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Support Vector Regression (SVR)
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 We seek to find a function   , s.t.  .

,   N

y ff

y x

x

 

Generalize the support vector machine framework for classification to 
estimate continuous functions

Assume a non-linear mapping through feature space and then perform linear 
regression in feature space.

Support Vector Regression: Principle
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 x x

Non-Linear Regression with SVR

Principle: Assume there exists a transformation  such 

that the problem becomes linear 

 Perform linear regression in feature space

Original space

Feature space

x

y

y

 x

Support Vector Regression: Principle
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 Assume a linear mapping   , s.t. .Tf y f x w x b  

Support Vector Regression

 
1,...

Need to estimate  and  to best predict the pair of training points , .i i

i M
w b x y



x

y
  Ty f x w x b  

Support Vector Regression: Linear Case

,Nx y 



APPLIED MACHINE LEARNING

5

APPLIED MACHINE LEARNING

Support Vector Regression

Penalize only datapoints that are

not contained in the -tube.

x

y
  Ty f x w x b  

Support Vector Regression: -tube

Assume deterministic noise model: 

Consider as correctly fit all points 

such that  ( ) .

y

f x y







 

-tube
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x

-margin

The -margin is a measure of the width of the -insensitive tube.
It is a measure of the precision of the regression.

y

Support Vector Regression: -margin

How to assess how well we do for

a choice of -tube.
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x

-margin

y

The flatter the slope of the 
function f, the larger the 

margin 

To maximize the margin, we 
must minimize the norm of w.

Support Vector Regression: -margin

The -margin is a measure of the width of the -insensitive tube.
It is a measure of the precision of the regression.

the smaller the norm of w. 
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x

y

Support Vector Regression: -margin

2

This can be rephrased as a constraint-based optimization problem: 

1
minimize  

2
w

 

1, ...

,
subject to       

,

i

i

i

i

i M

w x b y

y w x b





 

   


  

Consider as correctly fit all 

points such that  ( ) .f x y  
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x

y

Support Vector Regression: -margin

2

This can be rephrased as a constraint-based optimization problem: 

1
minimize  

2
w

 

1, ...

,
subject to       

,

i

i

i

i

i M

w x b y

y w x b





 

   


  

Need to penalize points 

outside the -insensitive tube.

i
*

i

 *

1

C
+ ,       C 0

M

i i

iM
 



 

*Introduce slack variables ,i i 

*0,   0i i  

*

i

i








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     

 

 

2 * * *

1 1

1

* *

1

1 C C
L , , *, =  +  

2

                     ,

                     ,

i

i
i

i

i

i

M M

i i i i i

i i

M
i

i

M
i

i

i

w b w
M M

y w x b

y w x b

       

  

  

 





  

    

    

 





We can solve this quadratic problem by introducing sets of 

,  Lagrange multipliers and writing the Lagrangian :  

Lagrangian = Objective function + multipliers  * constraints

Support Vector Regression: optimization 
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Requiring that the partial derivatives are all zero:

 *

1

L
0.

M
i

i i

i

w x
w

 



   


  *

1

.
M

i

i i

i

w x 


  
Linear combination of 

support vectors

 *

1

L
0.i

M

i

ib
 




  




*

1 1

i

M M

i

i i

 
 

  
Rebalancing the effect of the support 

vectors on both sides of the -tube

Support Vector Regression: solution

* or  > 0 for points outside -tube i i  

 

 *

1

  ,

  ,
M

i

i i

i

y f x

w x b

x x b 




 

  
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0i 
* 0i 

* 0  for points strictly inside

the -tube.

i i 



 

0i 

* 0i 

Support Vector Regression: solution

* or  > 0 for points outside -tube i i  



13

ADVANCED MACHINE LEARNINGAPPLIED MACHINE LEARNING

 x x

Original space

Feature space

x

y

y

 x

Support Vector Regression: non-linear regression

 

    

Non-Linear Case:

,

x x

y f x w x b



 



  

w lives in feature space!

