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Statistical Independence and uncorrelatedness

Are X,y correlated?
Are X,y statist. dependent?

Uncorrelated:  E{x,y}=E{x}E{y}
Statistical Ind.: p(x,y)=p(x)p(y)

E{x,y}=E{x}E{y}=0
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Statistical Independence and uncorrelatedness

Joint probabilities over two variables x,, X,

____
X,= 3/12 3/12
x1:1 1/12 4/12 1/12 1/2
Total 1/3 1/3 1/3

Are X, and X, uncorrelated and statistically independent?

A. They are uncorrelated

B. They are statistically independent
C. They are neither

22 86% 22 86%

A\‘i‘?’q
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Statistical Independence and uncorrelatedness

Joint probabilities over two variables x,, X,

X,=-1 X,=0 X,=1
X;=-1 3/12 0 3/12 1/2
X;=1 1/12 4/12 1/12 1/2
Total 1/3 1/3 1/3

>, 0=y = 1) p(0 =000y = )= 306 =1) (% =1) 3 =1) (3, =)

i j=1

X

0
Both sums are zero = x,,X, : uncorrelated p(x =-1x,=1)=3/12=0.25
-+

p(% =-1)p(x, =1)=1/2*1/3=0.1667

X, and X, are uncorrelated but not statistically independent. 5
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Statistical Independence and uncorrelatedness

ﬁ

Independent ¢ Uncorrelated

P(X, % )=p(X)pP(X) = E{X,%}=E{X}E{X,]

Statistical independence ensures uncorrelatedness.
The converse is not true.
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ICA: Preprocessing — Whitening &
Independent Component ldentification

Original Distribution Uncorrelated distribution: Statistically Indep. Distr.
E X%} = E{GHE{X)

-

Whitening preprocessing: After projection on
E{XX"}=1 independent components
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Linear Correlation

Two variables x;, x, are correlated if:

coV( X, X, )

var (x, ) var (X, ) #0

corr (X, X, ) =

corr (X, x,)><0: positive / negative correlation

corr (x,, X, )| =1: perfectly correlated

corr (x,, %, )| <0.5 weakly correlated
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Real and Spurious Correlations

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US

Correlation: 98.51% (r=0.985065)

2000 2001 2002 2003 2004 2003 2006 2007 2008 2009
%2 billion 2000 degrees
]
=
$1.75 billion =
1 1500 degrees §
g d
2 £
= $1.5 billion a
= a
5 =%
= [=1
< 1000 degrees o
=
$1.25 billion d
i
%1 billion 500 degrees
2000 2001 2002 2003 2004 20035 2006 2007 2008 2009

-8~ Computer science doctorates  =#= Arcade revenue

Spurious Correlations, T. Vygen
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10 1

X2

-4 ' ! ! L L | 50.00%
-4 2 0 2 4 6 42.86%

Are X, and x, correlated? X

o

A. Yes
B. No i

C. 1donoknow & &
& 10
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Correlations

10 1

Correlation (x1,x2) = 0.02

Correlation (x1,x2) = -0.04

Spurious correlations as we compare two groups of data
that come from two different distributions
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Marginal, Conditional Pdf of Gauss Functions
The conditional and marginal pdf of a multi-dimensional Gauss function

marginal density

p(X;)

are all Gauss functions!

H

marginal density of x,

Xy

I
o

lllustrations from Wikipedia

12
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Marginal, Conditional Pdf of Gauss Functions

L b a

Fit a Gauss distribution on this dataset

s e S

e e

0255 =030 =025 020 =045 00 =005 0000050005020 0.25 T 0.30 T 0.35



Machine Learning |

=PrL

Marginal, Conditional Pdf of Gauss Functions

T e e
ISR B B ) Do\ the two marginals §
e S S
O S N

e e e —

__e_-_é.e_ ______________________
| . -0.2 -0.1 @ 0.1 0.2 0.3
0255 =030 =025 020 =045 007005 0P0 005 OO0 OS5 T020 T 0.25 T 0.30 T 0.35
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Marginal, Conditional Pdf of Gauss Functions

025 b

02& ___________ I Dravw the two marginals

0255 =030 =025 020 =045 00 =005 0000050005020 0.25 T 0.30 T 0.35
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Likelihood

Likelihood for a single unnormalized Gauss function, given a set
of M datapoints {xi}M

(x— u)>

L(u,0]X) = l_[p(x U, a) = e< 207

Dataset: 1 |
X=x] x=0;_ What is the likelihood?
|

Sampled from the distribution: L(u,o|X)= p(Xl;,u,a)zl

X~ p(xu0);, u=0, o=l
04 r
0.3
0.2

01

0 1 [ I 1
-4 -3 -2 -1 0 1 2 3 4

Here: we consider an un-normalized Gauss function, also called Radial Basis Functions (RBF). 16
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Likelihood

Dataset: 27
X =[x1}, X' =0;

S

What is the likelihood?

