G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Energy-Efficient Forward Locomotion

• Maximize final body position in the x-direction, while minimizing energy use
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G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Hybrid Rolling-Walking/Trotting (Animation!)

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Tracking Hybrid Rolling-Walking/Trotting

• Currently: calculate inverse kinematics along trajectories, joint PD control
• Dynamics mismatch due to RoboSimian’s heavy limbs
• Need a whole-body controller for better tracking

G. Bellegarda and K. Byl. “Trajectory Optimization for a Wheel-Legged System for Dynamic Maneuvers that Allow for Wheel Slip,” CDC 2019



Applying the Optimization Framework to a Model Car
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G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020



Dynamic Parking Maneuvers
• Park at 𝑥(, 𝑦(, 𝜃( = (2.5,0, )*), in 0.75 (s) • Park at 𝑥(, 𝑦(, 𝜃( = (2,0.8,0), in 1.0 (s)



Framework Versatility

• Task is still to “park” at 𝑥(, 𝑦(, 𝜃( = 2.5,0, )
*

• By varying the time horizon, the framework naturally discovers trajectories that 
either exploit (short time horizons), or avoid slipping
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0

T=0.75(s)

T=1.0(s)
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G. Bellegarda and K. Byl. “Versatile Trajectory Optimization Using a LCP Wheel Model for Dynamic Vehicle Maneuvers,” ICRA 2020
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R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998
Deep RL Bootcamp. Berkeley CA, August 2017
S. Levine. Deep Reinforcement Learning Course. https://rail.eecs.berkeley.edu/deeprlcourse/

Reinforcement Learning as a Markov Decision Process (MDP)



• Return over a trajectory 𝜏 = 𝑠!, 𝑎!, 𝑠", 𝑎", …

𝑅 𝜏 =(
#$!

%

𝛾#𝑟#

• Policy 𝜋 𝑎# 𝑠#  maps from states 𝑠# to actions 𝑎# (Goal: find policy maximizing above return)
• Value function: 𝑉&(𝑠) = 𝔼'~&[𝑅(𝜏)|𝑠! = 𝑠]
• Action-value function: 𝑄&(𝑠, 𝑎) = 𝔼'~&[𝑅(𝜏)|𝑠! = 𝑠, 𝑎! = 𝑎]
• Advantage function: 𝐴& 𝑠, 𝑎 = 𝑄& 𝑠, 𝑎 − 𝑉&(𝑠)

R. Sutton and A. Barto. Introduction to Reinforcement Learning. MIT Press 1998
Deep RL Bootcamp. Berkeley CA, August 2017

Reinforcement Learning as a Markov Decision Process (MDP)



Many Existing Tools for Reinforcement Learning

• RL algorithm implementations
• stable-baselines3 https://github.com/DLR-RM/stable-baselines3
• ray[rllib] https://github.com/ray-project/ray
• spinningup https://github.com/openai/spinningup
• tianshou https://github.com/thu-ml/tianshou/
• … many others!

• Physics simulators
• pybullet https://github.com/bulletphysics/bullet3
• MuJoCo https://mujoco.org
• RaiSim https://raisim.com
• Isaac-Gym https://developer.nvidia.com/isaac-gym
• … and others!

https://github.com/DLR-RM/stable-baselines3
https://github.com/ray-project/ray
https://github.com/openai/spinningup
https://github.com/thu-ml/tianshou/
https://github.com/bulletphysics/bullet3
https://mujoco.org/
https://raisim.com/
https://developer.nvidia.com/isaac-gym


Reinforcement Learning Considerations

Algorithm

• On/off policy
• Hyperparameters
• Network architecture
• Random seeds/trials
…implementation 
dependent! 

Environment Parameters

• Simulator dynamics
• Control gains – 

joint/Cartesian
• Control/environment 

time step
• Noise, latency 

MDP Design Decisions

• Observation space
• Action space
• Reward function

P. Henderson et al. Deep Reinforcement Learning that Matters. arXiv:1709.06560, 2017



𝑠$ ? i.e.
-body (z, r, p, y)
-body velocities
-joint states

𝑎$ ? 
-motor positions/torques

𝑟$ ? i.e.
-body linear velocity
-energy penalty

State/Action/Reward Space?

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019



Training in Joint Space (PPO)

N. Heess et al. Emergence of Locomotion Behaviours in Rich Environments. arXiv:1707.02286, 2017
J. Schulman et al. Proximal policy optimization algorithms. arXiv:1707.06347, 2017
G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

Action Space: 𝑎$ = 𝜏!…& 



Training in Joint Space (PPO)

N. Heess et al. Emergence of Locomotion Behaviours in RichEnvironments.arXiv:1707.02286, 2017
J. Schulman et al. Proximal policy optimization algorithms. arXiv:1707.06347, 2017
G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019

• Agent is essentially forced to learn 
forward and inverse kinematics!

