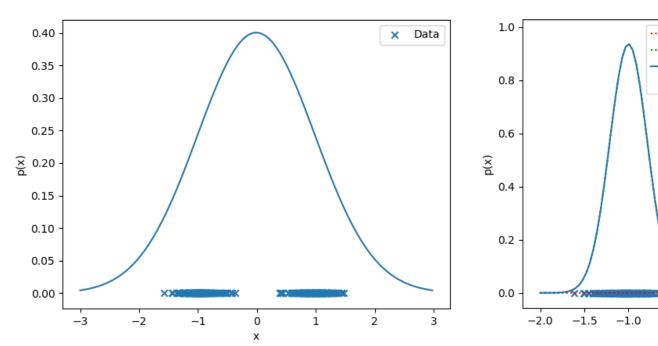


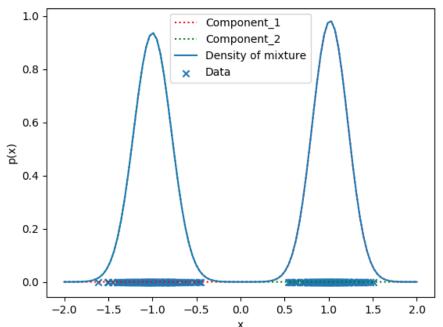
APPLIED MACHINE LEARNING

Gaussian Mixture Models

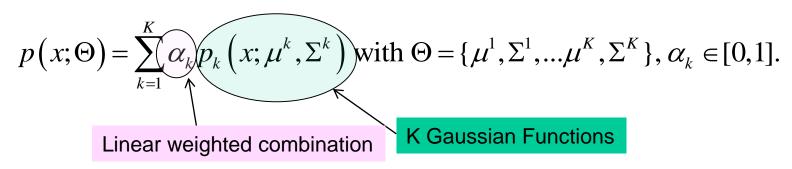
Expectation-Maximization

Mixture of Gauss Functions



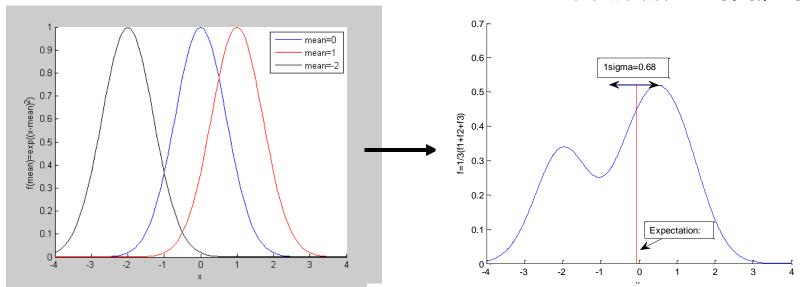


Combination of K Gauss functions



Mixture of Gauss Functions

Here we use K = 3, $\alpha_1 = \alpha_2 = \alpha_3$



Superposition of the 3 Gauss functions with equal weight.

Combination of K Gauss functions

To find the optimal parameters: $\max_{\Theta} L(\Theta \mid X) = \max_{\Theta} p(X \mid \Theta)$

$$p(x;\Theta) = \sum_{k=1}^{K} \alpha_k p_k \left(x; \mu^k, \Sigma^k \right) \text{ with } \Theta = \{\mu^1, \Sigma^1, ..., \mu^K, \Sigma^K\}, \alpha_k \in [0,1].$$
 Linear weighted combination K Gaussian Functions

Gaussian Mixture Modeling with E-M

E-M searches for optimum of the likelihood of the model given the data, i.e.:

$$\max_{\Theta} L(\Theta \mid X) = \max_{\Theta} p(X \mid \Theta)$$

The parameters of a GMM are the means, covariance matrices and priors:

$$\Theta = \left\{ \mu^1, \dots, \mu^K, \Sigma^1, \dots, \Sigma^K, \alpha_1, \dots, \alpha_K \right\}$$

Gaussian Mixture Modeling with E-M

One usually can safely assume that the datapoints are i.i.d. (identically and independently distributed).

$$\max_{\Theta} p(X | \Theta) = \max_{\Theta} \prod_{i=1}^{M} \sum_{k=1}^{K} \alpha_k \cdot p(x^i; \mu^k, \Sigma^k)$$

Computing the log of the likelihood yields the same optimum:

$$\max_{\Theta} p(X | \Theta) = \max_{\Theta} \log p(X | \Theta)$$

$$\max_{\Theta} \log \prod_{i=1}^{M} \sum_{k=1}^{K} \alpha_k \cdot p(x^i; \mu^k, \Sigma^k) = \max_{\Theta} \sum_{i=1}^{M} \log \left(\sum_{k=1}^{K} \alpha_k \cdot p(x^i; \mu^k, \Sigma^k) \right)$$

No closed-form solution → Solve through Expectation-Maximization (E-M) E-M is an *iterative* procedure to estimate the best set of parameters It converges to **a local optimum** → Sensitive to initialization!

