Machine Learning “P-L

Hierarchical Clustering
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Hierarchical Clustering: Motivation

Clusters found through density-based methods (K-means, DBSCAN) are flat.

Data may share several features in combination or hierarchically.
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Hierarchical Clustering: Principle

cPrL

Hierarchical clustering aims at automatically determining:
 Number of groups / clusters

« Type of grouping

« Parent-child relationships across groups
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Hierarchical Clustering: Algorithm

Observe these objects. They share many common features.
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Hierarchical clustering groups datapoints recursively,
by either agglomerating or dividing the dataset
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lierarchical Clustering

In Hierarchical Clustering, the data is partitioned iteratively, by
agglomerating the data - generates a dendogram
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lierarchical Clustering

The data can also be partitioned iteratively, by dividing the data from
one single linkage, to multiple clusters.
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lierarchical Clustering

The data can also be partitioned iteratively, by dividing the data from
one single linkage, to multiple clusters.
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Decide on a cutoff criterion
1 to select the number of clusters
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Step 1: Each point is a cluster

Step 2: Group points close to one another
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DBSCAN groups clusters that “resemble” (are close to) each other,
by merging clusters incrementally.
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Step 1: Each point is a cluster

Step 2: Group points close to one another
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Hierarchichal Clustering differs from DBSCAN: datapoints and clusters are not 1iierged
but linked. Linkage across datapoints and clusters is what matters!
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Hierarchical Clustering: Similarity Metrics

The similarity metric d(x, y) across two datapoints x and y has the following properties:
(1) symmetric d(x, y) =d(y, X)

(2) positivity d(x,y) >0 and d(x,y)=0iffx=y

(3) triangle inequality d(x,z) > d(x,y)+d(y,2), VXY,

Distance measure Calculation formula
N
Euclidean: d(x,y) = /Z|xi ~y, |2 ,i=1.,N &X, yeR" |
i=1
N
Manhattan: d(x,y)=> % -V
i=1
Maximum distance: d(x,y)=max(|x - vi)
D%,
Cosine distance: d(x,y)=-
Xy
‘Mahalanobis distance: d(x y)=(x- y)T S (x—y)

S: within-sample covariance matrix
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Step 1: Each point is a cluster

Step 2: Group points close to one another

Need a metric to determine
® . which points are close to one another
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Step 1: Each point is a cluster

Step 2: Group points close to one another
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Ej@ 8 Maximum distance: d(x, y) = miaX(|Xi - yil)

Popular metrics

Extract features with largest dissimilarity
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Step 1: Each point is a cluster

Step 2: Group points close to one another

Popular metrics

Color .
4 Euclidean: d(x, y) = /Z|xi —yi|2, i=1.,N &X, yeR"
X3 i=1

8* Sums importance of all features, sensitive to absolute value of each scale.

N
Manhattan: d(x, y) = > |x, - yi|
i=1

Sums importance of all features, sensitive to absolute value of each scale.
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Step 1: Each point is a cluster

Step 2: Group points close to one another

Popular metrics

S: within-sample covariance matrix
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Mahalanobis distance: d(x, y) =(x - y)T St (x-y)
Normalizes for relative spread of each feature

Sums relative contribution of each feature with respect to variance of whole dataset;

Insensitive to the scale of each feature.
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Agglomerative method - Algorithm

1. Initialization: To each of the M data points X' 1=1.M
associate one cluster C,. You, thus, start with M clusters.

2. Find the closest clusters according to a distance metric d (ci ,C, )
The distance between groups can either be:

*
Py * @
e® e
Single Linkage Complete Linkage Average Linkage
. k I
d(c.c )= min d(x,x') d(c,c )= max d(x,x) d(Ci,Cj)= mean d(x*,x')
Xk ECi ,XI ECJ Xk eCi ,XI ECJ Xk €C| |XI ECJ

3. Create a new cluster to encompass all datapoints in the previous cluster.
4. Stops once all data are linked through a single cluster.
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Divisive method - Algorithm

1. Initialization: To all the M data points X ,i =1...M associate one single
cluster C; .

2. Find the points farthest apart according to a distance metric
d (Ci C, ) The distance between groups can either be:

N

*
Py * @
e® e
Single Linkage Complete Linkage Average Linkage
. k ol
d(c.c )= min d(xx') d(c,c )= max d(xx') d(Ci,C,-)= mean d(x*,x')
Xk €C; ,XI €C; Xk €C; ,XI eCJ- Xk €C; ,XI eCj

J

3. Divide the points into two new clusters according to a cutoff measure on the
distance between points.

4. Stops once each datapoint is associated a single cluster.
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Divisive method - Algorithm

1. Initialization: To all the M data points X ,i =1...M associate one single
cluster C; .

2. Find the points farthest apart according to a distance metric
d (Ci C, ) The distance between groups can either be:

Single Linkage Complete Linkage Average Linkage

d(ci,cj): _min .d(xk,xl) d(ci,cj): _max _d(x",x') d(ci,cj):xkrgcec;:}erl_d(xk,xu)

“Chaining” Might not merge Best tradeoff, but more

Sequence of close close groups because

intensive con@ﬁéaﬁonally
and depends on®previous

grouping.

observations in different outlier members are

groups cause early too far apart
merges of those groups
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Hierarchical Clustering: Example

Hierarchical clustering can be used with arbitrary sets of data.

Example: :I:I

Hierarchical clustering to

discover similar temporal ‘ _rl—l

pattern of crimes across ey IR E )

districts in India. 2. 15t | 1 A ¢

Chandra et al, “A Multivariate Time 5 'm.s } o ! Bl i § § 1 : E 5 E

Series Clustering Approach for Crime i 1 1.1 “ ey 1 i i | o |

Trends Prediction”, IEEE SMC 2008. RN
252x711531y12x4262K82221x029111912:52'0!I 8 :91x8164 6131l41!72.12i3

DISTRICTS

Fig. 3. Dendrogram of Crime Against Body for 2002-2006 using DTW with
Parametric Minkowski Model
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lierarchical Clustering: Limitations

% Once a merging or division is done on one level of the
hierarchy, it cannot be undone.

¢ It is costly both in computation time and memory,
especially for large scale problems. Generally, the time
complexity of hierarchical clustering is quadratic O(M>?)
about the number of data points (M) clustered.
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lierarchical Clustering: Recent Advances

New Distance Functions:

“* New techniques study the graph-based structure of hierarchical clustering and
use graph theory to decide on similarity across two graphs or subgraphs.

*» Density-based approaches such as GMM can be used to estimate the
distribution of each cluster, as a measure of similarity.

New Update Rules:

“* New approaches consider how to dynamically update the structure of the tree
or of sub-branches of the tree as new data arise.

*» To decrease computational costs, various options are looked at to represent
the tree, e.g. a coarser representation of clusters through centroids, akin o
what is used in K-means, lead to linear growth in place of quadratic growtns
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