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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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Are  x,y correlated?

Are x,y statist. dependent?

Statistical Independence and uncorrelatedness

Machine Learning I
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Are x1 and x2 uncorrelated and statistically independent?

A. They are uncorrelated

B. They are statistically independent

C. They are neither
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x2=-1 x2=0 x2=1 Total

x1=-1 3/12 0 3/12 1/2

x1=1 1/12 4/12 1/12 1/2

Total 1/3 1/3 1/3

1 2Joint probabilities over two variables ,x x

Statistical Independence and uncorrelatedness
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x1 and x2 are uncorrelated but not statistically independent. 5
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x2=-1 x2=0 x2=1 Total

x1=-1 3/12 0 3/12 1/2

x1=1 1/12 4/12 1/12 1/2

Total 1/3 1/3 1/3

Statistical Independence and uncorrelatedness

1 2Joint probabilities over two variables ,x x
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Statistical independence ensures uncorrelatedness. 

The converse is not true.

Independent Uncorrelated

6

Machine Learning I

Statistical Independence and uncorrelatedness
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ICA: Preprocessing – Whitening & 

Independent Component Identification

 

Whitening preprocessing: 

TE XX I=

     1 2 1 2

Uncorrelated distribution: 

,E x x E x E x=

Machine Learning I

Original Distribution Statistically Indep. Distr.

After projection on 

independent components
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Two variables  ,  are correlated if:

cov ,
, 0

var var

, 0 :  positive / negative correlation

, 1:  perfectly correlated

, 0.5  weakly correlated

x x

x x
corr x x

x x

corr x x

corr x x

corr x x

= 



=


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Linear Correlation
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Real and Spurious Correlations
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Spurious Correlations, T. Vygen
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Are x1 and x2 correlated?

A. Yes

B. No

C. I do no know
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Correlations

Correlation (x1,x2) =  -0.04

Correlation (x1,x2) =  0.88

Correlation (x1,x2) =  0.02

Spurious correlations as we compare two groups of data 

that come from two different distributions

Machine Learning I



APPLIED MACHINE LEARNINGApplied Machine LearningApplied Machine Learning

Marginal, Conditional Pdf of Gauss Functions
The conditional and marginal pdf of a multi-dimensional Gauss function 

are all Gauss functions!

Illustrations from Wikipedia

( )1 2,p x x

( )2 1| 0p x x =

1 0x =

1

1marginal density of    x

( )2

marginal density

   p x

1

2 1 2, 
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Marginal, Conditional Pdf of Gauss Functions

Fit a Gauss distribution on this dataset

Machine Learning I
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Marginal, Conditional Pdf of Gauss Functions

Fit a Gauss distribution on this datasetDraw the two marginals
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Marginal, Conditional Pdf of Gauss Functions

Fit a Gauss distribution on this datasetDraw the two marginals

Machine Learning I



APPLIED MACHINE LEARNING

Likelihood
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Likelihood for a single unnormalized Gauss function, given a set 

of 𝑀 datapoints 𝑥𝑖
𝑖=1

𝑀

 𝐿 𝜇, 𝜎|𝑋 = ෑ

𝑖=1

𝑀

𝑝 𝑥𝑖; 𝜇, 𝜎 = 𝑒
−

𝑥−𝜇 2

2𝜎2

What is the likelihood?
1 1

Dataset: 

,  0;X x x = = 

( ) 2

Sampled from the distribution:

~ ; , ;  0,   1;x p x    = =

( ) ( )1, | ; , 1L X p x   = =

Here: we consider an un-normalized Gauss function, also called Radial Basis Functions (RBF).

Machine Learning I
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Likelihood
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What is the likelihood?

What is the log-likelihood?

( ) ( )1, | ; , 1L X p x   = =

( )1log ; , 0p x   =

Machine Learning I

1 1

Dataset: 

,  0;X x x = = 
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Likelihood
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 

Dataset (3 points):

1  0  1X = −

Hypothetical Model: 

𝑝 𝑥𝑖; 𝜇, 𝜎 ;  𝜇 = 0,  𝜎2 = 2;

What is the likelihood?

