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Gaussian Mixture Models

Expectation-Maximization
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Mixture of Gauss Functions

Combination of K Gauss functions
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Expectation:

1sigma=0.68

Superposition of the 3 Gauss functions with equal weight.
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Gaussian Mixture Modeling with E-M

The parameters of a GMM are the means, covariance matrices and priors:
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E-M searches for optimum of the likelihood of the model given the data, i.e.:
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One usually can safely assume that the datapoints are i.i.d. (identically and 

independently distributed).
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Computing the log of the likelihood yields the same optimum:

No closed-form solution  Solve through Expectation-Maximization (E-M)

E-M is an iterative procedure to estimate the best set of parameters

It converges to a local optimum  Sensitive to initialization!
See derivation of E-M for GMM in the annexes posted on the website
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Gaussian Mixture Modeling with E-M
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Expectation-Maximization (E-M)

EM is an iterative procedure:
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0) Make a guess, pick a set of  (initialization)

ˆ1) Compute likelihood | ,  (E-Step)

2) Update  by gradient ascent on | ,

3) Iterate between steps 1 and 2 until reach plateau 

    (no improvement
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Ensured to converge to a local optimum only!
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 A GMM can fit very closely the local distribution of datapoints.

 But this comes at the cost of an increase in the number of parameters 

Tradeoff between computation costs and better fit 

How to determine the best mixtures of Gaussians?
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1 parameter 3 parameters (matrix is symmetric!)

Full covariance matrices require N*(N+1)/2 parameters against N for diagonal 

matrices and 1 for spherical matrices.
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The selection is performed using the AIC and BIC criteria.

Hyper-parameter optimization in GMMs
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𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝐵

𝐵𝐼𝐶 = −2 ln(𝐿) + ln(𝑀)𝐵

B depends on the choice of covariance matrix
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B: number of parameters

of the mixture.

3*(2 3) 15B   3*(2 1) 9B   
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Hyper-parameter optimization in GMMs
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