Applied Machine Learning EPFL

APPLIED MACHINE LEARNING

Clustering

Part 2 —Techniques for Clustering

K-Means, Soft K-means, DBSCAN
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K-Means
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K-means Clustering

| ]
v

Initialization: initialize at random the positions of the centers of the clusters

Here we start with a number of cluster fixed: K=2
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K-means Clustering

K :argkmin{d(xi’ﬂk)}

X, [ Responsibility of cluster k for point x
o 1 if k, =k
' |0 otherwise
=X1 X' it data point

M geometric centroid

Assignment Step:

» Calculate the distance from each data point to each center.

» Assign the datapoint to the “closest” center.

If a tie happens (i.e. two center are equidistant to a data point), one assigns the data point to the cluster
with smallest k).
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K-means Clustering

K :argkmin{d(xi’ﬂk)}

X, [ Responsibility of cluster k for point x
(] 1 —
.« . O, r_kzl if k. =k
. ' |0 otherwise
o o ®

v

.n Zri"xi
Xy ,uk = IZ:rk

Update step (M-Step):
Recompute the position of the center based on the assignment of the points.
The center becomes the centroid of the dataset points assigned to this cluster.
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K-means Clustering

Assignment Step:
» Calculate the distance from each data point to each centroid.
» Assign each data point to the “closest” centroid.
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K-means Clustering
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Update step (M-Step):
Recompute the position of centroid based on the assignment of the points

Stopping Criterion: Go back to step 2 and repeat the process until the
clusters are stable, i.e. the centroids no longer move.
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K-means Clustering

Cluster 1

CluSte,.2 * Intersection points

|
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K-means creates a hard partitioning of the dataset
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K-means Clustering

Cluster 1

Clusm.,,.2 * Intersection points

K-Means clustering minimizes a loss, often a quadratic cost function

J (,ul,...,,uK):ZK: Z d(X‘,,uk) with d(X‘,ﬂk)Z\/i(X: —H )2

k=1 ! €Cy =1
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K-means Clustering

e p = 1 Manhattan Distance

e p = 2 Euclidean Distance

e p = oo L-infinity norm ||x||.c = max |x;]
l

The distance can also be replaced by the L-p norm

K-Means clustering minimizes a loss, often a quadratic cost function

J (,ul,...,,uK):i Z d(X‘,,uk) with d(X‘,ﬂk)Zi/i‘xii — K ‘p

k=1 Xi ECk
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'fect of the distance metric on K-means

0.4

L1-Norm L2-Norm

L3-Norm L8-Norm
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K-means Clustering: Properties

v' There are always K clusters.

v' The clusters do not overlap:
Soft K-means relaxes this assumption, see next slides

v' Each member of a cluster is closer to its cluster than to any other cluster.
v' The algorithm is guaranteed to converge in a finite number of iterations
v But it converges to a local optimum!

v Itis hence very sensitive to initialization of the centroids.
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Soft K-means Clustering
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Soft K-means Clustering

r*: responsibility of cluster k for point x'
e(_ﬁ'd(“k’xi))
A r_k = 6[0,1], ﬂ€R+

| Ze(—ﬁ‘d(ﬂk'~xi))

K’

Normalized over clusters: > r* =1
k

v

X1

Assignment Step (E-step):
Assign each data point to the “closest” centroid.

Each data point xi is given a soft degree of assignment'

to each of the means z/X.
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Soft K-means Clustering: The effect of beta

[ 1s the stiffness k S )
1 . : = —
o= ﬁ measures the disparity across cluster > ol-7a(u x))
C
3 —0.01
o | 20 ]
=1 i =0.99 t=-1, r =0.51
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Soft K-means Clustering

Update step (M-Step):
Recompute the centroids based on the assignment of the points

The update algorithm of the soft K-means is identical to that of the hard K-means, aside from

the fact that the responsibilities to a particular cluster are now real numbers varying between
0 and 1.
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Soft K-means Clustering
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Soft K-means algorithm with a small (left), medium (center) and large (right)



Applied Machine Learning EPFL

Soft K-means Clustering
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initialization iteration #1 iteration #2 iteration #3 iteration #4

Iterations of the Soft K-means algorithm from the random initialization (left)
to convergence (right). Computed with = 10.
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means.
But, sometimes, it can determine the true number of clusters.

e

Initialization: K=5

The 3 centroids are located in the cluster top
left and 2 on the bottom cluster.
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means.
But, sometimes, it can determine the true number of clusters.

After 2 iterations
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means.
But, sometimes, it can determine the true number of clusters.

¥

After 4 iterations
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Soft K-means Clustering

Soft K-means requires to set K, the number of clusters like K-means.
But, sometimes, it can determine the true number of clusters.

At convergence
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K-means / soft K-means Clustering: Advantages

O The algorithm is guaranteed to converge in a finite number of iterations
(but it converges to a local optimum!)

O Itis computationally cheap and faster than other clustering
techniques - update step is ~O(KM).
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K-means / soft K-means Clustering: Drawbacks

O Does not work well with non-globular clusters.

L Sensitive to initialization
Different initial partitions can result in different final clusters.

0 Assumes a fixed number K of clusters
In soft-K-means, clusters may merge and reduce to true number

- It is, therefore, good practice to run the algorithm several times using
different K values, to determine the optimal number of clusters.
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Linear and nonlinear K-means

K-means is a linear technique and Kernel K-means can separate
can separate clusters only linearly, clusters through non-linear
or quasi-linearly (for norm-p, p>2). boundaries, as shown above.
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Density-based spatial clustering
of applications with noise (DBSCAN)

26
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DBSCAN Principle

Minimum density level estimation, based on threshold for
1. the number of neighbors minimum number of points
2. located within some radius ¢

Blue point not reachable = noise

Red points are
core points (direct
density reachable)

Yellow points are
border points
(density reachable)

GOAL: Find areas, which satisfy the minimum density, and which are

separated by areas of lower density. These area form a cluster.

Schubert, E. et al. "DBSCAN revisited, revisited: why and how you should (still) use DBSCAN." ACM Trans. on Database Systems 2017
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DBSCAN Algorithm

W

Set the hyperparameters:

Outliers (noise) - g: size of neighborhood
@ g  mdata: minimum
v | number of datapoints
([
... [ ] ) ° [ ]
([ ([ . o :
([
- >
° i X3

Pick first point in the database, or a point at random

If no label, compute number of datapoints within ¢ of this point
If this IS < mdata, Set this datapoint as an outlier

Go back to 1
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DBSCAN Algorithm

oo ° ® e Cluster 1

Pick next point in the database, or a point at random

If no label, compute number of datapoints within ¢ of this point
If this is >= mdata, Create a cluster

Go backto 1

W
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DBSCAN Algorithm

e © ® | Cluster 1

% Cluster 2 —
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—| Cluster 1
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1. Continue with the next points in the list
2. Merge two clusters if distance between clusters < ¢
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Comparison: K-means / DBSCAN
. [Kemeans  |DBSCAN

Hyperparameters K:Nbof clusters ¢ sjze, Mdata: min. nb of datapoints

Computational cost O(K*M) ‘ O(M*log(M)), M: nb datapoints *

Type of cluster Globular Non-globular (arbitrary shapes, non-
linear boundaries) ‘

Robustness to noise Not robust * Robust to outliers within ¢ ‘

Both K-means and BDSCAN depend on choosing well the hyperparameters

—> To determine the hyperparameters, use evaluation methods for clustering (next)
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