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Gaussian Mixture Models

Expectation-Maximization
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Mixture of Gauss Functions
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Combination of K Gauss functions

Linear weighted combination
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Mixture of Gauss Functions

Here weuse K =3, a. =a, = a,
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Superposition of the 3 Gauss functions with equal weight.
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o _ To find the optimal parameters:
Combination of K Gauss functions max L(®]X)= max )

p(X%0)= @{@ ith®={u,>",....° 2"}, ¢, €[0,1].

Linear weighted combination
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Gaussian Mixture Modeling with E-M

E-M searches for optimum of the likelihood of the model given the data, i.e.:

max L(®|X)=m%x p(X|0)

The parameters of a GMM are the means, covariance matrices and priors:
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Gaussian Mixture Modeling with E-M

One usually can safely assume that the datapoints are 1.i.d. (identically and
Independently distributed).

M K
max p(X|®):m%x HZak-p(Xi;,uk,Zk)
i=1 k=1

Computing the log of the likelihood yields the same optimum:

max p(X |®)=max log p(X|©)
max log [ [ e - p(x'; " 5) = max i'og(iak-p(xi;yk,zkﬂ
i=1 k=1 i=1 k=1

No closed-form solution = Solve through Expectation-Maximization (E-M)
E-M is an iterative procedure to estimate the best set of parameters

It converges to a local optimum => Sensitive to initialization!
See derivation of E-M for GMM in the annexes posted on the website :
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Expectation-Maximization (E-M)

EM is an iterative procedure:

0) Make a guess, pick a set of @ (initialization)
1) Compute likelihood L(@| X,Z) (E-Step)

2) Update © by gradient ascenton L(®] X, Z)

3) Iterate between steps 1 and 2 until reach plateau
(no improvement on likelihood)

Ensured to converge to a local optimum only!
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Tradeoff between computation costs and better fit

O A GMM can fit very closely the local distribution of datapoints.

O But this comes at the cost of an increase in the number of parameters

Full covariance matrices require N*(N+1)/2 parameters against N for diagonal
matrices and 1 for spherical matrices.
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How to determine the best mixtures of Gaussians?
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Hyper-parameter optimization in GMMs

The selection is performed using the AIC and BIC criteria.

AIC = =2In(L) + 2 B: number of parameters
BIC = —-21In(L) + In(M) of the mixture.
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B=3*(2+1) =9 B=3*(2+3)=15

B depends on the choice of covariance matrix
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Hyper-parameter optimization in GMMs

Selected GMM: full model, 2 components
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