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Structure Discovery

PCA, ICA 
Clustering

Classification

Bayes Rule and GMM
k-Nearest Neighbor
Support Vector Machine
Neural Networks

Regression

Ordinary Least Square Regression
Weighted Least Square Regression
Locally Weighted Regression 
Support Vector Regression
Gaussian Mixture Regression

Model Evaluation

Unsupervised
Semi-supervised
Supervised
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ML methods in this course



Structure Discovery

Find structure by projecting or grouping the data from the original space
into another space of lower dimension

Data Projection → ICA → Determine latent stati. indep. sources

Projected space highlights particular features common to subsets of
datapoints

PCA / ICA are usually a preprocessing step

Group Datapoints → Clustering → Dimensionality reduction
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Data Projection → PCA -> Determine correlations
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PCA – Definition

Two equivalent definitions:

the orthogonal projection of the data onto a lower dimensional linear
space such that the variance of the projected data is maximized

the linear projection that minimizes the reconstruction error, defined
as the mean squared distance between the data points and their
projections

Given a set X ∈ <m×n of m datapoints with n dimensions. PCA finds a
mapping A ∈ <n×n such as: Y = AX

min
A

∣∣∣∣A−1y − x
∣∣∣∣ (1)

Solutions are eigenvectors of the centered data covariance matrix C :
Ce = λe
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PCA – Eigenvectors

1st eigenvector points towards the direction with largest variance.

6 / 53Machine Learning I (EPFL)



PCA – Eigenvalues

Each eigenvector has an associated eigenvalue
The eigenvalues provide a relative measurement of the variance along each

eigenvector

% of explaned variance along ei =
λi∑n
i λi

(2)

Dimensionallity reduction is performed based on the cumulative
percentage of explained variance.
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Find the first q eigenvectors that explain a
desired percentage of the variance

A ∈ <n×n reduced−−−−−−−−→
dimensionality

A ∈ <q×q

Y = AX , Y ∈ <m×q where q � n
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PCA – Dimensionality reduction



ICA – Dimensionality reduction
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ICA – Dimensionality reduction
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ICA – Sources identification
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Unsupervised Learning - unsupervised classification:
We know neither the number of classes, nor

which class the datapoints belong to.

Goal: Assign similar samples to the same groups (clusters)

Methods: k-Means, Soft k-Means, DBSCAN, GMM

Evaluation RSS, BIC, AIC and F1-Measure

What makes a good cluster?
Maximize inner-cluster similarity while minimize inter-cluster similarity
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Clustering
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k-Means Soft k-means DBSCAN

hyper-parameters
k k, β ε,min samples in cluster

Lp-norm Lp-norm Lp-norm

Training EM EM Samples’ Density based

Clusters Globular Globular Arbitrary Shaped

Samples’ Assignment Hard Soft Hard

Comp. Complexity O(K*M) O(K*M) O(M*log(M))

Noise Detection No No Yes
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Clustering – Methods
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Goal: Minimize J =
K∑

k=1

∑
xi∈ck

||xi − µk ||2

Find center of each cluster µk

Unknown samples that belong to each cluster (xi ∈ ck)

Solution: Expectation Maximization algorithm

Expectation: Assign each sample to a cluster (xi ∈ ck)

Maximization: Update cluster means µk

Repeat until convergence
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Clustering – k-Means
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Expectation: Assign each sample to a cluster (xi ∈ ck)

K-Means:

rki =

{
1 if ki = k

0 otherwise

ki = argmin
k
{d (xi , µk)}

soft K-Means:

rki =
exp(−β · d (µk , xi ))∑
k ′ exp(−β · d (µk ′ , xi ))

rki ∈ [0, 1] , β ∈ <
Maximization: Update cluster means µk

µk =

∑
i r

k
i xi∑
i ri

Repeat until µtk ≈ µ
t−1
k
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Clustering – Expectation Maximization (k-means)
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(a) small β (b) large β
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Clustering – Soft K-means, impact of β
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(c) Dataset (d) Initialization of soft k-means

How will the clusters centers move with iterations of EM algorithm?
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Clustering – Soft K-means, EM
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Hyper-parameters ε, min samples in cluster (mins)

Pick un-clustered sample

Find neighbors within ε

If num neighbor < mins

then outlier
else Assign neighbors in
cluster

If neighbor cluster exists
then merge

Repeat until all assigned to
clusters or noise
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Clustering – DBSCAN
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Which algorithm would you select for each of those datasets?

