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Simple Model of Biological Neurons’ Signal Processing:
The Leaky — Integrator Neuron

y Axon
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»

Propagation of electrical signal
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Simple Model — The Perceptron

W, =-1 Inhibitory

Output: y

W,=+1  Excitatory

4
y=0| > WX +W,
X: Input vector from all other neurons 1
w: the strength of each synapse

y: neuron output
9@)={

lifwlix+wy=>0

f: transfer function o
0ifwx+wy; <0
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For which dataset the perceptron model can achieve perfect
classification (100% accuracy)

Dataset A i Dataset B

Dataset A
Dataset B
Both 11.11%

o 0w p

0.00% !
None —
@‘3 {ac; K] LS
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For which dataset the perceptron model can achieve perfect
classification (100% accuracy)

The perceptron is a simple linear classifier — identical to linear SVM
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Learning in one Neuron

Goal: we would like the neuron:
to output 1 when (x;,X,) belongs to C, and
to output O when (Xx;,X,) belongs to Cg
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Learning in one Neuron

The perceptron iteratively updates the weight
vector w until the classification iIs correct

For each training pair (X4,X,):
If correctly classified:

do nothing
If wrongly classified:

if W' -X>0and X belongs to C,

W(t+1) =w(t)+7-X
if W -X <0and X belongsto C,
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The perceptron

W, =1
X1=O.5 y:l 4
Wo=l ly=26 ZWi X + W
X,=0.5 ‘ W,=-0.5 =

[s it Donald?

Assume X _coc_JIes average grey 1 Yes if WTX + W > (0
scale intensity in part i of the image. 0(_ _ ) = _ .
0 No ifw'x+wy<O0

13
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N X,=0.4
| X,=0.4
1

| W,=1
. X,=1 W2:1
2 Which of the four types of disturbances
X,= 0.5+ €,

would lead to incorrect classification?

[s it Donald?
6(.) = 1 Yes ifwix+wy =0
"7 |0 No ifwix+w,<0

The classifier is robust to large but local disturbances (case 2), but not
to diffuse disturbances (case 3). How can we enlarge robustness? "
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X,=0.4
X,=0.4
1 Modify the weights,
W.=1 i.e modify slope of the separating line
| =
| x=0 %= 1+&; y=1 »
| X,=1 W=l
2 X146, Wo=-1
Modify cutoff W,
X,=0.1
X;:O'l Is it Donald?
6(.) = 1 Yes ifwix+wy =0
0.9 B 0 No ifw/x+w,<0

X,=0.9 Modify the encoding

4  The classifier is robust to large but local disturbances (case 2), but not
to diffuse disturbances (case 3). How can we enlarge robustness? s




APPLIED MACHINE LEARNING

Consider now that you take real
images. Perform PCA. These are the
projection on the 1t two
eigenvectors after PCA on real
images.

16
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Change of slope
W, W,]"=[1-05]"
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0.5 0:6 0.7 0:8 03/10 1:1 1.2
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Multi-Layer

A two-layer Feed-Forward Neural Network

O
Inputs O Outputs
O
O
Input Hidden Output

Neurons Neurons Neurons

19
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PERCEPTRON (1940, McCulloch & Pitts)

| Y1
Threshold Function:
1 ifz>0
_ _ =0 W, - X .
f(z)_e(z)_{O I =y (Z . .j

| x
RELU (Rectified Linear Unit) (Hahnloser & Seung 2011)

Threshold Function: y
z 1fz>0
f(z)=0(z) =max(0,z) = =) R
(2)=0@) ( ){O ifz<0
X
Sigmoid The steepest the sigmoid slope, the closer it is to perceptron |
The flatter the sigmoid slope, the closer it is to RELU
y
— = 1
f(2)=00) == R SSTE? :
l+e

D is the slope of the function
20
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(100% accuracy) when tested §
on the B set and trained on

the rest?
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No, as the NN will learn
piece-wise decomposition
of the space.

Set of linear functions with
RelLu or quasi linear with
sigmoid activation fct.

Testing Dataset
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Each hidden neuron creates
a dividing plane.

23
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How many neurons do you
need at minimum in the

hidden layer to separate
correctly these two classes?

64.00%

A. None
B. 1
C. 2 O 14.00%
D. 3 ‘\00 C{(\@O&
& 4



1st cutting plane

y>=0 —2red class

y<0 2> white class

2"d cutting plane

2 neurons sutfice as the boundary is )

composed of 2 partitions, but it depends
on the slope of the activation function.

1%t partition [ =

Steeper sigmoid slope

Sigmoid

Positive form: y ‘r
1

(D=9 - = Y=—55un 4

\

l+e

D is the slope of the function

25
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Too steep a slope leads to wrong classification.

A steep slope effect can be compensated for
by introducing more neurons.

) i‘ﬁ..:) () .i!, & ?:3.:"':;:
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%%;@ ..; o.
How many neurons do you
need at minimum in the .
hidden layer to separate * .
8
correctly these two classes? 8

64.00%

O 0O P>
N
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e
e

0 With 2 neurons in 1 hidden layer
0 1st cutting plane

AND-gate
[ y>=0 2red class

-0.

= y<0 > white class
2" cutting plane
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The more neurons, the
more layers, the merrier?

A. Yes
B. No
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More neurons on 1-hidden layer leads to smoother and
tighter curve

Too many layers and neurons leads to overfitting

OGN
!_‘i!

