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Support Vector Machine (SVM)

Brief history:

= SVM is traced back to the work by Vapnik and Chervonekis on statistical
learning theory (Vapnik1979) and the notion of VC dimension.
= The current form of SVM was presented in (Boser, Guyon and Vapnik 1992)

and Cortes and Vapnik (1995).
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A good survey of the theory behind SVM is
given in Support Vector Machines and other
Kernel Based Learning methods
by Nello Cristianini and John-Shawe Taylor.

Learning with Kernels

An easy introduction to SVM is given
in Learning with Kernels by Bernhard
Scholkopf and Alexander Smola.
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Support Vector Machine (SVM)

SVM was applied to numerous classification problems:

- Computer vision (face detection, object recognition, feature categorization)
- Bioinformatics (categorization of gene expression, of microarray data)

- WWW (categorization of websites)

- Production (control of quality, detection of defaults)

- Robotics (categorization of sensor readings)

- Finance (bankruptcy prediction)

The success of SVM is mainly due to:

- SVM depends on convex optimization.

- Its ease of use (lots of software available, good documentation).

- Excellent performance on variety of datasets.

- Good solvers making optimization (learning phase) very quick.

- Very fast at retrieval time — does not hinder practical applications.
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Recap - Constructing a projection

Datapoint x

A Projection vector w

The norm of the projection of x onto w is:

W x = wl|x]|cos ()

cos(6)>0 =w -x>0

V " x'= |l cos(6)
cos(6') <0

—w -X'<0

=
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o
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S
=

W X <0 w x>0



APPLIED MACHINE LEARNING

Recap - Constructing a projection

Datapoint x

Normal to plane w

Looking at the sign of (w'x) allows

to separate points on either side of the plane.

(we ignored the intercept and assumed the plane passed by the origin)

w' -x>0 = point lies on the left handside of plane

w'-x'<0 = point lies on the right handside of plane

w -x=0 ? = point on the plane
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|_inear Classifiers |
X- > f >y

Class label y={-1;1}

* denotes -1

° denotes +1

Separating
Hyperplane

° Separating hyperplane is defined by:
w: the normal to the plane
b: the intercept 5
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|_inear Classifiers

Class label y={-1;1}

* denotes -1
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How would you
classify this data?
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|_inear Classifiers

Class label y={-1;1}

* denotes -1

° denotes +1

Any of these

] ° o ..but which is
° o best?

would be fine..

10
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Classifier Margin

Class label y={-1;1}

* denotes -1

° denotes +1

Define the margin of a
linear classifier as the
width that the boundary
could be increased by
before hitting a
datapoint.

11
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Classifier Margin

Class label y={-1;1}

* denotes -1

° denotes +1

The maximum margin
linear classifier is the
linear classifier with the
maximum margin.

_——
Linear SVM

12
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Classifier Margin

Class label y={-1;1}

* denotes -1

° denotes +1

Need to determine a
measure of the width
of the margin, so as to
maximize for this
measure.

are those
datapoints that are
closest to the
boundary. They
define the margin.

13
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Computing the Distance to the Separating Hyperplane

Decision function: y =sgn((w,x)+b)  (w,x)=w'x

{x: (w,x)+b =0}

* Class with label y=-1

o Class with label y=+1

N

{x: (W,x>+b:—1}

{x: (w, x>+b=+1}

Points on either side of the separating plane
have negative and positive coordinates,
respectively.

Definition:
The margins on either side of the hyperplane satisfy <W, X> +b =+1.

14
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Computing the Distance to the Separating Hyperplane

What is the distance from a point x to the separating plane
<w,x>+b= 07

15
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Computing the Distance to the Separating Hyperplane

Projection of (x'-x) onto w is then:

o We know that:
X" st. (w,x")+b=0

= (w,x)=-b

Projection of x- x' onto w is then:

16
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Computing the margin

Distance of each points on either
side of the margin:

The margin between two classes is at least 2/||w]|.

17
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Our objective function

Separating condition is measured by — ” ”
W

W
To maximize this condition is equivalent to minimizing ” ”

W
Better even is to minimize the convex form ” ”

How do we make sure the points sit on the correct side of the separating plane?
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{x: (w,x)+b=0}

| /{X: <W’X>+b:+l}
Points are correctly classified when:

(w,x')+b>=1 when y :+1}
Vi=1M

(w,x')+b<—1 when y'=-1
We have 3 situations:

O<y! (<W,xi>+b)<1 < -1 <(<W,X‘>+b)<l but inside the margin

1<y (<W,X‘>+b) = (<W,xi>+b)<-l fory' =-1or (<W,X‘>+b)>l fory' =+1 and

y! (<W,xi>+b)< 0 < (<W,X‘>+b)>0 fory' =-1or (<W,xi>+b)<0 fory' =+1 on the wrong side!
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The complete problem

Finding the Optimal Separating Hyperplane turns out to be an optimization
problem of the following form:

5 b o
min= vl
w,b

<W,Xi>+b21 when yi — 11 | | |
<W1Xi>+bﬁ—1 when yi =-1 = (<W’X'>+b)21, i=1.2,.... M.

