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From soft K-means Clustering 

to 

Density Modeling of Data Clusters with

Mixture of Gaussian PdF
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Soft K-means Clustering (probabilistic interpretation)

Assignment Step (~E-step)
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Equivalent to computing the relative

probability that the data point has been

generated by the k-th cluster (d:norm-2).
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The likelihood of the k-th model is:
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We can derive the likelihood that each cluster has generated the dataset.

Assume density under cluster k follows an (un-normalized) Gaussian pdf with s=1/

variance, centered on the cluster’s centroid. Un-normalized Gaussian pdf are called Radial Basis Function – RBF.

E-step: expectation step ~ expectation of the likelihood
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 The likelihood of the k-th model increases

Update Step (~M-step):

Update the position of the centroids.
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The new centroid is closer to the datapoints

after the update step,

    ,

1

;
k i

k

M
d x

i

L X e
 


 





i

k

k

i

i

k

i

i

r x

r
 




( , )i kd x 

K-means Clustering (probabilistic interpretation)
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Modify the parameters to maximize likelihood of the pdf.
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Soft-K-means (probabilistic interpretation)

Soft K-means is similar to fitting the data distribution with a mixture of isotropic

(spherical) unnormalized Gaussian pdf-s and same variance (the stiffness).
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Should we weight equivalently the likelihoods of each cluster?
4

Assignment-update ~ E-M on the parameters of each Gaussian to optimize the

likelihood that the Gaussians represent the distribution of the datapoints.
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Relative importance of each of the K clusters.

The responsibility factor gives a

measure of the likelihood that

cluster k generated the dataset.

From Soft-K-means to GMM
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It should give a measure of the likelihood that

the Gaussian k (or cluster k) generated the

whole dataset.

k

i

i
k k

i

k i

r

r
 







APPLIED MACHINE LEARNINGApplied Machine Learning

 
 

 

 

'

'

'

 : responsibility of cluster  for point 

; ,
,       

; ,

; , [0,1] : Gauss pdf evaluated at  

Normalized over clusters:  

0,1

  1

i

i k

i k

i k i

k

i

k

kk

i k

k

k

k

i

k

k

r k x

p x
r

p x

p x x

r

  s

  s





s












Update Step (M-Step)
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This fits a mixture of spherical Gaussians. 

The variance of each Gauss pdf fits the 

spread of the data around its mean.

One step towards Gaussian Mixture Model with Spherical Gaussians
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From spherical to diagonal Gaussian pdf-s.
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One covariance element per dimension, aligned 

with the axes of the original frame of reference.

1,... :  dimension of datasetj N
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Update Step (M-Step)
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Clustering with Mixture of Gaussians
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E-M Steps for GMM

Expectation Step (E-step):

Initialization:

1

1The priors ,..,  can be uniform for starters.

The means ,..,  can be initialized with K-means.

Calculate the initial value of the likelihood
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Evaluate responsibilities of each cluster k over each sample xi using current

parameters
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Maximization (Update step) Step (M-step):
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Recompute the means,  covariances matrices and prior probabilities so as to 

maximize the log likelihood of the current estimate : log |tL X 
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The E and M steps alternate until the log-likelihood reaches a plateau. 


