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Fitting Data with 

One Multi-dimensional Gaussian Function

1



APPLIED MACHINE LEARNINGApplied Machine LearningApplied Machine LearningApplied Machine Learning

Multi-dimensional Gaussian Function
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The uni-dimensional Gaussian or Normal distribution is a pdf given by:

The multi-dimensional Gaussian distribution is given by:
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if x is N-dimensional, then

μ is a dim ensional mean vector 
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   1 2,p x p x x

2-dimensional Gaussian Pdf
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if x is N-dimensional, then

μ is a dim ensional mean vector 
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if x is N-dimensional, then

μ is a dimensional mean vector 

 is a  covariance matrix 
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Construct covariance matrix from (centered) set of datapoints :
i M
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Modeling Data with a Gaussian Function
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Modeling Data with a Gaussian Function
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 is square and symmetric. It can be decomposed using 

the eigenvalue decomposition.

,         

:  matrix of eigenvectors, 

:  diagonal matrix composed of eigenvalues
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For the 1-std ellipse, the axes' lengths are 

equal to: 
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Each isoline corresponds to  a scaling of the 

1std ellipse.
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Modeling Data with a Gaussian Function
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1st eigenvector

2nd eigenvector
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1 2When projected onto e  and e , the set of 

datapoints follow two Normal distributions.



APPLIED MACHINE LEARNINGApplied Machine LearningApplied Machine LearningApplied Machine Learning

Which model? 
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Need a method to derive optimal parameters ( mean and covariance matrix )
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Likelihood Function

The Likelihood function or Likelihood (for short) determines the joint

probability density of observing the set X of M datapoints, if each datapoint has

been generated by the pdf p(x) with parameters .
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The likelihood determines how well a particular choice of pdf p(x) models the data.
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If all datapoints are identically and independently distributed (i.i.d.)
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Likelihood of Gaussian Pdf Paramatrization

A Gaussian pdf is parametrized with parameters , . 

The likelihood function (short – likelihood) of the model parameters is given by:

Measures probability of observing X if the distribution of p(X) is parametrized with , .

   , | : ; ,L X p X   

To determine the best fit, one must search for 

parameters that maximize the likelihood. 9
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Maximum Likelihood Optimization

The principle of maximum likelihood consists of finding the optimal parameters of a

pdf that maximize the likelihood function / maximizing the probability of the data

given the model and its parameters.
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For a Gauss pdf, one determines the mean and covariance matrix by solving:

The optimum is the mean and covariance of the data.
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Computing the log of the likelihood yields the same optimum:
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Likelihood Function
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Real distribution

Fit of 1D Gauss Model
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Real distribution

Fit of 1D Gauss Model
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(Instead of maximizing the likelihood, minimize the negative log-likelihood)  
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Real distribution

Fit of 1D Gauss Model
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Real distribution

Fit of 1D Gauss Model

The optimum is the mean and covariance of the data.
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Likelihood Function

Log-Likelihood for a series of Gauss functions applied to datasets with pdfs that do 

not follow a Gauss distribution. The Likelihood increases as the fit is closer to the 

real mean of the data, even if this may appear as a poorer fit. 
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