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Support Vector Machine

For Classification

Part 1 – Linear SVM
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Textbooks:

Support Vector Machine (SVM)

Brief history:

 SVM is traced back to the work by Vapnik and Chervonekis on statistical 

learning theory (Vapnik1979) and the notion of VC dimension.

 The current form of SVM was presented in (Boser, Guyon and Vapnik 1992) 

and Cortes and Vapnik (1995).

An easy introduction to SVM is given 

in Learning with Kernels by Bernhard 

Scholkopf and Alexander Smola.

A good survey of the theory behind SVM is 

given in Support Vector Machines and other 

Kernel Based Learning methods 

by Nello Cristianini and John-Shawe Taylor. 
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The success of SVM is mainly due to:

- SVM depends on convex optimization.

- Its ease of use (lots of software available, good documentation).

- Excellent performance on variety of datasets.

- Good solvers making optimization (learning phase) very quick.

- Very fast at retrieval time – does not hinder practical applications.

SVM was applied to numerous classification problems:

- Computer vision (face detection, object recognition, feature categorization)

- Bioinformatics (categorization of gene expression, of microarray data)

- WWW (categorization of websites)

- Production (control of quality, detection of defaults)

- Robotics (categorization of sensor readings)

- Finance (bankruptcy prediction) 

Support Vector Machine (SVM)
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w

x
 cosTw x w x  

Recap - Constructing a projection
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Projection vector w

The norm of the projection of  onto w is:x

Datapoint  x

 cos 0 
' 180  

'x

0Tw x  

 cos ' 0  ' 0Tw x  

 ' ' cos 'Tw x w x  

0Tw x  0Tw x 
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Recap - Constructing a projection
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Normal to plane w

Datapoint  x

w

x

'x

0     point lies on the left handside of planeTw x  

' 0     point lies on the right handside of planeTw x  

0 ?    Tw x     point on the plane

x

 

(we ignored the intercept and assumed the plane passed by the origin)

Looking at the sign of  allows 

to separate points on either side of the plane.

Tw x



APPLIED MACHINE LEARNING

6

6

Linear Classifiers

Separating 
Hyperplane

w

x f 

(w, b)

y

   ; , sgn Ty f x w b w x b  

denotes -1

denotes +1

Class label y={-1;1}

Separating hyperplane is defined by:

:  the normal to the plane

:  the intercept

w

b
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denotes -1

denotes +1

How would you 
classify this data?

Linear Classifiers

Class label y={-1;1}
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denotes -1

denotes +1

How would you 
classify this data?

Linear Classifiers

Class label y={-1;1}
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denotes -1

denotes +1

How would you 
classify this data?

Linear Classifiers

Class label y={-1;1}
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denotes -1

denotes +1

Any of these 
would be fine..

..but which is 
best?

Linear Classifiers

Class label y={-1;1}
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denotes -1

denotes +1 Define the margin of a 

linear classifier as the 

width that the boundary 

could be increased by 

before hitting a 

datapoint.

Class label y={-1;1}

Classifier Margin
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denotes -1

denotes +1

Classifier Margin

Class label y={-1;1}

The maximum margin 

linear classifier is the 

linear classifier with the 

maximum margin.

Linear SVM
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denotes -1

denotes +1

Classifier Margin

Need to determine a 

measure of the width 

of the margin, so as to 

maximize for this 

measure.

Class label y={-1;1}

Support Vectors 

are those 

datapoints that are 

closest to the 

boundary. They 

define the margin.
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 :  , 1x w x b  

 :  , 1x w x b  

Definition:

The margins on either side of the hyperplane satisfy , 1.w x b  

 :  , 0x w x b 
 Decision function: sgn ,y w x b 

Class with label y=-1

Class with label y=+1

Computing the Distance to the Separating Hyperplane

, Tw x w x

w

Points on either side of the separating plane 

have negative and positive coordinates, 

respectively.
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What is the distance from a point x to the separating plane 

<w,x>+b= 0?

