Applied Machine Learning =PrL

APPLIED MACHINE LEARNING

Fitting Data with
One Multi-dimensional Gaussian Function
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Multi-dimensional Gaussian Function

The uni-dimensional Gaussian or Normal distribution is a pdf given by:
(x=p)”
1 20°
€

p(X;ﬂ,5)=m

, mean, o°:variance

The multi-dimensional Gaussian distribution is given by:

If X is N-dimensional, then
i is a N —dim ensional mean vector

> isa N x N matrix
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2-dimensional Gaussian Pdf

JEFTIE

(272_)% |Z|% Isolines: p(x) = cst

If X is N-dimensional, then
i is a N —dim ensional mean vector
2. i1sa N x N matrix
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Modeling Data with a Gaussian Function

. . . i=1l.M
Construct covariance matrix from (centered) set of datapoints X = {x'} ;
1 2 std

Z:MXXT Py gy 1 std \

If X iIs N-dimensional, then
1 is a N —dimensional mean vector
> isa N x N covariance matrix
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Modeling Data with a Gaussian Function

1 1st eigenvector

> =—XX'
M 2nd eigenvector

2. is square and symmetric. It can be decomposed using
the eigenvalue decomposition.

>=VAV',

V : matrix of eigenvectors,

A - [}“ ’ }: diagonal matrix composed of eigenvalues

0 /1N
; For the 1-std ellipse, the axes' lengths are
>=A= {A:ﬂ ] equal to:
' 0
diagonal matrix once data JA4 and |J4, , with ¥ =V [% ; jVT'
5 - 2
projected onto eigenvectors Each isoline corresponds to a scaling of the
1std ellipse.
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Modeling Data with a Gaussian Function

15t eigenvector

2nd eigenvector

When projected onto e* and e, the set of
datapoints follow two Normal distributions.
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Which model?

Spherical Diagonal | Full

_ O 0 5 _ Gl 0 5 _ o'l 012
0 o 0 o, O, Oy

Need a method to derive optimal parameters ( mean and covariance matrix )
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Likelihood Function

The Likelihood function or Likelihood (for short) determines the joint
probability density of observing the set X of M datapoints, if each datapoint has
been generated by the pdf p(x) with parameters ©® .

L(®|X):p(x1, xz,...,x“";@) Xz{xi}_ ,

The likelihood determines how well a particular choice of pdf p(x) models the data.
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Likelihood of Gaussian Pdf Paramatrization

A Gaussian pdf is parametrized with parameters p, .
The likelihood function (short — likelihood) of the model parameters is given by:
L(p 2] X)=p(X;1.2)

Measures probability of observing X if the distribution of p(X) is parametrized with p, X.

If all datapoints are identically and independently distributed (i.i.d.)

L2 X Hp( @\

To determine the best fit, one must search for

parameters that maximize the likelihood. 9
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Maximum Likelihood Optimization

The principle of maximum likelihood consists of finding the optimal parameters of a

pdf that maximize the likelihood function / maximizing the probability of the data
given the model and its parameters.

For a Gauss pdf, one determines the mean and covariance matrix by solving:

max L (2] X )=max p(X | x4 )
Computing the log of the likelihood yields the same optimum:

max p(X |®):m%x log p(X |O)

o o
“logp(X|,2)=0 and —logp(X |xX)=0
» og p(X|xZ)=0 an =~ og p(X | 1,2)

The optimum is the mean and covariance of the data.

10
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Likelihood Function

Likelihood=0.15959 Likelihood=0.39253
1r- 1
I R<a distribution I R-a! distribution
0.9 Fit of 1D Gauss Model 0.9 Fit of 1D Gauss Model
0.8 0.8
0.7 0.7
0.6 - 0.6 -

The optimum is the mean and covariance of the data.

(Instead of maximizing the likelihood, minimize the negative log-likelihood)
11
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Likelihood Function

Log-Likelihood=5.0936e-11 Log-Likelihood=4.4994e-06
15

Fraction of observation of x
Fraction of observation of x

Log-Likelihood=9.5536e-05 Log-Likelihood=4.8759e-07
15 15
A I Data
1 1 \ Model

Fraction of observation of x
Fraction of observation of x

Log-Likelihood for a series of Gauss functions applied to datasets with pdfs that do
not follow a Gauss distribution. The Likelihood increases as the fit is closer to the
real mean of the data, even if this may appear as a poorer fit.
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