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Overview

TEPFL

Review the presented ML methods
Exam preparation
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ML methods in this course

TEPFL

Regression

o Ordinary Least Square Regression
Weighted Least Square Regression
Locally Weighted Regression
Support Vector Regression
Gaussian Mixture Regression

Structure Discovery

o PCA,ICA

o Clustering
Classification
Bayes Rule and GMM
k-Nearest Neighbor
Support Vector Machine
Neural Networks

Model Evaluation
o Unsupervised
e Semi-supervised
e Supervised
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Structure Discovery

TEPFL

Find structure by projecting or grouping the data from the original space
into another space of lower dimension

Data Projection — PCA -> Determine correlations
Data Projection — ICA — Determine latent stati. indep. sources

Projected space highlights particular features common to subsets of
datapoints

PCA / ICA are usually a preprocessing step

Group Datapoints — Clustering — Dimensionality reduction
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|
PCA — Definition - EPFL

Two equivalent definitions:

the orthogonal projection of the data onto a lower dimensional linear
space such that the variance of the projected data is maximized

the linear projection that minimizes the reconstruction error, defined
as the mean squared distance between the data points and their
projections

Given a set X € R™*" of m datapoints with n dimensions. PCA finds a
mapping A € R"*" such as: Y = AX

min [~y — | o

Solutions are eigenvectors of the centered data covariance matrix C :
Ce = Xe
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PCA — Eigenvectors - EPrL

I 1st PCA projection Smallest breadth of
X, X, /" data lost
2nd PCA projection Largest breadth of
data conserved

X 1 Data after projecting on 1% PCA projection

1st eigenvector points towards the direction with largest variance.
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PCA — Eigenvalues - EPrFL

Each eigenvector has an associated eigenvalue
The eigenvalues provide a relative measurement of the variance along each
eigenvector

Ai
PR

Dimensionallity reduction is performed based on the cumulative
percentage of explained variance.

()

% of explaned variance along ¢; =
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PCA — Dimensionality reduction

Find the first g eigenvectors that explain a

% Cumulative Variance Explained

Y =AX, Y € R"*9 where g < n

desired percentage of the variance

1
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Eigenvector index

reduced
A€ Jaxa

dimensionality
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S
cPrL

ICA — Dimensionality reduction

S

N-dimensional observation vector x e RY, N =3.

. . . N
x was generated by a linear combination of N sources, s € R™.

x=As, mixing matrix 4: Nx N

ICA uncovers both 4 and s.
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ICA — Dimensionality reduction

=PrL

The distribution of s is non-Gaussian.

Find sources how joint distribution optimizes
a measure of non-gaussianity

Negentropy or Kurtosis
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ICA — Sources identification

=PrL

ICA Estimation proceeds through two preprocessing
steps, following by an iterative procedure:

Preprocessing steps:
+ Centering (mean=0)

¢ Whitening (variance =1)

Iterative procedure:

+ Hstimate each component iteratively by gradient descent on non-
ganssianity measure.

+ Proceed to a decorrelation to ensure that each component is
distinet.
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Clustering

TEPFL

Unsupervised Learning - unsupervised classification:
We know neither the number of classes, nor
which class the datapoints belong to.

o Goal: Assign similar samples to the same groups (clusters)
@ Methods: k-Means, Soft k-Means, DBSCAN, GMM
e Evaluation RSS, BIC, AIC and F1-Measure

What makes a good cluster?
Maximize inner-cluster similarity while minimize inter-cluster similarity
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Clustering — Methods

T EPFL

k-Means | Soft k-means DBSCAN
h k k, 8 €,min samples in cluster
yper-parameters Lp-norm Lp-norm Lp-norm
Training EM EM Samples’ Density based
Clusters Globular Globular Arbitrary Shaped
Samples’ Assignment Hard Soft Hard
Comp. Complexity || O(K*M) O(K*M) O(M*log(M))
Noise Detection No No Yes
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Clustering — k-Means

TEPFL

K
Goal: Minimize J = > > ||xi — pll5

k=1 x;€ck
Find center of each cluster px

Unknown samples that belong to each cluster (x; € cx)

Solution: Expectation Maximization algorithm

Expectation:  Assign each sample to a cluster (x; € c)
Maximization: Update cluster means

Repeat until convergence
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Clustering — Expectation Maximization (k-means)

TEPFL

Expectation: Assign each sample to a cluster (x; € ck)

K-Means: soft K-Means:
0 otherwise LY wexp(—p - d (pkes xi))
ki :arglnin {d(xivlu'k)} rik € [Oa 1]7ﬁ€ R
Maximization: Update cluster means i,
rlx;
Mk = Z
EI fi

Repeat until p} ~ uk
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TEPFL

Clustering — Soft K-means, impact of

&
@
:

(a) small B (b) large 8
e 4 £ &
* ° 1# @ ¢ ® #
p=1 B=5
- e
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Clustering — Soft K-means, EM - ePFL

(C) Dataset (d) Initialization of soft k-means

How will the clusters centers move with iterations of EM algorithm?
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Clustering — DBSCAN - ePrL

Hyper-parameters €, min samples in cluster (mins)

Pick un-clustered sample
Find neighbors within ¢

o If num neighbor < ming t
then outlier .
o else Assign neighbors in % e ® ., .
cluster o o @ .
o If neighbor cluster exists @
then merge
. . Xq

Repeat until all assigned to
clusters or noise
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Clustering — Algorithm selection

TEPFL

Which algorithm would you select for each of those datasets?