See derivation of E-M for GMM in the annexes posted on the website

Expectation-Maximization (E-M)

EM is an iterative procedure:

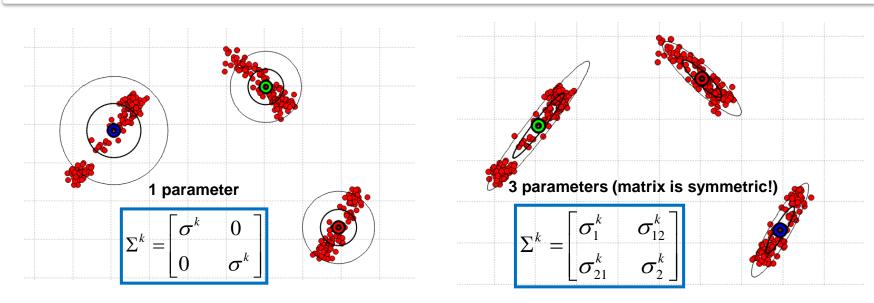
- 0) Make a guess, pick a set of $\widehat{\Theta}$ (initialization)
- 1) Compute likelihood $L(\hat{\Theta} | X, Z)$ (E-Step)
- 2) Update Θ by gradient ascent on $L(\Theta | X, Z)$
- 3) Iterate between steps 1 and 2 until reach plateau (no improvement on likelihood)

Ensured to converge to a local optimum only!

Tradeoff between computation costs and better fit

- ☐ A GMM can fit very closely the local distribution of datapoints.
- ☐ But this comes at the cost of an increase in the number of parameters

Full covariance matrices require N*(N+1)/2 parameters against N for diagonal matrices and 1 for spherical matrices.



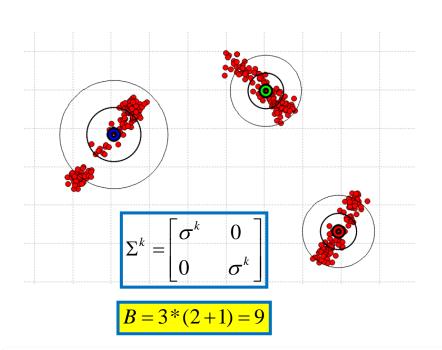
How to determine the best mixtures of Gaussians?

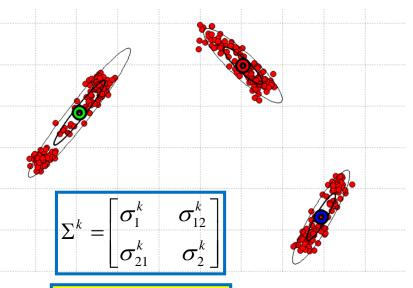
Hyper-parameter optimization in GMMs

The selection is performed using the AIC and BIC criteria.

$$AIC = -2\ln(L) + 2B$$
$$BIC = -2\ln(L) + \ln(M)B$$

B: number of parameters of the mixture.

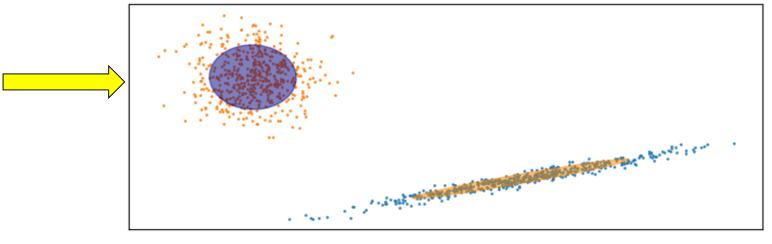


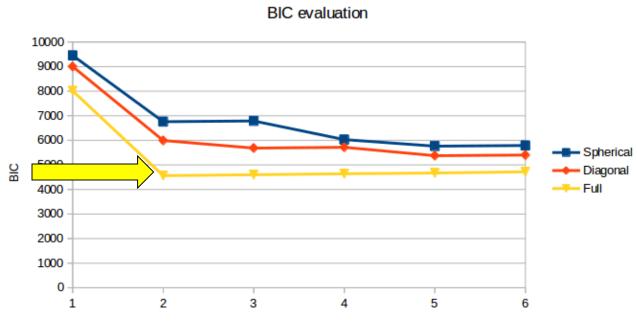


B = 3*(2+3) = 15

B depends on the choice of covariance matrix

Hyper-parameter optimization in GMMs Selected GMM: full model, 2 components





Number of mixtures