(e) (f) (g)
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Clustering – Algorithm selection
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Probabilistic alternative to k-Means

p (x) =
K∑

k=1

αkN (x ;µk ,Σk)

where ak mixing coefficients
∑

k = 1
and µk ,Σk parameters of each component

Maximize the log-likelihood ln (L (Θ|X )):

ln (L (Θ|X )) =
M∑

m=1

ln

{
K∑

k=1

αkN (x ;µk ,Σk)

}

No closed form solution, apply Expectation-Maximization algorithm
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Clustering – Gaussian Mixture Model
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1. k-Means initialization of µk ,random initialization of Σk and αk

2. E step: Evaluate responsibilities

rki =
αkN (xi ;µk ,Σk)∑
k ′ αk ′N

(
xi ;µ′k ,Σ

′
k

)
3. M step: Given current estimate, maximize the log-likelihood

µk =
1

Mk

M∑
i=1

rki xi αk =
Mk

M

Σk =
1

Mk

M∑
i=1

rki (xi − µk) (xi − µk)T

where: Mk =
M∑
i=1

r ik

Iterate E-M until convergence
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Clustering – GMM – EM algorithm
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Figure: Step of E-M algorithm for GMM.Pattern Recognition and Machine Learning,
C.Bishop p.[437]
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Clustering – GMM – EM algorithm
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Hyper-parameters: Number of Gaussian components, type of covariance
Matrix (Spherical, Diagonal, Full)

(a) (c)(b)

Which type of covariance would lead to 

largest likelihood ?
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Clustering – GMM – type of Covariance
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Supervised learning with nominal target values

Goal: Find decision boundary the separates the classes
Methods: GMM with Bayes rule, k-NN and SVM
Evaluation: Cross-validation
Performance Metrics: Classification error, F-Measure.
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Classification
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Model: p (C = c|x) with Bayes Rule:

p (C = c |x) =
p(C = c)p(x |C = c)

p(x)

p(C = c)→ probability of class C
p(x |C = c)→ How samples are distributed within class c

p (x)→ Distribution of data (independent of class)

p (C = c |x) ∝ p(C = c)p(x |C = c)

Decision Boundary:

p (C = 1|x∗) = p (C = 2|x∗)

if p(C = 1) = p(C = 2) then p(x∗|C = 1) = p(x∗|C = 1)
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ClassificationClassification: Bayes Rule
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Model: p(x |C = c) as GMM :

p (x |C = c) =
K∑

k=1

αc
kN (x ;µck ,Σ

c
k)

For each class fit a GMM using EM algorithm.

GMM classification with different number of components
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Classification – Bayes Rule and GMM
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p(C = c|x∗,K ) =
Nc,K

K

Nc,K → Number of samples of class c included in K nearest neighbors
K → Number of nearest neighbors (hyper-parameter)

Advantages

Simplicity
No assumptions regarding the distribution of data

Disadvantages

Curse of dimensionality
High computational complexity in testing
Large Impact of K

Applied Machine Learning (EPFL) 24 / 53

Classification – k-NN
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Classification – k-NN
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Model:
y = f (x ;w , b) = sgn

(
wT x + b

)
yi = {−1, 1}

Goal: Find w , b that maximize the
margin and classify all instances
correctly (Hard-margin SVM)

min
w ,b

1

2
||w ||2

subject to:(
yi

(
wT xi + b

))
≥ 1∀i
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Classification – SVM
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Classification – SVM – Dual problem

Use Lagrange duality for computational efficiency 
Ease applicability of the kernel trick for nonlinear problem

Primal:

min
w ,b

1

2
||w ||2

subject to:(
yi

(
wT xi + b

))
≥ 1

Lagrangian:

L(w , b, a) =
1

2
||w ||2−

M∑
i=1

αi

(
yi

(
wT xi + b

)
− 1
)

subject to:
αi ≥ 0, i = 1..M

Dual problem :

(
max
a≥0

(
min
w ,b

L (w , b, a)

))
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Classification – SVM – Dual problem
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Classification – SVM – Dual problem

Dual problem :

(
max
a≥0

(
min
w ,b

L (w , b, a)

))
min
w ,b

L (w , b, a)→ ∂L
∂w = 0 and ∂L

∂b = 0

∂L

∂w
= 0→ w =

M∑
i=1

αiyixi

∂L

∂b
= 0→

M∑
i=1

αiyi = 0

Replacing w at the Lagrangian we get the dual problem
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Classification – SVM – Dual problem
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Use Lagrange duality for computational efficiency 
Ease applicability of the kernel trick for nonlinear problem

Primal:

min
w ,b

1

2
||w ||2

subject to:(
yi

(
wT xi + b

))
≥ 1

Dual:

max
a≥0

(W ) =
M∑
i=1

αi −
M∑
i=1

M∑
j=1

αiαjyiyj(x
T
i xj)

subject to:

αi ≥ 0 and
n∑

i=1

αiyi = 0, i = 1..M

Find optimal α with Sequential Minimal Optimization (SMO) algorithm

Applied Machine Learning (EPFL) 29 / 53

Classification – SVM – Dual problem
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Given optimal solutions α∗ the KKT conditions apply

∂L
∂w = 0
∂L
∂b = 0
αi

(
yi
(
wT xi + b

)
− 1
)

= 0→ Defines when a vector is a support vector
yi
(
wT xi + b

)
− 1 = 0→ Requires all the samples to be correctly classified

αi ≥ 0

Applied Machine Learning (EPFL) 30 / 53

Classification – SVM – KKT conditions
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No solution of hard-margin SVM for overlapping classes

