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Support Vector Machine

For Classification

Part 2 – Non-Linear SVM
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Non-linear classification
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Non-linear classification

Can we separate these two groups linearly?

Yes, but not in this space.
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Making the problem linear

2x

1x

How to separate the red class from the grey class?

Polar coordinates

Data become linearly separable
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Kernels: Intuition
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Idea: Send the data X into a feature space H through the nonlinear map .
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Feature Space H

In feature space, computation is simpler (e.g. perform linear classification)



Making the problem linear
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Original Space

Kernels: Intuition

ix

H

While the dimension of the original

space is N, the dimension of the

feature space may be greater than

N!  X is lifted onto H

Determining  is difficult and sometimes impossible

 What is ?

No need to compute , sufficient to compute 

distance in feature space

Feature Space H

Finding the transformation
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2x

1x

Original Space Feature Space H

Kernels: Intuition

1, 1x y  

?x y 

2 , 1x y  

     

The kernel function

:
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SVM Decision function    ( ) sgn ,i i
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f x y x x b
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No need to compute , sufficient to compute 

distance in feature space

Computes distance
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This can be solved using the Lagrange method for inequali
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Under constraint

 lives in feature spa

Linear problem expressed in feature spac
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Rephrase linear SVM

The constraints can be relaxed 

to avoid overfitting.
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We obtain the Dual Form :

Subject to these 
constraints:

0 1,...,j

C
j M

M
   

1

0
M

j j

j

a y



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L y y x x

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Rephrase original problem

Inner product

The computation relies only on inner products across image of

the points in feature space replace with the kernel.

Rephrase linear SVM
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Subject to these 
constraints:

0 1,...,j

C
j M

M
   
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0
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j j
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Dual Optimization

kernel

   
1

The decision function becomes:

,
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f x sgn y k x x b
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With the kernel, the dual becomes :

See supplement for derivation
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   
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The decision function becomes:

,
M

i

i i
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f x sgn y k x x b


 
  

 


The kernel

  22RBF (Gaussian) kernel: , ,   .

ix x

ik x x e  




 

   Inhomogeneous polynomial kernel: , , ,   ,  0
p

i ik x x x x c p c   

Each kernel has hyperparameters that need to be determined by hand 

(grid search).

Kernel width

Order p of the polynomial and c



12

APPLIED MACHINE LEARNING

How to read out the result of SVM

Hyperplane

Support vectors

Color gradient

= distance to 

the hyperplane

The margin: region of equal distance on both side of hyperplane
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Effect of the hyperparameters on 

performance in classification with SVM
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 

2

1,

Optimization under constraint problem of the form:

1
min    

2

u.c. 

1 ,

0            j=1,...M
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C that determines the costs associated to 

incorrectly classifying datapoints is an 

open parameter of the optimization 

function
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C=1; several misclassified datapoints C=100; all points correctly classified

Starts overfitting
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=0.01; too tight a fit=0.2; smoother fit

  22RBF (Gaussian) kernel: , ,   .

ix x

ik x x e  



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Kernel width



17

APPLIED MACHINE LEARNING

Multi-class classification with SVM
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Multi-Class SVM

Children

Female Adult

Male Adult

1Construct a set of K binary classifiers f ,....,f , each trained to 

separate one class from the rest.

K

3f
1f

2f

 
1,... 1

Compute the class label in a winner-take-all approach:

j= ,  arg max i i

M
j j

i
j K i

y k x x b
 

 
 

 


Sufficient to compute only 

K-1 classifier for K classes

But computing the K’th

classifier may provide tighter 

bounds on the Kth class.

?

?
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Multi-Class SVM

 
1,... 1

Compute the class label in a winner-take-all approach:

j= ,  arg max i i

M
j j

i
j K i

y k x x b
 

 
 

 

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Multi-Class SVM
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Summary
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Summary: What is SVM?

 An algorithm developed originally in the early 90’s, by Vapnik and his 
coworkers, which could be applied in classification and regression; 

 It does the following:

 map original input space to higher dimension feature space, which is 
implemented implicitly by kernel function, such that “linear decision 
boundaries constructed in the high dimensional feature space correspond 
to nonlinear decision boundaries in the input space”; 

 in feature space, an optimal separating hyperplane is constructed, which 
could be determined by solving an optimization problem;

 Lagrange multipliers and dual theory can then be applied to convert this 
optimization problem into a convex quadratic program subject to linear 
constraints.

Summary: What is SVM?
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Pros and Cons of SVM
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SVM – Generalization
Predicts correctly class label even when it has no datapoint

SVM does not entail a notion of confidence! (no notion of likelihood).

The distance to the hyperplane is not a measure of confidence.

 You cannot tell if prediction is correct or not!
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SVM – no confidence in prediction

Predicts by default sign of b when far from the training datapoints!!

 This could lead to large amount of false positives for the class with same sign as b!

Generalization: Predicts class label even when it has no datapoint

Prediction could be completely incorrect

   
1

,i i i

M

i

i

f x sgn y k x x b


 
  

 


 
1

Use , 1 0 

to compute b.

~ mean over SV-s

i i i i

M

i

i

y y k x x b

b




  
     

  


What happens here?

Doing crossvalidation would not prevent this effect as it would use only points at your

disposal that are close to training datapoints. 

 0sgn b 

 sgn b

 , 0i ik x x 
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SVM – confidence in prediction

What happens here?

 False positives must be treated with care.

 Imagine you classify images of cancer tissue and you want to predict if 

the tissue has a tumor (positive class) or no tumor (negative class); 

you cannot afford false positive for the negative class.

 To prevent this to happen, you should:

 Verify that the sign of b is not the sign of the class you care about.

 Run crossvalidation by generating a testing set from points never

seen – far from your training set. 

 Compare distribution of training and testing sets with GMM to 

make sure they are different
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SVM versus GMM and KNN

Advantages of SVM over GMM and KNN: 

 Build a model (compared to KNN) – boundary is an explicit function

 Guaranteed to find the global optimum (compared to GMM)

 Disadvantages of SVM : 

 Computational costs at testing can be daunting O(M), M: number of 
datapoints

 It requires to choose two hyperparameters (C and kernel width) – compared 
to 1 for KNN and GMM. 
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 SVM have wide range application for all type of data (vision, text,

handwriting, robotics).

 SVM is very powerful for large scale classification. Optimized solvers for the

training stage. Rapid during recall.

 One issue is that the computation grows linearly with number of datapoints

and the number of SV and the algorithm is not sparse in nb of SV-s

 see nSVM and RVM in Advanced ML course videos (optional).

 Another issue is that SVM can predict only two classes. For multi-class

classification, one needs to run several two-class classifiers.

 Finally, SVM does not have a notion of confidence. Extensions to SVM, such

as RVM, can offer such probabilistic interpretation  see RVM in Advanced

ML course video (optional).

Summary: When to use SVM?Summary: When to use SVM?