& og.
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Clustering — Gaussian Mixture Model

TEPFL

Probabilistic alternative to k-Means

K
= 3 e (e i)

k=1

where a, mixing coefficients >, =1
and iy, X, parameters of each component

Maximize the log-likelihood In (£ (©|X)):

£(@Ix) = zln{zaw . uk,m}
m=1

No closed form solution, apply Expectation-Maximization algorithm
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Clustering — GMM — EM algorithm - EPrFL

1. k-Means initialization of p,,random initialization of ¥, and ay
2. E step: Evaluate responsibilities

ko arN (Xi; ok, Xk)
' Do ak/N(x,-;,uQ(,Z;()

3. M step: Given current estimate, maximize the log-likelihood

M
1 B My
Nkzwélfix,' o = —
1=

M

Y=y > k(i = ) (6 — ) "
i—1

M
where: My =>"r,
i=1

Iterate E-M until convergence
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Clustering — GMM — EM algorithm
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Figure: Step of E-M algorithm for GMM.Pattern Recognition and Machine Learning,

C.Bishop p.[437]
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Clustering — GMM - type of Covariance

TEPFL

Hyper-parameters: Number of Gaussian components, type of covariance
Matrix (Spherical, Diagonal, Full)

(a) (b) (c)
Which type of covariance would lead to

largest likelihood ?
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Classification - EPrL

Supervised learning with nominal target values

Goal: Find decision boundary the separates the classes
Methods: GMM with Bayes rule, k-NN and SVM
Evaluation: Cross-validation

Performance Metrics: Classification error, F-Measure.

OCieys 8
@ class 1

. Decision
boundary
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Classification: Bayes Rule

TEPFL

Model: p (C = c|x) with Bayes Rule:

p(C = S)p(xIC = ¢)

p(C = clx) = 0

p(C =c) — probability of class C
p(x|C =c) — How samples are distributed within class ¢
p(x) — Distribution of data (independent of class)

p(C = c|x) < p(C = c)p(x|C = c)

Decision Boundary:

P(C=1]x)=p(C=2x)
if p(C = 1) = p(C =2) then p(x.|C =1) = p(x|C =1)
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Classification — Bayes Rule and GMM

Model: p(x|C = ¢) as GMM :

TEPFL

K
p(XIC=c)=>_ afN (x; i, Xf)
k=1
For each class fit a GMM using EM algorithm.

GMM classification with different number of components
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Classification — k-NN - ePrL

Ne
p(C = clx, K) = =&

Nc.k — Number of samples of class c included in K nearest neighbors
K — Number of nearest neighbors (hyper-parameter)

Advantages

e Simplicity

o No assumptions regarding the distribution of data
Disadvantages

o Curse of dimensionality
e High computational complexity in testing
o Large Impact of K
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Classification — k-NN
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Classification — SVM - ePrL

Model:
y = f(x;w,b) = sgn (wx + b)
Yi = {_15 1}

Goal: Find w, b that maximize the
margin and classify all instances
correctly (Hard-margin SVM)

.1 2
min 3wl
subject to:
T .
(y,- <W Xi + b)) > 1Vi
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Classification — SVM — Dual problem

TEPFL

Use Lagrange duality for computational efficiency
Ease applicability of the kernel trick for nonlinear problem

Primal: Lagrangian:
mpglwlP
7 (w.b.2) = 5 [lw]*~>_ o (y,- (W x,-+b)—1)
subject to: =1
. subject to:
(yi<w X;+b)>21 a;j>0,i=1.M

Dual problem :(max (min L(w, b, a)>)

a>0 w,b
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Classification — SVM — Dual problem

Dual problem :<max <min L(w,b, a)))
a>0

w,b

min L (w, b,a) — 2 B L' — 0 and ‘9" =0

w,b

M

=0—->w= E Q;jYiX;
i=1

oL
ow

M
oL
asz—)E}a;y,-zO

Replacing w at the Lagrangian we get the dual problem
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Classification — SVM — Dual problem

TEPFL

Use Lagrange duality for computational efficiency
Ease applicability of the kernel trick for nonlinear problem

Dual:
Primal: N Yo
T
min = [|w]|? max(W) = Zo‘i - Z Zaiajyfyj(xf X;)
i=1 i=1 j=1

w,b 2

subject to: subject to:
T n
(}/i (w x;+b>) >1 aj > 0 and Za,-y,-:O,izl,,M

i=1

Find optimal o with Sequential Minimal Optimization (SMO) algorithm
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TEPFL

Classification — SVM — KKT conditions

Given optimal solutions a, the KKT conditions apply

oL _
g—zl =0

o5 =0 _

o (yi (WTX,' + b) — 1) = 0 — Defines when a vector is a support vector
Vi (WTX,' + b) — 1 = 0 — Requires all the samples to be correctly classified
a; >0
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Classification — Soft margin SVM - EPFL