« N+1 parameters (N: dimension of data)
« M constraints (M: nm of datapoints)
 [tis called the primal problem.
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Solving the constrained optimization

.1, e
min[w|
w,b

under constraints: y' (<W X')+ b) >1, i=12,..M.

This can be solved using the Lagrange method for inequality constraints:

L(wb,x) =[] _ileai (' ((wx ) +b) 1)
with «; >0

We have M Lagrange multipliers a;, i = 1, ..., M (M, # of data points), one for
each of the inequality constraints.

(Minimization of convex function under linear constraints through Lagrange gives the optimal solution, see
complement of information on moodle).
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Solving the constrained optimization

The solution of this problem is found when maximizing over a and
minimizing over w and b:

a>0 w,b

max(min L(W,b,a))

where

L(w.b,a) = —Za (' ({wox ) +b) 1)
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Solving the constrained optimization

The solution of this problem is found when maximizing over a and
minimizing over w and b:

max(min L(W,b,a))

a>0 w,b \

Requesting that the gradient of L vanishes with w.

oL(w,b, o)
oW

(Take the partial derivatives on each coordinate of w)

=0 < Wzioziyixi
i=1
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oy:-l
. If ¢, =, =1
°y=+1 . . S

. ) ° e The vector defining the hyperplane
IS determined by the training points.

Note that while w is unique (minimization of convex function), the alpha-s are not unique.
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y=-1
. Then o, <,
y=+1 - -

. w
) 7‘\"‘ ° e The vector defining the hyperplane
’ o is determined by the training points.

/ e X,y

Note that while w is unigue (minimization of convex function), the alpha-s are not unique.
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Interpreting the solution

Requesting that the gradient of L vanishes with b.

oL(w,b,«) 0
o

Requires at minimum one datapoint in each class.
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The dual optimization

Taking the definition of w and plugging it to the Lagrangian

M M

1 M
L(a) = ZO( _EZZQ yiijiTXj _Zaiyib
i1

i=1 j=1

M 1 M
:Zai__ aiajyiijiTXj
i 2734

Dual optimization problem

maXW(a) Za —EZZaa y,yJ

=l j=1

subject to: &; >0 and Zai y, =
=1

This is usually solved through the:
Sequential Minimal Optimization algorithm (SMO)
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The Karush-Kuhn-Tucker (KKT) Conditions

The KKT conditions ensure that our primal and dual optimization problems
have the same optimal solutions

Complete optimization problem:

M
oL(wba) o w=Yayx  (Dual feasibility)
oW i1
M
aL(V(;’;Db’“)zo & Yy =0 (Dual feasibility)
i=1
oL(w,b,a)

<0 &y ((w,x)+b)=1 (Primal feasibility)

Karush-Kuhn-Tucker conditions:

a. (yi (<W X >+ b)—l) =0 Vi=1.M (Complementarity conditions)
a. >0, vi=1.M
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Interpreting the conditions

All the pairs of data points (xi Y ) for which o, > 0 are the support vectors.

Al the pairs of data points (x',y') for which ; =0 are "ignored".

Karush-Kuhn-Tucker conditions:

a. (yi (<W X > + b) —1) =0 Vi=1.M (Complementarity conditions)
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Data points (X', y") for which ; >0 are the support vectors,

M
They participate in defining the hyperplane: w = Z“i yiX
i=1

Data points (X', y") for which &; =0 are "ignored"
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The decision function in SVM

The decision function is then expressed in terms of the support vectors:

f(x)=sgn({w.x)+b) | aL(Vav\f’aLO = W=éaiyixi

el oo}

to compute b.

N
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Non-Separable Data Sets

What should we do? * denotes +1

Idea : > denotes -1
Introduce some slack on the constraints o

32
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Support Vector Machine for non-separable datasets

* denotes +1

° denotes -1

Introduce slack variables: & >0

Relax the constraints:
Vi(<w,Xx>+b)>1-& and & >0

33
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Support Vector Machine for non-separable datasets

Tradeoff

Minimize
total slack

Maximize
Margin

Optimization erbIem

min| 21wl + 5 31 |

w,eé \ 2
uc: vi(<w,x>+b)>1-¢ and & >0

Three cases for &
& =0 — correct classification and outside the margin
0 <& <1— correct classification inside margin
& >1— missclassification

34
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Support Vector Machine for non-separable datasets

The Dual Form is given by:

1 o
max L, (a)EZai _Eza‘ajy‘yj <X',X’>
]

a |

M
Subject to these <, < 3 . -
constraints: O_aj M vi=1..,M El aj yj =20
J:

Datapoints with a; > 0
will be the support
vectors.




