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Support Vector Regression (SVR)
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Support Vector Regression: Principle

We seek to find a function f ,s.t. y = f (x).
yeR, xeR"

Assume a and then perform
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Feature space
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p(x)
Principle: Assume there exists a transformation ¢ such
that the problem becomes linear
-> Perform linear regression in feature space
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Support Vector Regression: Linear Case

Assume a linear mapping f ,s.t.y=f (x)=w'x+b.

xeR", yeR

Need to estimate w and b to best predict the pair of training points {x', y' }i=1 "

y 1 y=f(x)=w'x+b
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Support Vector Regression: e-tube

Assume deterministic noise model: y + ¢

Consider as correctly fit all points
such that f(x)—y<e.

f(x)=w'x+b

Penalize only datapoints that are
not contained in the &-tube.
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Support Vector Regression: e-margin

How to assess how well we do for
a choice of ¢-tube.

The e-margin is a measure of the width of the c-insensitive tube.
It is @ measure of the precision of the regression.
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Support Vector Regression: e-margin

The e-margin is a measure of the width of the c-insensitive tube.
It is @ measure of the precision of the regression.

L4

y 4 L/ |
To maximize the margin, we
The flatter the slope of the must minimize the norm of w.
function f, the larger the e— '
margin

the smaller the norm of w.
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Support Vector Regression: e-margin

4 N
This can be rephrased as a constraint-based optimization problem:

| 2
minimize E”W”

<W,xi>+b—yi <g
subjectto <
y' —<W,xi>—b£g

Vi=1..M
Consider as correctly fit all

points such that |f (x)—y|<e.
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Support Vector Regression: e-margin

4 N
This can be rephrased as a constraint-based optimization problem:

minimize <[>+ < >(£+&),  C>0
\ 2 M 5 J

<W,xi>+b—y‘£g+§i*ly |
y' —(w,x')—b<e+s
vi=1,.M &=0, & 20 ‘

—B

Introduce slack variables &, &

>

subject to {

Need to penalize points

outside the e-insensitive tube.
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Support Vector Regression: optimization

We can solve this quadratic problem by introducing sets of
a, n € R Lagrange multipliers and writing the Lagrangian :

Lagrangian = Objective function + multipliers * constraints

(w&,6%0)= 2]’ + ﬁi(f%) w2 (&)
+o -

<

.21:%( <W,X‘>+b) _

—ia:‘(5+§i*+yi —<W,X‘>—b)
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Support Vector Regression: solution

Requiring that the partial derivatives are all zero:

oL I * S 4. Rebalancing the effect of the support
b - Z(ai — Y ):O' - Zai :Zai vectors on both sides of the &tube
i i=1 i=1

% :W_ﬁl:(ai _ai*)xi =0. :WZiMZl(ai _ai*)xi' Is_:anepac:r(t:(\)/rgcbtic?rastion o
y=f(x)
=(w,Xx)+b

i(ai —ai*)<xi,x>+b

=1

a, or o; > 0 for points outside &-tube
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a, or o; > 0 for points outside &-tube
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y Original space
x = @(x)
A \ Feature space
S % Y4
\ | ,
X -
p(x)

Non-Linear Case:

Linear Case: X = () w lives in feature space!

Y= TO)=WX) Dy (5(x)) = (w,g(x)) +b
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Support Vector Regression: non-linear regression

Replacing in the primal Lagrangian, we get the Dual optimization:

_%i (ai* —a )(a; —0!,-) <¢(xi ),¢(xj )> Kernel Trick

W Sava) Sy aea) MO0

i=1
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The solution is given by.

y = f(x)=§l‘,(ai —“i*)k(xi’x)

An estimate of b can be computed from the KKT conditions:

> (o~ Jk(x' )

using only the SVs on the &-tube.
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Linear Coefficients If one uses RBF Kernel,

(Lagrange multipliers for M un-normalized isotropic

each constraint). Gaussians centered on each
training datapoint.

16



APPLIED MACHINE LEARNING

Support Vector Regression: interpretation

The solution is given by.

M

= 1(%)= 2 (- k(X )t

=1

. ©

AR A AN

Kernel places a Gauss function on each SV

®
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The solution is given by: Converges to b when SV
effect vanishes.

y=f(x)= iik(xi,xﬁ@

The Lagrange multipliers define
the importance of each
Gaussian function.

\ b
W/j °
X, X, X, ‘ X=X, x

_15 a2—2 a3—15 a, =3 a;z:]. 0{6622.5

For iIIustratlve purpose, we plot the negative Gauss function next to the SV, but they are distributed on the negative y axis. | 18
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¢—SVR: 3 Hyperparameters

The solution to SVR we just saw is referred to as e-SVR

Two Hyperparameters for optimization

Y
minimize %||w||2 +%§ &)
(<W,xi>+b—y‘ E
subjectto ¢ y' —(w,x' )—b<e+&
520, E >0

1. Ccontrols the penalty term on poor fit.
2. e determines the minimal required precision for the fit.
3. The kernel width for the RBF kernel determines the locality of the regression
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a,,a; €[0,C]

C =1000
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Hyperparameters’ Influence

Here fit using C=1, €=0.1, kernel width=0.01.
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Hyperparameters’ Influence

Chances of overfitting

0.4

Here fit using C=1, €=0.01, kernel width=0.01
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Here fit using C=1, €=0.05, kernel width=0.01
_
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Hyperparameters’ Influence

(o]
U
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-0.7 -0.6 -0.5 -0.4 0.3 -0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ker.nel width=0.05. Too large the fit.
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Hyperparameters’ Influence

-0.7 -0.6 -0.5 -0.4 -0.3 -0. -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

. 2
Kernel width=0.001. Perfect fit.
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Linear regression can be solved through Least-Mean-Square

estimation and yields an optimal analytical solution.

Weighted regression offers the possibility to perform a local
regression and yields also an optimal analytical solution.

The estimate is no longer global and is computed around each group
of data point!

Support Vector Regression: performs regression on a non-linear
function. Determines automatically the important points. The estimate
IS globally optimal.