Introduce some slack on the constraints This allows SVMs to misclassify
some samples or reduce the margin of error (data points are allowed to 
be on the wrong side of or inside the margin)

Primal:

min
w ,b,ξ

1

2
||w ||2 +

C

M

M∑
i=1

ξi

subject to:(
yi

(
wT xi + b

))
≥ 1− ξi

C is the cost of miss-classification. Defines a trade-off between the
maximization of margin and minimization of slack
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Classification – Soft margin SVM
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Sort the following models in decreasing C

(f) (g)

(h)
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Classification – Soft margin SVM
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Linear SVM cannot deal with non-linearly separable classes

y = f (x ;w , b) = sgn

(
M∑
i=1

αiyix
T
i x + b

)
Linearly inseparable problem become linearly separable in higher dimension
space.

Apply kernel trick.

Decision function :

y = f (x∗;w , b) = sgn

(
M∑
i=1

αiyik (xi , x∗) + b

)

RBF (Gaussian) kernel: k (xi , xj) = exp
(
− ||xi−xj ||

2

2σ2

)
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Classification – Kernel SVM
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Which model has largest kernel width?

(i) (j)

Applied Machine Learning (EPFL) 34 / 53

Classification – Kernel SVM
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Supervised learning with continuous target values y

Goal: Find f (·) such as: y = f (x) + ε
Methods: Linear, Weighted, Locally weighted, SVR and GMR
Evaluation: Cross-validation
Performance Metrics:Mean Squared error
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Regression
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Model: ŷ = wT x + b

Goal: Minimize Least Square Error → J =
M∑
i=1

1
2

(
wT xi − yi

)2
Solution: ŵ =

(
XXT

)−1
Xy
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Regression – Ordinary Least Squares
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Introduce weight βi to the error of samples

Model: ŷ = wT x + b

Goal: Minimize Least Square Error → J =
M∑
i=1

1
2βi
(
wT xi − yi

)2
Solution: ŵ =

(
ZZT

)−1
Zv , where: Z = XB1/2 and v = B1/2y

Prediction error of samples in circles have higher weight
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Regression – Weighted Least Squares
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Regression – OLS vs WLS
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Regression: OLS vs WLS



Estimates linear dependencies locally

LWR performs regression analysis by fitting models locally

Local models allow to estimate more complex regression functions.

It is memory based i.e. Requires the training data for predictions

Define weighting function βi = exp
(
− ||xi−x∗||

2σ2

)
ŵx∗ =

(
XBXT

)
XBy

B is a diagonal matrix with elements bi

ŷ = wx∗x∗
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Regression – Locally Weighted Regression (LWR)



The RBF defines the weight of each xi on a regression model specific for x∗

A local weighted model is built for each query point x∗
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Regression – Locally Weighted Regression (LWR)



Model: ŷ = f (x) = wT x + b
Goal: Minimize epsilon insensitive loss :

L =

{
0 if |y − f (x) ≤ ε|
|y − f (x)| − ε otherwise

Penalize only data points with prediction error more than ε
(hyper-parameter)

min
1

2
||w ||2 +

C

M

M∑
i=1

(ξi + ξ∗i )

subject to:

f (xi )− yi ≤ ε+ ξ∗i

yi − f (xi ) ≤ ε+ ξi , ξi , ξ
∗
i ≥ 0
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Regression – Support Vector Regression



Solution is given by the dual optimization problem using the Lagrangian
At the optimal solution (KKT conditions):

M∑
i=1

αi =
M∑
i=1

α∗i

Support vectors should be balanced in both sides of ε−tube

w =
M∑
i=1

(αi − αi∗)xi

Linear combination of support vectors

Support vectors α 6= 0 are located on or out of the epsilon tube.
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Regression – Support Vector Regression



Apply kernel trick to achieve non-linear regression

y = f (x) =
M∑
i=1

(αi − αi∗)k (xi , x) + b

Away from support vectors prediction converges to b (ȳ)

b =
1

M

M∑
j

(
yj −

M∑
i

(αi − αi∗)k (xj , xi )

)
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Regression – SVR kernel trick



Which hyper-parameter (ε, kernel width) has changed and how?
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Regression – SVR hyper-parameters



Which hyper-parameter (ε, kernel width) has changed and how?
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Regression – SVR hyper-parameters



Fit a GMM in the whole dataset

Model: p(x , y) ∼
K∑

k=1

αkN (x , y ;µk ,Σk)

Goal: Estimate regressive signal p(y |x) = p(x ,y)
p(x)

Prediction: : y = E {p(y |x)} =
K∑

k=1

βk (x)µky |x(x)

Variance: a weighted combination of the variances of the components
around the weighted mean
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 Regression  – GMR



Regression – GMR



GMR or SVR?
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GMR or SVR?GMR or SVR?

GMR better suited to encapsulate the variance of this dataset

Regression – GMR vs SVR




