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Support Vector Machine
For Classification

Part 2 — Non-Linear SVM
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Non-linear classification
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Non-linear classification

Can we separate these two groups linearly?

Yes, but not in this space.



APPLIED MACHINE LEARNING

Making the problem linear

How to separate the red class from the grey class?

360 _|

X r
1 Polar coordinates
X = (rsin (0), rcos(@))+ X’

Data become linearly separable

¢ R* >R’
¢(x)=(r,0), r: radius, 0: angle
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Making the problem linear

Feature Space H
0

360 _|

3 4 $(x)

In feature space, computation is simpler (e.g. perform linear classification)
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Finding the transformation

Original Space

s, Whatis ¢?

Feature Space H

€ >
.!‘ = ?..’
2 c. L ‘\‘.‘ -
s:*. ’ ‘ T

While the dimension of the original
space is N, the dimension of the

feature space may be greater than
N! =>» Xis lifted onto H

Determining ¢ is difficult and sometimes impossible

No need to compute ¢, sufficient to compute

distance in feature space
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Kernels: Intuition

Original Space Feature Space H

Vv

Computes distance The kernel function
|_| k: XxX >R

M N Y i j
SVM Decision function f(x)=sgn| > oy’ <X,X‘>+bj k(X X )—><¢(x ),¢(x )>

i
i=1

SVM Decision function  f (x) = sgn iociyi <¢(x),¢(xi)>+bj

No need to compute ¢, sufficient to compute

distance in feature space
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Rephrase linear SVM

Linear problem expressed in feature space:

min =
vy 2

Under constraints: v (<w #(x )> + b) >1, i=1,2,...M.

w lives in feature space! The constraints can be relaxed
to avoid overfitting.

This can be solved using the Lagrange method for inequality constraints:

L(wb.a) = [ —Za (3, ((w.(x )) +b) 1)

with ¢, >0




APPLIED MACHINE LEARNING

Rephrase linear SVM

We obtain the Dual Form :

max L, (ar) =)

(94

Subject to these
constraints:

Inner product

1
&, _Ezaiajyiyj
i ]

O0<La,

<<y
M

The computation relies only on inner products across image of

the points in feature space - replace with the kernel.
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Dual Optimization

With the kernel, the dual becomes : kernel

max Ly Za ——Zaa y,yJ

M
Subject to these <y < C .
constraints: O—aj M VJ =1...M E l,aj yj —

The decision function becomes:
M

f(x)= sgn(Zaiyik(x,x‘)erj
i=1

See supplement for derivation
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The kernel

HX_Xi H Kernel width

RBF (Gaussian) kernel: k(x,x')=e 2*, oceR.

Order p of the polynomial and ¢

Inhomogeneous polynomial kernel: k (x, X' ) = (<x X' )+ c)p . peN, c>0

Each kernel has hyperparameters that need to be determined by hand

(grid search).

The decision function becomes:

f(x)= sgn(éaiyik(x,x‘)mj
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How to read out the result of SVM

...... Hyperplane

Color gradient ot
= distance to ) y—
the hyperplane

Support vectors

The margin: region of equal distance on both side of hyperplane

12
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Effect of the hyperparameters on
performance in classification with SVM
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C that determines the costs associated to

1 5 v incorrectly classifying datapoints is an
min| — ku + o & open parameter of the optimization
2?2 M j=1-1

W,¢ function
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F-Measure (Test)

-

[

Box Plots

X

1.0UU
1.00

1.00

1.000

0.970

C-5VM 1 RBF 0.01 C-5VM 100 RBF 0.01

Starts

O\

verfitting

C=1; several misclassified datapoints

C=100; all points correctly classified
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HX_Xi H Kernel width

RBF (Gaussian) kernel: k (x, X' ) = e 2 el

6=0.2; smoother fit 6=0.01; too tight a fit

16
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Multi-class classification with SVM

17
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Multi-Class SVM

Male Adult

If3 .I:l
2 Female Adult
0 Children

°

°
(

0
) £2
— 2

Construct a set of K binary classifiers f*,....,f“, each trained to
separate one class from the rest. Sufficient to compute only

_ _ K-1 classifier for K classes
Compute the class label in a winner-take-all approach: EiEest s RN 4

classifier may provide tighter
bounds on the Kth class.
j= argmax( y'a k(X X' )+b!

18
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Compute the class label in a winner-take-all approach:

j= argmax(Zy ok (x,x )+b‘}

=1,..K -1
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Multi-Class SVM

20
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Summary

21
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Summary: What i1s SVM?

<* An algorithm developed originally in the early 90’s, by Vapnik and his
coworkers, which could be applied in classification and regression;

¢ It does the following:

» map original input space to higher dimension feature space, which is
Implemented implicitly by kernel function, such that “linear decision
boundaries constructed in the high dimensional feature space correspond
to nonlinear decision boundaries in the input space”;

> In feature space, an optimal separating hyperplane is constructed, which
could be determined by solving an optimization problem;

» Lagrange multipliers and dual theory can then be applied to convert this
optimization problem into a convex quadratic program subject to linear
constraints.
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Pros and Cons of SVM

23
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SVI\/I Generallzatlon

Predicts correctly class Iabel even When it has no datapomt :odasso:

SVM does not entail a notion of confidence! (no notion of likelihood).
The distance to the hyperplane is not a measure of confidence.
- You cannot tell if prediction is correct or not!

24



SVM — no confidence In prediction

Generalization: Predicts class label even when it has no datapoint
Prediction could be completely incorrect

i
L e e R, R e -+ Ry o EECEELEEEEEE e EECEEEEEEEntS EECESEES e S e
I I 1 1 1 1 1 1 1 I
@Class 1 |

——————————————————————————
I
!

| J I USRS GiRor to compute b.
happens he e Sares) b ~ mean over SV-s

Predicts by default sign of b when far from the training datapoints!!
- This could lead to large amount of false positives for the class with same sign as b!

Doing crossvalidation would not prevent this effect as it would use only points at your
disposal that are close to training datapoints.
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SVM - confidence In prediction

U False positives must be treated with care.

O Imagine you classify images of cancer tissue and you want to predict if
the tissue has a tumor (positive class) or no tumor (negative class);
you cannot afford false positive for the negative class.

O To prevent this to happen, you should:
O Verify that the sign of b is not the sign of the class you care about.
O Run crossvalidation by generating a testing set from points never
seen — far from your training set.
O Compare distribution of training and testing sets with GMM to
make sure they are different
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-
SVM versus GMM and KNN

¢ Advantages of SVM over GMM and KNN:

» Build a model (compared to KNN) — boundary is an explicit function

» Guaranteed to find the global optimum (compared to GMM)

¢ Disadvantages of SVM .

» Computational costs at testing can be daunting O(M), M: number of
datapoints

» It requires to choose two hyperparameters (C and kernel width) — compared
to 1 for KNN and GMM.
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Summary: When to use SVM?

s SVM have wide range application for all type of data (vision, text,
handwriting, robotics).

s SVM is very powerful for large scale classification. Optimized solvers for the
training stage. Rapid during recall.

¢ One issue Is that the computation grows linearly with number of datapoints
and the number of SV and the algorithm is not sparse in nb of SV-s
- see v—SVM and RVM in Advanced ML course videos (optional).

s Another issue is that SVM can predict only two classes. For multi-class
classification, one needs to run several two-class classifiers.

» Finally, SVM does not have a notion of confidence. Extensions to SVM, such
as RVM, can offer such probabilistic interpretation - see RVM in Advanced
ML course video (optional).
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