No solution of hard-margin SVM for overlapping classes

Introduce some slack on the constraints This allows SVMs to misclassify
some samples or reduce the margin of error (data points are allowed to
be on the wrong side of or inside the margin)

Primal:
M
C .
n?|n2]|w|\2+M;§, o
subject to: )

(v (whxi+b)) 2 1-¢

C is the cost of miss-classification. Defines a trade-off between the
maximization of margin and minimization of slack
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Classification — Soft margin SVM

Sort the following models in decreasing C
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Classification — Kernel SVM - ePFL

Linear SVM cannot deal with non-linearly separable classes

M
y = f(x; w, b) = sgn ( aiyix; x + b>
1

=

Linearly inseparable problem become linearly separable in higher dimension
space.

Apply kernel trick.

Decision function :

i=1

M
y = f(x; w,b) =sgn (Z a;yik (xi, %) + b)

RBF (Gaussian) kernel: k (xi, xj) = exp (—%)
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Classification — Kernel SVM - ePFL

Which model has largest kernel width?
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— “EPFL
egression

Supervised learning with continuous target values y

Goal: Find f(-) such as: y = f(x) + ¢

Methods: Linear, Weighted, Locally weighted, SVR and GMR
Evaluation: Cross-validation

Performance Metrics:Mean Squared error
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Regression — Ordinary Least Squares - EPrFL

Model: y = w'x+ b

M

Goal: Minimize Least Square Error — J = ) % (WTX,' - y;)2
i=1

Solution: w = (XXT) ™! Xy
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Regression — Weighted Least Squares - ePFL

Introduce weight 3; to the error of samples
Model: y =w'x+ b
M
Goal: Minimize Least Square Error — J = > %B,- (WTX,' — y,-)2

i=1
Solution: w = (ZZT)_1 Zv, where: Z = XBY/2 and v = 81/2y

o @ @

Prediction error of samples in circles have higher weight



Regression: OLS vs WLS - EPrL

— OLS
500 4 — WLS

400 A

3004 Manysamples with
low variability = high
weight in WLR

A
100 { \

200

J

T T T
40 60 80 100 120 140 YlﬁO 180

Fewer samples with
large variability = Low
weight in WLR



Regression — Locally Weighted Regression (LWR) - EPrFL

Estimates linear dependencies locally

LWR performs regression analysis by fitting models locally
Local models allow to estimate more complex regression functions.

It is memory based i.e. Requires the training data for predictions
Define weighting function §; = exp (—HX’Z%‘);*”

Wy, = (XBXT) XBy
B is a diagonal matrix with elements b;

Y = Wx, X«



Regression — Locally Weighted Regression (LWR) - EPrL

The RBF defines the weight of each x; on a regression model specific for x,

y y
1) ,oif .
. -
. D X: query point .
‘. . T)(:queryrpc:int 4 rul
¥(x)
1

A local weighted model is built for each query point x,



Regression — Support Vector Regression

TEPFL

Model: y = f (x) = w'x+ b
Goal: Minimize epsilon insensitive loss :

_{oww—ﬂ@gd

ly — f(x)| — € otherwise

Penalize only data points with prediction error more than ¢
(hyper-parameter)

1 C <
min2||w||2+M§; &+§)

Need to penalize
points outside 7
the e-insensitive e °
tube.

subject to:

f(xi) —yi <e+&

yf_f(xi)§6+§i7€i7§?20 ,
]



Regression — Support Vector Regression

TEPFL

Solution is given by the dual optimization problem using the Lagrangian
At the optimal solution (KKT conditions):

M M
> =) qf
i=1 i=1

Support vectors should be balanced in both sides of e—tube

M

w = Z(a; — Qj*)X;

i=1

Linear combination of support vectors

Support vectors « # 0 are located on or out of the epsilon tube.



Regression — SVR kernel trick - ePrL

Apply kernel trick to achieve non-linear regression
M

y =f(x) = Z(a; —ajx)k(xi,x)+ b

i=1

AN,
VY WL

= a‘;*l —l a, =

Away from support vectors prediction converges to b (y)

1 M M
=N > (y,- — > (i —aix)k (><j=Xi)>
j

i
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Regression — SVR hyper-parameters

TEPFL

Which hyper-parameter (e, kernel width) has changed and how?




-
Regression — SVR hyper-parameters

TEPFL

Which hyper-parameter (e, kernel width) has changed and how?




Regression — GMR - EPrL

Fit a GMM in the whole dataset

K
Model: p(x,y) ~ > axN (X, tk, Zk)

k=1
Goal: Estimate regressive signal p(y|x) = %

K
Prediction: : y = E {p(y|x)} = 3 fi (x) 1, .(x)

k=1
Variance: a weighted combination of the variances of the components
around the weighted mean




Regression — GMR =PrL

How many parameters for the fit?

TAS




Regression — GMR vs SVR - EPrFL

GMR or SVR?

GMR better suited to encapsulate the variance of this dataset