?

x

Computing the Distance to the Separating Hyperplane

w
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x

x’-x

x’

,
Distance to plane

w x b

w




Computing the Distance to the Separating Hyperplane

We know that:

'  . . , ' 0x s t w x b 

, 'w x b  

unitary vector

Projection of - '  onto  is then: 

,
   

x x w

b w x w

w w

 

𝑥𝑝

               

, ' , ' ,w x x w x w x



  

 
 

unitary vector

, '
Projection of '  onto  is then:                

w x x w
x x w

w w




w
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1

1 '

2

2 '

Distance of each points on either 

side of  the margin:

,
x x

,
x x

w x b

w

w x b

w


 


 x1

x2

The margin between two classes is at least 2/||w||.

Computing the margin

x’ 1 2 2
x x

w
  

1

w


1

w

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2

2
Separating condition is measured by .

To maximize this condition is equivalent to minimizing .
2

Better even is to minimize the convex form .
2

w

w

w

Determining the Optimal Separating HyperplaneOur objective function

How do we make sure the points sit on the correct side of the separating plane?
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   

     

insid

We ha

e the

ve 3 situa

 marg

tions:

0 , 1  1 , <1     but 

1 ,       

on the correct side

on the correct side outside the ma  , -1   for -1 or , >1  f rg

i

or 1  in

n

 

i i i

i i i ii i

y w x b w x b

y w x b w x b y w x b y and

y

      

        

     , 0        , >0 for -1 or , <0  fo  on the wrong sir de!1 i i i ii iw x b w x b y w x b y       

 :  , 1x w x b  

 :  , 1x w x b  

 :  , 0x w x b 

Determining the Optimal Separating Hyperplane

 1,

Points are correctly classified when:

, 1     when 1

, 1  when   1

i i

i i

i M

w x b y

w x b y
 

    


     

 constraints!M

Determining the constraints
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Finding the Optimal Separating Hyperplane turns out to be an optimization

problem of the following form:

• N+1 parameters (N: dimension of data)

• M constraints  (M: nm of datapoints)

• It is called the primal problem.

 

2

,

i=1,2,....,M.   

1

2

, 1     when 1
, 1,  

, 1  when   1

min

i i

i i

i i

w b

w

w x b y
y w x b

w x b y

    
  

     

The complete problem
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This can be solved using the Lagrange method for inequality constraints:

    2

1

1
, , , 1

2

with 0 

i i

M

i

i

i

L w b w y w x b 





   





(Minimization of convex function under linear constraints through Lagrange gives the optimal solution, see 

complement of information on moodle).

 

2

,

i=1,2,....,M.   

1

2

under constraints: , 1,  

min

i i

w b

w

y w x b 

We have M Lagrange multipliers ai, i = 1, ..., M (M, # of data points), one for 

each of the inequality constraints. 

Solving the constrained optimization
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  

    

,0

2

1

max min , ,

where

1
, , , 1

2
i i

w b

M

i

i

L w b

L w b w y w x b




 





   

The solution of this problem is found when maximizing over  and 

minimizing over w and b:

Solving the constrained optimization
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  

    

,0

2

1

max min , ,

where

1
, , , 1

2
i i

w b

M

i

i

L w b

L w b w y w x b




 





   
Requesting that the gradient of L vanishes with w.

 

1

, ,
0    i i

M

i

i

L w b
w y x

w







  




(Take the partial derivatives on each coordinate of w)

Solving the constrained optimization

The solution of this problem is found when maximizing over  and 

minimizing over w and b:



MACHINE LEARNING – 2012

24

APPLIED MACHINE LEARNING

 

1

, ,
0    i i

M

i

i

L w b
w y x

w







  




The vector defining the hyperplane 

is determined by the training points.

y=-1

y=+1

2 2,  1x y 

1 1,  1x y  

w

Note that while w is unique (minimization of convex function), the alpha-s are not unique.

1 2If 1  

Interpreting the solution



MACHINE LEARNING – 2012

25

APPLIED MACHINE LEARNING

 

1

, ,
0    i i

M

i

i

L w b
w y x

w







  




The vector defining the hyperplane 

is determined by the training points.

2 2,  1x y 

1 1,  1x y  

w

y=-1

y=+1
1 2Then  

Interpreting the solution

Note that while w is unique (minimization of convex function), the alpha-s are not unique.
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Requesting that the gradient of L vanishes with b.