L(u,o|X)= p(xl;,u,a)zl

log p(xl;y,a):o

In x

17
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Likelihood

Likelihood for a single unnormalized Gauss function, given a set
of M datapoints {xi}M

(x— u)>

L(u,0lX) = l_[p(x uo)= e< 20°

Hypothetical Model:
p(xhpo); u=0, o%=2;

3 g
L(p,o|X)= Hp(x';,u,a)

i=1

= =0.8*%1*0.8
0.4
=0.6
—_logL(uc|X)=05
0.2 Dataset (3 points): JLL4 '
0.1 X =[-10 1]
O-4 3 2 *1 § 1% 2 3 4

18
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Gauss pdfs

1.2

Pdf for the normalized distributions

19
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Likelthood Function for data not gauss distributed

Log-Likelihood=5.0936e-11 Log-Likelihood=4.4994e-06

15 15

Fraction of observation of x
Fraction of observation of x

Log-Likelihood=9.5536e-05 Log-Likelihood=4.8759e-07

15
I D:ia

Model

15

VAN

Fraction of observation of x
Fraction of observation of x

Log-Likelihood for a series of Gauss functions applied to datasets with pdfs that do
not follow a Gauss distribution. The Likelihood increases as the fit is closer to the
real mean of the data, even if this may appear as a poorer fit.

20
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Maximum Likelihood

Likelihood for a single Gauss function, given a set of M datapoints {x }M

(,u,J|X)—Hp(X,,u,J)— e

i=1 o\ 27

05
0.45
0.4t
0.35
03f
Xo2sf
02t
0.15
0.1Ff

0.05

Pdf for the normalized distributions

21
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Maximum Likelihood

Likelihood for a single Gauss function, given a set of M datapoints {x‘ }M

i=1
M 1 [(XZ:Z)Z j

L(,u,J|X):H p(xi;y,a):aﬂe

The blue solution is the optimal

value on the likelihood
for such a distribution
of points.

A. True :
B. False -

UZT

0.15
88.89%

22
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Maximum Likelihood

The maximum of the likelihood, minimum of -log-likelihood,
IS obtained for a distribution with same variance as that of the data.

Data variance Data variance
003 c?=2/3 ° c?=2/3
75
0.025 -
71
0.02 6.5
3 é 6
2 0.015 o
2 T, 55
0.01 sl
45
True:
If one uses a l /
single  Gauss : s 2 % 05 : 15 2

sigma sigma

distribution as
model fit.

Real values for the normalized distributions

23



Machine Learning | =PFL

Maximum Likelihood

Likelihood for a single Gauss function, given a set of M datapoints {x }M

i=1
L(®]X) ﬁiakp(xi;ﬂk’gk)

i=1 k=1

;
]
08| =3.64
0.7
o a,=1/3,a,=1/3,a,=1/3,
il ®[M11ﬂ30’ﬂ31’ }
False: ol =0.01,0,=0.01,0, =0.01
A Dbetter fit is
obtained when [l ] \ J —log L(G)l X)=3.29
using more & J \
complex F R I SR
distributions. x

24
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Maximum likelihood with Mixture of Gaussians

i Fit a 1 Gaussian GMM M FIta'2 GausslaniGMM Fit a 3 Gaussians GMM

>~_2 — >‘-2 R
ik
6 il
6t
-8 ) . )
-8 " 6 8-8 ; ; . »BAB .6
Log-Likelihood = -87825 Log-Likelihood = - 70610 Log-Likelihood = -70610
2 Fit a 4 Gaussians GMM & Fit a 10 Gaussians GMM & Fit a 80 Gaussians GMM

4

Log-Likelihood = -70604 Log-Likelihood =-70601 Log-Likelihood =-70581




Machine Learning | =Pr-L

Maximum likelihood with Mixture of Gaussians

Fit a 2 Gaussian GMM

Likelihood identical: B ” Fit a 3 Gaussians GMM
M K _ at al
l.
L(®|X):H2akp(x,,uk,0'k)z il
i—1 k=1 i
K 2 R &
Z ak = 1 i 2 F
k=1 a4t al
" - 2 ' 0 2 ” 6 s t
Log-Likelihood = - 70610 Log-Likelihood = -70610
2 Fit a 4 Gaussians GMM 8 Fit a 10 Gaussians GMM & Fit a 80 Gaussians GMM

> o > 4 6 8 6 -4 2 0 2 4 6 x

Log-Likelihood = -70604 Log-Likelihood =-70601 Log-Likelihood =-70581
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-log likelihood
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Correlations

Clustering can allow to discover
these distributions automatically

X2

Spurious correlations as we compare two groups of data

that come from two different distributions
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Clustering with Gaussian Mixture Models

Original data Solution 1 Solution 2

Compute boundary across
clusters by comparing
likelihood of each cluster,
i.e. of each Gauss function.

Boundaries
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Which Model?

Full matrices:

K K
O. O.
K 1 12
2= K K
O, Oy

Original data Solution with full matrices

; ‘; Yoo

Diagonal matrices:
of 0

K
0 o,

Zk

Solution with diagonal matrices
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Metrics to choose model

1180 sample points

: %
B (% @
[} o o
Py C J
)
2 5
WS .
BIEy
o 26 ﬁ
QAT i
87¢ .: ')
@)
eoar

# Parameters: 3*(2+3)=15

Likelihood: 2719,
AIC: - 5419
BIC: -5373

Even if it requires more
parameters, the gain on
likelihood is important
-> Optimal solution

Solution with full matrices
Which of the two solutions

would get the best values on

AIC or BIC?
# Parameters: 3*(2+2)=12
Likelihood: 1999, _
1 AIC: - 2912 AIC = —21In(L) + 2B
BIC: 2972 BIC = —2In(L) + In(M)B

Solution with diagonal matrices B=# Parameters
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