 

Linear Case: 

,y f x w x b  



APPLIED MACHINE LEARNING

14

APPLIED MACHINE LEARNING

      

   

   

*

* *

, 1

* *,

1 1

* *

1

1
,

2
max

 

subject to 0  and  , 0,

i

i i

i i

M
i j

i j j

i j

M M
i

i i

i i

M
i

i i

i

x x

y

C

 

     

    

   



 




   



    


  



 



Replacing in the primal Lagrangian, we get the Dual optimization:

     , ,i j i jk x x x x 

Kernel Trick

Support Vector Regression: non-linear regression
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The solution is given by:

     *

1

,i

M
i

i

i

y f x k x x b 


   

Support Vector Regression: non-linear regression

   *

1 1

An estimate of  can be computed from the KKT conditions:

1
,

using only the SVs on the -tube.

M M
j j i

i i

j i

b

b y k x x
M

 



 

 
    

 
 



APPLIED MACHINE LEARNING

16

APPLIED MACHINE LEARNING

The solution is given by:

     *

1

,i

M
i

i

i

y f x k x x b 


   

Linear Coefficients
(Lagrange multipliers for 
each constraint).

If one uses RBF Kernel,
M un-normalized isotropic 
Gaussians centered on each 
training datapoint.

Support Vector Regression: non-linear regression
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The solution is given by:

     *

1

,i

M
i

i

i

y f x k x x b 


   

y

x

Kernel places a Gauss function on each SV

Support Vector Regression: interpretation
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y

x

The solution is given by:

The Lagrange multipliers define 
the importance of each 
Gaussian function.

*

1 1.5  2 2 
4 3 

*

3 1.5  *

5 1  6 2.5 

b

Converges to b when SV 
effect vanishes.

1x 2x 3x 4x 5x
6x

Y=f(x)

For illustrative purpose, we plot the negative Gauss function next to the SV, but they are distributed on the negative y axis.

Support Vector Regression: interpretation

     *

1

,i

M
i

i

i

y f x k x x b 


   
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 
2 *

1

*

*

1 C
minimize  + 

2

,

subject to ,

0,   0

i

i

M

i i

i

i

i

i

i

i i

w
M

w x b y

y w x b

 

 

 

 





    



   


 



SVR: 3 Hyperparameters

The solution to SVR we just saw is referred to as SVR 

Two Hyperparameters for optimization

1. C controls the penalty term on poor fit.
2.  determines the minimal required precision for the fit.
3. The kernel width for the RBF kernel determines the locality of the regression
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Effect of C on the fit. 

SVR: Effect of Hyperparameters

 *, 0,i i C  

1000C 

1C 

Hyperparameters’ Influence
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Here fit using C=1, =0.1, kernel width=0.01. 

Hyperparameters’ Influence

Effect of the  on the fit.
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Here fit using C=1, =0.01, kernel width=0.01 
 Careful – could start overfitting

Hyperparameters’ Influence

Effect of the  on the fit.

Chances of overfitting
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Here fit using C=1, =0.05, kernel width=0.01 
Reduces sensitivity to kernel width and chances of overfitting.

Hyperparameters’ Influence

Effect of the  on the fit.

Reduces sensitivity to kernel width and chances of overfitting
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Kernel width=0.05. Too large the fit.

Hyperparameters’ Influence

Effect of the RBF kernel width on the fit.
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Kernel width=0.001. Perfect fit.

Hyperparameters’ Influence

Effect of the RBF kernel width on the fit.
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Summary

Linear regression can be solved through Least-Mean-Square

estimation and yields an optimal analytical solution.

Weighted regression offers the possibility to perform a local

regression and yields also an optimal analytical solution.

The estimate is no longer global and is computed around each group

of data point!

Support Vector Regression: performs regression on a non-linear

function. Determines automatically the important points. The estimate

is globally optimal.