Action Space: 𝑎$ = 𝜏!…& 



State/Action/Reward Space?

𝑠$ ? i.e.
-body (z, r, p, y)
-body velocities
-joint states

𝑟$ ? i.e.
-body linear velocity
-energy penalty

𝑎$ ? 
-motor positions/torques
-Cartesian coordinates

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019



Training in Task Space (PPO)
Action Space: 𝑎$ = [𝑦''( , 𝜙''(] for 𝑖 ∈ {1,2,3,4}

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019



Training in Joint Space vs. Task Space

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019



Hand-designed Trajectory vs. Trained Policy 
over uneven terrain with varying coefficients of friction 

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019



Hand-designed Trajectory vs. Trained Policy

G. Bellegarda and K. Byl. “Training in Task Space to Speed Up and Guide Reinforcement Learning,” IROS 2019



State/Action/Reward Space: A1

𝑠$ ? i.e.
-body (z, r, p, y)
-body velocities
-joint states

𝑟$ ? i.e.
-body linear velocity
-energy penalty

𝑎$ ? 
-motor positions/torques
-Cartesian PD

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Learning in Joint Space (PPO)
Action Space: 𝑎< = 𝑞"…> 

Rear right leg extends backwards



Position Control vs. Cartesian PD Control (PPO)

Action Space: 𝑎< = 𝑞"…> Action Space: 𝑎< = [𝑥??@, 𝑦??@, 𝑧??@]

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Robust to disturbances (10kg load, and 20% body mass/inertia variability)

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Robust to disturbances (10kg load, and 20% body mass/inertia variability)

Robust to disturbances (6kg load, rough terrain up to 0.04m in height)

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Running at 4 m/s

Running at 3.5 m/s with a 10kg load

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



• Reward function terms:

• Dynamics randomization:
• Terrain randomization, observation noise

Sim-to-Real Additions

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Experimental Results

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Running with a 5kg Load

0.5x

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022



Running Over Different Terrains

G. Bellegarda, Y. Chen, Z. Liu, Q. Nguyen. “Robust High-Speed Running for Quadruped Robots via Deep Reinforcement Learning,” IROS 2022
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How can we combine trajectory optimization and deep learning?

• Use learning to improve trajectory optimization

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.

Nonlinear trajectory optimization 
generates jumping motions

Feedforward execution Feedforward execution with 
disturbances – doesn’t work! 

Our method: 
Trajectory Optimization + DRL

0.33x 0.33x 0.33x

Feedforward trajectory optimization TO + Learning



Jumping Task (Robust?)

Q. Nguyen, M. Powell, B. Katz, J. D. Carlo, S. Kim. Optimized Jumping on the MIT Cheetah 3 Robot. ICRA 2019
G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Robot

Joint PD 
Controller

Cartesian PD 
Controller

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A}

{𝒑, 𝒗}
{𝒒, 𝒒̇} 𝝉

Baseline Jumping

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Robot

Joint PD 
Controller

Cartesian PD 
Controller

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A}

{𝒑, 𝒗}
{𝒒, 𝒒̇} 𝝉

Nonlinear trajectory optimization 
generates jumping motions

0.33x

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Robot

Joint PD 
Controller

Cartesian PD 
Controller

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A}

{𝒑, 𝒗}
{𝒒, 𝒒̇} 𝝉

Feedforward controller tracks 
jumping motions…

0.33x

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Robot

Joint PD 
Controller

Cartesian PD 
Controller

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A}

{𝒑, 𝒗}
{𝒒, 𝒒̇} 𝝉

Feedforward controller tracks 
jumping motions…

 …but only works under 
 ideal conditions!

0.33x

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



How to improve jumping with learning?

• Jumping involves very specific joint trajectories

• Difficult to learn from scratch..
• Imitate trajectory?
• Reward function tuning..

• Already have an approximate solution in ideal case
• Learn to modify existing trajectories for robustness (residual learning)

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Δ𝒑B𝒂< = {

𝝅𝜽(𝒂<|𝒔𝒕)

{Initial state, desired trajectory state}𝒔< =

Δ𝒑" Δ𝒑>	}

Robot

Joint PD 
Controller

Cartesian PD 
Controller

𝑱E 𝒒A
𝒒A

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A} Δ𝒒A

Δ𝒑@

RL

{𝒑, 𝒗}
{𝒒, 𝒒̇} 𝝉

…

(Entire trajectory offsets)

Augment Optimization 
with DRL

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Δ𝒑B𝒂< = {

𝝅𝜽(𝒂<|𝒔𝒕)