Here 5 layers, 10 neurons per layer = overfitting
With 500 datapoints total / too many parameters to estimate

Early stopping with dropout and weight constraint can
mitigate this effect.
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Computational Costs: (N*n+I*n*n)

N: dimension of data

n: # of neurons in each hidden layer §
|: # of hidden layers i

With 2 neurons in each of 2 hidden layers

A'O\O

Layers apply logic functions
If, then rule for decision

Computational Costs: N*(I*n)
N: dimension of data
n*|: # of neurons in 1st hidden layer

With 4 neurons in hidden layer

[

\ Q/ 3 neurons suffice, 4th

neuron provides redundancy

31
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With 4 neurons in 1 hidden layer
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With 4 neurons in 2 hidden layers

1

Smoother boundaries
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For each input-output pair, do:
1) Calculate the output y; of each output unit j of the net

E :
2) Calculate OE for all weights on arcs to output nodes
i

3) Calculate & for each of these nodes

oS j

4) Calculate & for the last hidden layer

0S j

5) ... and so on, propagating ok backward towards the first layer
j
6) finally, compute all the weight changes:

34
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Plot A Plot B
1.5 30

Which of the following

error-plot corresponds

to a NN trained with a
lower learning rate?

Error

A. PlotA
B. PlotB

87%

Plot A Plot B 35
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Effects of the learning rate

large learning rate small learning rate
Might not converge Slower learning

Adaptive learning rate (learning rate decay)

36
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How to Fool Neural Networks

@ Class1
O Class0

Add a small "image-agnostic" perturbation v
X'=X+V

that leads to missclassification.

Algorithm that can learn
from few training datapoints which

Tibetan mastiff

"minimal" perturbation (min |v|) that

leads to missclassification with some
probability p.

Moosavi-Dezfooli, S. M., Fawzi, A., Fawzi, O., & Frossard, P. Universal adversarial perturbations. CVPR (2017).
37
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How to Fool Neural Networks

{a) () (c) (d) (&) {F)

Original image a and minimally perturbed images (b)—(f) that switch the estimated
label of linear (b), quadratic (c), cubic (d), RBF(1) (e), RBF(0.1) (f) classifiers.

£/
()

Moosavi-Dezfooli, S. M., Fawzi, A., Fawzi, O., & Frossard, P. Universal adversarial perturbations. CVPR (2017).
38
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(a) (b)

A small perturbation, quasi invisible, is applied to pattern (a) and makes
It look like pattern (b). Pattern (b) changes label with a linear classifier.

Can you explain why?

The linear classifier has learned an AND-gate for all white (positive pixels).

A small perturbation that reduces the grey scale value of the white pixels leads to incorrect prediction.

39
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Dataset on the left

Dataset on the right

Same for both
Neither
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It is as easy if one wants to fool one class for the other.

In the linear classification case (left), one just needs to find the correct perturbation vector.

In nonlinear classification case (right), it becomes easy when the two classes are tightly mingled
and we have guasi overfitting across one class.
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It is not as easy if one wants to fool both classes with a single vector.

In the linear classification case (left), one vector will be insufficient.

In the nonlinear classification case (right), one vector may be sufficient to lead to incorrect classifications
of elements of both classes.

The more mingled the classes, the easier it is to fool the NN. It is hence crucial to identify features
(subdimensions, subpatterns) distinct for each class and based the classification on these features.
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If the curvature of the boundary is very complex, it becomes more difficult to find a single
vector that works for all the elements of the classes.

43
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a2y =
o) (SRS
eluste.s e

The more classes, the tighter the fit, the easier to generate a perturbation
that will lead to misclassification with non-negligible probability on all classes.

How to construct boundaries robust to such perturbations?
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1: Build a pre-processing layer to detect « perturbations ».

Akhtar, Naveed, Jian Liu, and Ajmal Mian. "Defense against universal adversarial perturbations." Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018

2: Train using adversarial approach — make the network more robust to this through
adversarial network

Ali Shafahi, Mahyar Najibi, Zheng Xu, John P. Dickerson, Larry S. Davis, and Tom Goldstein. Universal adversarial
training. ArXiv, abs/1811.11304, 2020.

45
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Which of the three classification technigues
are most sensitive to fooling?

A NN Class label determined by y ~ Zwij (x+v), with ReLu

B. SVM

Class label determined by y ~ (ZW -k x+vj k : RBF or Gauss Fct
C. GMM

-

SVM GMM
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0.4
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All techniques are as sensitive, as all decisions
functions depend on a measure of the distance to
the boundary.

47
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Recurrent Neural Networks

Most biological network have recurrent connections.

This change of direction in the flow of information is interesting, as it can allow:
* To keep a memory of the activation of the neuron
 To propagate the information across output neurons

Wl
t)=—wy(t—1)+w,Xx(t
) W, @ y'(T) y( T ) (T)

Differentiated response over time

Continuous model: y = 2 Yy + j xdt
T

48



What type of function can we embed
in a single recurrent neuron?

A. Counter (1,2,3,...)
B. Oscillator (0,1,0,1, ...)
C. Multiplicator x2 (0 ; 2)

X

W, @ yft)z—wly(t—1)+w2x(t)

Binary input
1/0

-
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What type of function can we embed

in a single recurrent neuron?

A. Counter (1,2,3,...) w, =-landw, =1
B. Oscillator (0,1,0,1,...) w,=w, =1
C. Multiplicator x2 (0 ;2)  Not possible

W

W, @ y:(t):—wly(t—1)+wzx(t)

X

Binary input
1/0

50
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