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Clustering

Part 2 –Techniques for Clustering

K-Means, Soft K-means, DBSCAN
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K-Means
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K-means Clustering

Initialization: initialize at random the positions of the centers of the clusters 

x1

x2

Here we start with a number of cluster fixed: K=2
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K-means Clustering

Assignment Step:

• Calculate the distance from each data point  to each center.

• Assign the datapoint to the “closest” center.
If a tie happens (i.e. two center are equidistant to a data point), one assigns the data point to the cluster 

with smallest k).
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Update step (M-Step): 

Recompute the position of the center based on the assignment of the points.

The center becomes the centroid of the dataset points assigned to this cluster.

K-means Clustering
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K-means Clustering

x1

x2

Assignment Step:

• Calculate the distance from each data point  to each centroid.

• Assign each data point  to the “closest” centroid.
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K-means Clustering

x1

x2

Stopping Criterion: Go back to step 2 and repeat the process until the

clusters are stable, i.e. the centroids no longer move.

Update step (M-Step): 

Recompute the position of centroid based on the assignment of the points
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K-means Clustering

x1

x2

Intersection points

K-means creates a hard partitioning of the dataset
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K-means Clustering

x1

x2

Intersection points

K-Means clustering minimizes a loss, often a quadratic cost function
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K-means Clustering

K-Means clustering minimizes a loss, often a quadratic cost function
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• 𝑝 = 1 Manhattan Distance

• 𝑝 = 2 Euclidean Distance

• 𝑝 = ∞ L-infinity norm 𝑥 ∞ = max
𝑖

|𝑥𝑖|

The distance can also be replaced by the L-p norm
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Effect of the distance metric on K-means

L1-Norm L2-Norm

L3-Norm L8-Norm
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K-means Clustering: Properties

✓ There are always K clusters.  

✓ The clusters do not overlap: 

Soft K-means relaxes this assumption, see next slides

✓ Each member of a cluster is closer to its cluster than to any other cluster.

✓ The algorithm is guaranteed to converge in a finite number of iterations

✓ But it converges to a local optimum!

✓ It is hence very sensitive to initialization of the centroids.
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Soft K-means Clustering
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Soft K-means Clustering

Assignment Step (E-step):

Assign each data point  to the “closest” centroid.
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Each data point   is given a soft `degree of assignment'  

to each of the means . 
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 is the stiffness
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Soft K-means Clustering: The effect of beta
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x1

x2

Update step (M-Step): 

Recompute the centroids based on the assignment of the points
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The update algorithm of the soft K-means is identical to that of the hard K-means, aside from

the fact that the responsibilities to a particular cluster are now real numbers varying between

0 and 1.

Soft K-means Clustering
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Soft K-means algorithm with a small (left), medium (center) and large (right) 

Soft K-means Clustering

10 =5 =1 =
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Soft K-means Clustering

Iterations of the Soft K-means algorithm from the random initialization (left) 

to convergence (right).  Computed with = 10. 
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means. 

But, sometimes, it can determine the true number of clusters.

Initialization: K=5

The 3 centroids are located in the cluster top 

left and 2 on the bottom cluster.
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means. 

But, sometimes, it can determine the true number of clusters.

After 2 iterations
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means. 

But, sometimes, it can determine the true number of clusters.

After 4 iterations
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means. 

But, sometimes, it can determine the true number of clusters.

At convergence
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❑ The algorithm is guaranteed to converge in a finite number of iterations 

(but it converges to a local optimum!)

❑ It is computationally cheap and faster than other clustering

techniques - update step is ~O(KM). 

K-means / soft K-means Clustering: Advantages
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❑ Does not work well with non-globular clusters. 

❑ Sensitive to initialization

Different initial partitions can result in different final clusters.

❑ Assumes a fixed number K of clusters

In soft-K-means, clusters may merge and reduce to true number

→ It is, therefore, good practice to run the algorithm several times using

different K values, to determine the optimal number of clusters.

K-means / soft K-means Clustering: Drawbacks
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K-means is a linear technique and 

can separate clusters only linearly, 

or quasi-linearly (for norm-p, p>2).

Linear and nonlinear K-means

Kernel K-means can separate

clusters through non-linear

boundaries, as shown above.
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Density-based spatial clustering 

of applications with noise (DBSCAN)

26
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DBSCAN Principle

Minimum density level estimation, based on threshold for

1. the number of neighbors minimum number of points

2. located within some radius e

minimum number of points >= 2

e

GOAL: Find areas, which satisfy the minimum density, and which are 

separated by areas of lower density. These area form a cluster.

Red points are 

core points (direct 

density reachable) Yellow points are 

border points 

(density reachable)

Blue point not reachable = noise

Schubert, E. et al. "DBSCAN revisited, revisited: why and how you should (still) use DBSCAN." ACM Trans. on Database Systems 2017
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x1

x2

x3

Outliers (noise)

e

1. Pick first point in the database, or a point at random

2. If no label, compute number of datapoints within e of this point

3. If this is < mdata, set this datapoint as an outlier

4. Go back to 1

DBSCAN Algorithm

Set the hyperparameters:

• e: size of neighborhood

• mdata: minimum 

number of datapoints
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x1

x2

x3

Cluster 1

DBSCAN Algorithm

1. Pick next point in the database, or a point at random

2. If no label, compute number of datapoints within e of this point

3. If this is >= mdata, create a cluster

4. Go back to 1



APPLIED MACHINE LEARNINGApplied Machine LearningApplied Machine Learning

x1

x2

x3

1. Continue with the next points in the list

2. Merge two clusters if distance between clusters < e

Cluster 1

Cluster 2

Cluster 1

DBSCAN Algorithm
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Comparison: K-means / DBSCAN

K-means DBSCAN

Hyperparameters K: Nb of clusters e: size, Mdata: min. nb of datapoints

Computational cost O(K*M) O(M*log(M)), M: nb datapoints

Type of cluster Globular Non-globular (arbitrary shapes, non-

linear boundaries)

Robustness to noise Not robust Robust to outliers within e

Both K-means and BDSCAN depend on choosing well the hyperparameters

→ To determine the hyperparameters, use evaluation methods for clustering (next)
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