{Initial state, desired trajectory state}𝒔< =

Δ𝒑" Δ𝒑>	}

Robot

Joint PD 
Controller

Cartesian PD 
Controller

𝑱E 𝒒A
𝒒A

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A} Δ𝒒A

DRL learns to modify 
foot trajectories…

Δ𝒑@

RL

{𝒑, 𝒗}
{𝒒, 𝒒̇} 𝝉

…

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Optimization

Δ𝒑B𝒂< = {

𝝅𝜽(𝒂<|𝒔𝒕)

{Initial state, desired trajectory state}𝒔< =

Δ𝒑" Δ𝒑>	}

Robot

Joint PD 
Controller

Cartesian PD 
Controller

𝑱E 𝒒A
𝒒A

{𝒒A, 𝒒̇A, 𝝉A}

{𝒑A, 𝒗A} Δ𝒒A

…which are added to 
the original feedforward 
controller
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{𝒒, 𝒒̇} 𝝉

…

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



Example Simulation Result
• Jumping height and distance: (0.4, 0.7) m
• Mass and inertia uncertainty: 5%
• Ground uncertainty: 0.1 m block under rear feet
Baseline - Pure Trajectory Optimization Our method – Trajectory Optimization + DRL

0.33x0.33x

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.



• Jumping height and distance: (0.2, 0.6) m
• Ground uncertainty: 0.06 m block under front feet

Baseline - Pure Trajectory Optimization Our method – Trajectory Optimization + DRL

Example Hardware Result

0.33x0.33x

G. Bellegarda, C. Nguyen, Q. Nguyen. “Robust Quadruped Jumping via Deep Reinforcement Learning,” Robotics and Autonomous Systems 2024.
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II. Model-Predictive Control vs. Reinforcement Learning (same?)
III. Model-based methods

I. Background on RoboSimian and designing skating motions
II. Trajectory optimization allowing wheel slip

IV. Learning-based methods 
I. Action space in reinforcement learning [RoboSimian, A1]
II. Augmenting motion planning with deep reinforcement learning [A1]

V. Bio-inspired learning
VI. Conclusion
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Traditional Central Pattern Generators for Quadruped Locomotion

• Require careful parameter tuning (optimization-based or hand-tuned)
• Result in a single fixed gait (must re-tune for each desired gait and speed)
• Difficult to specify omni-directional motion (i.e. add VMC [1])

HRHL

FL FR
Phase:

Amplitude:

Output:

Trot

A. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007
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Traditional Central Pattern Generators for Quadruped Locomotion
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Traditional Central Pattern Generators for Quadruped Locomotion

• Require careful parameter tuning (optimization-based or hand-tuned)
• Result in a single fixed gait (must re-tune for each desired gait and speed)
• Difficult to specify omni-directional motion (i.e. add VMC [1])
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A. Ijspeert, A. Crespi, D. Ryczko, J.M. Cabelguen. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science 2007



Traditional Central Pattern Generators for Quadruped Locomotion

• Require careful parameter tuning (optimization-based or hand-tuned)
• Result in a single fixed gait (must re-tune for each desired gait and speed)
• Difficult to specify omni-directional motion (i.e. add control like VMC to turn)

M. Ajallooeian, S. Pouya, A. Sproewitz, A. Ijspeert. Central Pattern Generators Augmented with Virtual Model Control for Quadruped Rough Terrain Locomotion. ICRA 2013

Can we improve the general capabilities of CPGs with deep reinforcement learning? 
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Training Control Policies with Deep Reinforcement Learning

● Training in joint space with task-minimalistic reward functions gives rise to 
unnatural gaits
○ Reward function:

+ Track base velocity command (𝑣$ , 𝑣!, 𝜔%)
- Penalize other base velocities (𝑣%, 𝜔$ , 𝜔!)
- Penalize energy

○ Add terms for:
+ Track base height ℎ
+ Reward foot air time



Training Control Policies with Deep Reinforcement Learning

● Training in joint space with task-minimalistic reward functions gives rise to 
unnatural gaits

● With extensive reward shaping, more natural behaviors can emerge 
○ Reward function:

N. Rudin, D. Hoeller, P. Reist, M. Hutter. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. CORL 2021



Training Control Policies with Deep Reinforcement Learning

● Training in joint space with task-minimalistic reward functions gives rise to 
unnatural gaits

● With extensive reward shaping, more natural behaviors can emerge 
● However: 

○ What has been learned? (interpretability?)
○ How should we weight and shape reward functions for this (or other) tasks?
○ Can we specify a desired swing foot ground clearance? 
○ Can we draw any connections to biological systems? 