( ) ( )
3

1

, | ; ,

                  0.8*1*0.8

                   = 0.6

i

i

L X p x   
=

=

=



( ) 0.log , | 5L X  =−

Likelihood for a single unnormalized Gauss function, given a set 

of 𝑀 datapoints 𝑥𝑖
𝑖=1

𝑀

 𝐿 𝜇, 𝜎|𝑋 = ෑ

𝑖=1

𝑀

𝑝 𝑥𝑖; 𝜇, 𝜎 = 𝑒
−

𝑥−𝜇 2

2𝜎2
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Gauss pdfs
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Range of 𝜎2: 0.25, . . . . . , 2

Pdf for the normalized distributions

Machine Learning I
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Likelihood Function for data not gauss distributed

Log-Likelihood for a series of Gauss functions applied to datasets with pdfs that do 

not follow a Gauss distribution. The Likelihood increases as the fit is closer to the 

real mean of the data, even if this may appear as a poorer fit. 
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Maximum Likelihood
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 

Pdf for the normalized distributions

40.026; l .6og 3L L == −

( ) 2; , ;  0,   2 / 3;ip x    = =

90.013; l .2og 4L L == −

( ) 2; , ;  0,   2;ip x    = =

 

( ) ( )
( )

2

2

1

1

2

Likelihood for a single Gauss function, given a set of  datapoints 
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Maximum Likelihood

The blue solution is the optimal 

value on the likelihood we can 

ever get for such a distribution 

of points.

A. True

B. False

22

90.013; l .2og 4L L == −
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Likelihood for a single Gauss function, given a set of  datapoints 
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Maximum Likelihood
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The maximum of the likelihood, minimum of -log-likelihood, 

is obtained for a distribution with same variance as that of the data.

Real values for the normalized distributions

2

Data variance

2 / 3 = 2

Data variance

2 / 3 =

True: 

If one uses a 

single Gauss 

distribution as 

model fit. 

Machine Learning I
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Likelihood for a single Gauss function, given a set of  datapoints 
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Likelihood for a single Gauss function, given a set of  datapoints 
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False: 

A better fit is 

obtained when 

using more 

complex 

distributions.

( )log | 3.29L X =− 

1 2 3

1 3 3

1 2 3

1/ 3, 1/ 3, 1/ 3,

1, 0, 1,

0.01, 0.01, 0.01

  

  

  

= = = 
 

 = = − = = 
 = = = 

40.026; l .6og 3L L == −

( ) 2; , ;  0,   2 / 3;ip x    = =
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Maximum likelihood with Mixture of Gaussians 

Log-Likelihood = - 70610 Log-Likelihood = -70610

Log-Likelihood = -70604 Log-Likelihood = -70601

Log-Likelihood = -87825

Log-Likelihood = -70581

Machine Learning I
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Maximum likelihood with Mixture of Gaussians 

Log-Likelihood = - 70610 Log-Likelihood = -70610

Log-Likelihood = -70604 Log-Likelihood = -70601 Log-Likelihood = -70581
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Non-convexity of the likelihood

Machine Learning I



APPLIED MACHINE LEARNING

Correlations

Correlation (x1,x2) =  0.88

Spurious correlations as we compare two groups of data 

that come from two different distributions

Clustering can allow to discover 

these distributions automatically

Machine Learning I
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Clustering with Gaussian Mixture Models

Original data Solution 1

Boundaries

Solution 2

Compute boundary across 

clusters by comparing 

likelihood of each cluster, 

i.e. of each Gauss function. 

Machine Learning I
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Which Model?

Original data

Solution with diagonal matrices

Solution with full matrices

Machine Learning I

1

2

Diagonal matrices:

    0

0     

k

k

k





 
 =  

  

1 12

21 2

Full matrices:

     

     

k k

k

k k

 

 

 
 =  

  
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Original data

Even if it requires more 

parameters, the gain on 

likelihood is important

→ Optimal solution

Solution with diagonal matrices

Which of the two solutions 

would get the best values on 

AIC or BIC?

Likelihood: 2719, 

AIC: - 5419

BIC: -5373

1180 sample points

Likelihood: 1999, 

AIC: - 2912

BIC: -2972

# Parameters: 3*(2+3)=15

# Parameters: 3*(2+2)=12

Solution with full matrices

Machine Learning I

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝐵

   =  2 ln( ) + ln( ) 

B=# Parameters

Metrics to choose model
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