Requires at  minimum one datapoint in each class.

 

1

, ,
0    0i

M

i

i

L w b
y

b







  




Interpreting the solution



MACHINE LEARNING – 2012

27

APPLIED MACHINE LEARNING

Taking the definition of w and plugging it to the Lagrangian

1 1 1 1

1 1 1

1
( )

2

1

2

M M M M
T

i i j i j i j i i

i i j i

M M M
T

i i j i j i j

i i j

L y y x x y b

y y x x

    

  

   

  

  

 

  

 

The dual optimization

Dual optimization problem

This is usually solved through the:

Sequential Minimal Optimization algorithm (SMO)

1 1 1

1

1
max ( )

2

subject to: 0 and 0

M M M
T

i i i j i j i j

i i j

M

i i i

i

W y y x x

y


   

 

  



 

 

 


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 

 

 
 

1

1

Complete optimization problem:    

, ,
0           (Dual feasibility)

, ,
0    0           (Dual feasibility)

, ,
0    , 1   (Primal feasibility)

Karush-

i i

i

i i

M

i

i

M

i

i

L w b
w y x

w

L w b
y

b

L w b
y w x b
















  




  




   







  

Kuhn-Tucker conditions:

, 1 0    1,..        (Complementarity conditions)

0,          1,..  

i i

i

i

y w x b i M

i M





    

  

The KKT conditions ensure that our primal and dual optimization problems 

have the same optimal solutions 

The Karush-Kuhn-Tucker (KKT) Conditions
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 

 

 
 

1

1

Complete optimization problem:    

, ,
0           (Dual feasibility)

, ,
0    0           (Dual feasibility)

, ,
0    , 1   (Primal feasibility)

Karush-

i i

i

i i

M

i

i

M

i

i

L w b
w y x

w

L w b
y

b

L w b
y w x b
















  




  




   







  

Kuhn-Tucker conditions:

, 1 0    1,..        (Complementarity conditions)

0,          1,..  

i i

i

i

y w x b i M

i M





    

  

Interpreting the conditions

Points correctly classified

 

 

support vectoAll the pairs of data points ,  for which 0 are the  

All the pairs of data points ,  for whic

rs.

"ignored"h 0 are . 

i i

i i

i

i

x y

x y








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Interpreting the conditions

0 

0 
0 

 

1

Data points ,  for which 0 are the 

They participate in defining the hype

support v

rplane

ec o

: 

t rs.

i

i i

i

i

M

i

i

x y

w y x







 

 Data points ,  for which 0 ar "ignorede ". i i

ix y  
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   

The decision function is then expressed in terms of the support vectors:

,f x sgn w x b 

1

        ,i i

M

i

i

sgn y x x b


 
  

 


 

1

, ,
0    i i

M

i

i

L w b
w y x

w







  




1

Use , 1 0 

to compute b.

i i i i

M

i

i

y y x x b


  
     

  


The decision function in SVM
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Non-Separable Data Sets

What should we do?

Idea :

Introduce some slack on the constraints

denotes +1

denotes -1
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denotes +1

denotes -1

1

2

3

Support Vector Machine for non-separable datasets

Introduce slack variables: 0i 

Relax the constraint

0 

s:  

 ( , ) 1 and i iiy w x b      
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:

0 correct classification and outside the margin

1 correct classification inside margin

1 missclassification

Three cases for 

0

m

m

m









 

  

 

2

1,

Optimization problem:

1
min

2

u.c:   (  0, ) 1 and 

M

i

jj

i

w

i

C
w

M

y w x b




 



 
 

 

     



Maximize 

Margin

Minimize 

total slack

Tradeoff

Support Vector Machine for non-separable datasetsSupport Vector Machine for non-separable datasets
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The Dual Form is given by:

Subject to these 
constraints:

0 1,...,j

C
j M

M
   

The hyperplane has the same solution:

1

M
j

j j

j

w y x


 

1

0
M

j j

j

a y




 
,

max
1

, x
2

i j

D i i j i j

i i j

L y y x


     

Datapoints with j > 0 
will be the support 
vectors.

Support Vector Machine for non-separable datasetsSupport Vector Machine for non-separable datasets