N. Rudin, D. Hoeller, P. Reist, M. Hutter. Learning to Walk in Minutes Using Massively Parallel Deep Reinforcement Learning. CORL 2021

0.5x



CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion

Policy

Subset of: IMU (base orientation/velocity), 
motor angles/velocities, foot contact booleans

State
Estimation

!!

{#, %, &, #̇, %̇, &̇}

IK, 
PD Control

{)"..$, *"..$, +"..$} ,

Command
{"! , "" , $#}
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FL FR

In this work, we propose to learn to modulate the neural oscillator intrinsic 
amplitude and frequency of each oscillator that together forms a Central Pattern 

Generator with deep reinforcement learning. 

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022
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Body Height and Swing Foot Height can be adjusted on the fly

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022
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Policy

Subset of: IMU (base orientation/velocity), 
motor angles/velocities, foot contact booleans
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What sensory information should be in the observation space? 

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022



Policy
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𝜃̇@ = 𝜔@ +K𝑟G𝑤@Gsin(𝜃G − 𝜃@ − 𝜙@G) − 𝜎𝑁@ cos 𝜃@

● Similar to the “Tegotae” feedback idea:

D. Owaki et al. A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach
G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022

What sensory information should be in the observation space? 



Observation space: {Foot contact booleans, CPG states}

• No domain randomization or noise during training

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022
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What sensory information should be in the observation space? 

Necessary?

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022



Medium Obs. Space, 𝑣(,$∗ = 0.8 [m/s]Full Obs. Space, 𝑣(,$∗ = 0.3 [m/s]
(No joint states in obs. space)

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022



Dynamically Added Mass (5+5+2.5+1.25=13.75 kg)
Medium Observation Space, 𝑣2,3∗ = 0.8 [m/s]

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022



Medium Obs. Space, 𝑣(,#∗ = 0.5 [m/s]Full Obs. Space, 𝜔(,I∗ = 0.5 [rad/s]

Omnidirectional Locomotion

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022



Omnidirectional Locomotion

G. Bellegarda, A. Ijspeert. “CPG-RL: Learning Central Pattern Generators for Quadruped Locomotion,” RA-L 2022



ManyQuadrupeds: A single locomotion policy capable of controlling diverse robots

M. Shafiee, G. Bellegarda, A. Ijspeert. “ManyQuadrupeds: Learning a Single Locomotion Policy for Diverse Quadruped Robots,” ICRA 2024



Visual CPG-RL

G. Bellegarda, M. Shafiee, A. Ijspeert. “Visual CPG-RL: Learning Central Pattern Generators for Visually-Guided Quadruped Locomotion,” ICRA 2024
M. Shafiee, G. Bellegarda, A. Ijspeert. “Viability Leads to the Emergence of Gait Transitions in Learning Anticipatory Quadrupedal Locomotion Skills,” Nature Communications 2024
M. Shafiee, G. Bellegarda, A. Ijspeert. “Learning Anticipatory Quadrupedal Locomotion Based on Interactions of a Central Pattern Generator and Supraspinal Drive,” ICRA 2023



CPG-RL Summary

• CPG-RL: integrated abstract oscillators into the deep reinforcement learning 
framework to learn quadruped locomotion
• Online modulation of body height and swing foot height
• Robust sim-to-real transfer (115% nominal mass load, uneven terrain)
• Minimal proprioceptive sensing (only contact Booleans)
• Training without any dynamics randomization or noise
• Can learn a single policy for Many Quadrupeds!
• Vision in-the-loop for navigation and gap crossing à emergence of gait transitions
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Conclusion

• Presented several methods for agile robot locomotion:
• Designed skating trajectories [RoboSimian]

• 3- vs. 4-limb skating on flat vs. “rough” terrain
• Trajectory optimization methods [RoboSimian, car]

• Novel wheel model to exploit or avoid slipping, gaits
• Deep learning (incorporating ideas from control) 

• Simple methods like forward/inverse kinematics can have a huge benefit for learning [RS, A1]
• Augmented jumping TO with DRL for improved robustness [A1]

• Bio-inspired learning
• Oscillators in the loop greatly simplify and robustify the sim-to-real transfer [A1,Go1]

• Explored trade-offs relating to our goals of robustness, agility and efficiency



Possible Exam Questions

• How are model-based methods and learning-based methods similar? How are they 
different? 
• When might you consider using a model-based controller over a learning-based 

controller, and vice-versa? 
• Assume you need to design a locomotion controller with trajectory optimization. 

What would your cost function include? What kind of constraints do you need? 
• Assume you need to train a locomotion controller with deep reinforcement 

learning. How will you structure the Markov Decision Process (i.e. observation 
space, action space, reward function)? 
• What makes reinforcement learning challenging? What might you consider when 

applying reinforcement learning to a new problem? 


