Exercise VI Solutions Applied Machine Learning MASTER 2024

Regression

In this exercise you will be considering three different regression techniques (x € RY and y € R),
namely:

1. Regular Least Squares (RLS):

e Regressor: y =w'x+b
e Optimisation: w = (XXT)"1Xy

2. Weighted Least Squares (WLS):

e Regressor: y =w'x +b
e Optimisation: w = (ZZ7)™'Zv where Z = X BY/? and v = BY/?y

3. Locally Weighted Regression (LWR):

M , M
e Regressor: y = <Zl Bi(X)y’> / (231 5i(x))
The beta is a kernel density function centred on a point i: 5;(x) = exp(—%HXi - XH%)

e Optimisation: no-optimisation, data driven.
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Figure 1: Three datasets, the black circles depict the data points. x is the input and y is the output
and we wish to estimate y = f(x).
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A) In Figure 1, three different datasets are given

1. Draw the solution that RLS would give you for datasets 1 to 3 (do not consider the colored
points in dataset 2).

2. Given the set of weights B = [%, %, i, 0, i], apply WLS to dataset 1 and draw the resulting

regression function.

3. What solution WLS would give for dataset 2, considering that the blue (point x!') and the
red data point (point x?) are weighted with 3(x) = L.

4. Draw the solutions of LWR for dataset 3 with each of the given kernels (see Figure 1, Bottom
right).

B) Your lab (Lab 1) is studying a rare type of particles. Using particles with different sizes your
lab took measurements of their speed. You wanted more data so you asked a cooperating lab (Lab
2) to share their measurements with you (figure 2). Lab 1 was using a measuring instrument with
the Gaussian error e; ~ N (0,10), while the error of Lab 2 measurements was e ~ N(0,20). You
want to find out what’s the linear relation between the speed of a particle and its size. Which
regression method should you use, and how would you use it?
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Figure 2: The datapoints collected from the two labs.
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Solutions

A) For notation purposes, e; = §° — 3 is the error between the true value y (training data) and the
estimated value g, from the regressor function.

1. All the resulting regression lines minimize the sum of square errors (see Figure 3). This is the
sum of the red distances between the predicted and actual values of y.
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Figure 3: Regression functions obtained using RLS regression on the first three datasets.

2. Because the weight for the 4th data point is zero, it plays no role in the optimisation of the
weights, W. As a result the line ignores this point (see Figure 4).
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Figure 4: Regression function obtained using WLS regression on dataset 1 with 3 = [%, i, %, 0, %]
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3. The functional form of the beta implies that as points are located further away from the origin
they will impact less the final regression line (see Figure 5a). The datapoint x? being far away
will thus not influence the line. However point x' will. Using identical weights for all points
would in turn yield the regression function shown in Figure 5b.
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Figure 5: Regression function obtained using WLS regression on dataset 2 (a) with 5(x) = % for
the red and blue points, (b) with equal weightings.

4. The regression functions obtained using LWR for dataset 3 with each of the given kernels are
displayed are displayed in Figure 6.
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Figure 6: Regression functions obtained using LWR for dataset 3 with each kernel given in Figure 1
(bottom right)
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As an another example, we give results obtained in Matlab on another dataset for 3 different

kernel widths.
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B) The measurements from Lab 1 have a smaller error than the measurements from Lab 2. For
this reason we should give more credibility (weight) to Lab 1 measurements. Therefore, we should
use the Weighted Least Squares to solve this problem (see Figure 8).

Note: It has been proven that the best linear unbiased estimation is computed when the diagonal
entries of the weight matrix, B, are equal to the inverse of the variance of the measurements, i.e.

L if datapoint i from Lab 1
B =< , Vi=1..M.

0_—12, if datapoint ¢ from Lab 2
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Figure 8: The datapoints collected from the two labs and the obtained regression line.
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Least Squares

In the lecture you have covered linear function estimators of the following form:

Y= f(xhw,b) =wixi 4+ b (1)

where w € RY and x € RY are (IV x 1) column vectors, b is the scalar intercept and y is the
predictor.

Given you have a set of M data points, X = [x!,...,x% ..., xM], and associated predictors,
y=[y' ...,y ..., yM]. Consider the Sum of Squared Error (SSE) as your loss function and derive
the optimal choice of parameters of the linear regressor for the bivariate case:

M]

Y =wz' + b (2)
Mo oo

SSE=Y"(y' - fa")" =D € (3)
1=1 =1

where e; is the error between the target and predicted value.

Solutions

The solution for w is obtained by minimizing the SSE by taking the derivatives with respect to
there parameters in question.
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Control of Robotic Manipulator (to be done at home)

Consider the 3 degree of freedom, q = {q1,¢2,¢3}, robotic arm in Fig. 9. The vector q denotes
the current joints’ position while x € R? is the location in the 2D space of the tip of the robotic
arm, also known as end-effector. The position of the end-effector is connected to the joints’ position

Figure 9: 3 degree of freedom robotic manipulator.

through the forward kinematics equation x = ¢(q).

A) We are interested in generating a joints velocity vector, q, that would move the end-effector
of the robot from the current location xo towards the goal location x*. Show that the optimal q is
the solution of a least-square linear (unweighted) regression of the form w = (X X7)~! X7y (Hint:
the derivative of the forward kinematics with respect to the joints’ position is J(q) = %(qq)
know as Jacobian).

, also

B) We would like to move the first joint of the robot without changing the current location of the
end-effector. Is there any other joints velocity vector q, solution of the linear regression problem
derived in the previous step, that would achieve this?
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Solutions

A) In order to move the end-effector tip towards x* we want to generate a velocity of the end-
effector proportional to the distance between the end-effector goal and current location x o< x* — xg.
Deriving the forward kinematics in time, %, on both side of the equation we obtain x = J(q)q.
This is a linear regression problem where J(q) plays the role of the dataset, x is the ground truth
and q are the unknown (weights) that we want to determine. The least mean square solution of
such a problem is q = (J(q)T J(q)) 1 J(q)T (x* — x0).

B) We are now interested in keeping the position of the end-effector fixed, therefore x = 0. Nev-
ertheless we would like to move the first joint of the robot while preserving, as much as possible,
the current position of the second and third joint. Observe that J(q) € R?*3. This is equivalent to
consider a regression problem where we have 2 data points in 3 dimensions. This yields an overde-
termined problem where the unknown variables is fewer than the constraint equations. Therefore
rank(.J(q)) = 2. This leads to infinite solutions of the type ¢ = (J(q)*J(q)) ' J(q)"%x + ¢, with
J(q)d, = 0. This means that q, belongs to the null space of J. We would like to move the first
joint, therefore g4 = [, 0,0]”, with o some constant. In order to project ¢g in the null-space of
J(q) we need to determine the projector operator P such that J(q)Pqq = 0. It is possible to
verify that P = I — (J(q)TJ(q))"*J(q)T J(q) is the projector operator into the null-space of J(q).
Therefore our solution is q = Pqq since the first term cancels out given that x = 0.



