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Comparison Across Methods

SVR Generalization – prediction away from datapoints
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Comparison Across Methods

GMR Generalization – prediction away from datapoints

GMR predicts the trend away from data
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Comparison Across Methods

Generalization – prediction away from datapoints

The prediction away from the datapoints is affected by all 

regressive models. It may become meaningless! 
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Variance in p(y|x) in GMR represents the 

modelled uncertainty of the value of y. It is not 

a measure of the uncertainty of the model.

Variance in SVR represents the epsilon-tube, the 

uncertainty around the predicted value of y.  It does 

not represent uncertainty of the model either! 
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SVR, GMR: Similarities

SVR and GMR end up with a similar regressive model    
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SVR, GMR: Similarities

SVR and GMR compute a weighted combination of local predictors

Both separate input space into regions modeled by Gaussian

distributions (true only when using Gaussian/RBF kernels for SVR).

Model computed locally (locally weighted regression)!
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SVR, GMR:  Differences

GMR allows to predict multi-dimensional outputs, while SVR can 

predict only a uni-dimensional output y.
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SVR and GMR do not optimize the same objective function 

 They often find different solutions.

 SVR: 

• minimizes the error through convex optimization

 ensured to find the optimal estimate; but not unique solution

• usually finds a nm of models <= nm of datapoints (support vectors)

 GMR: 

• learns p(x,y) through maximum likelihood 

 finds local optimum

• starts with a low nm of models << nm of datapoints

SVR, GMR:  Differences
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Hyperparameters of SVR, GMR

SVR and GMR depend on hyperparameters that need to be determined  

beforehand. These are:

• SVR 

• choice of error margin  and penalty factor C.

• choice of kernel and associated kernel parameters

• GMR: 

• choice of the number of Gaussians

• choice of initialization (affects convergence to local optimum)

The hyperparamaters can be optimized separately; e.g. the nm of Gaussians in GMR

can be estimated using BIC; the kernel parameters of SVR can be optimized through

grid search.



MACHINE LEARNING – 2012

11

MACHINE LEARNINGAPPLIED MACHINE LEARNING

Conclusion

No easy way to determine which regression technique fits best your problem

SVR

GMR
Grows O(K)

SVR

Training Testing

Grows 

O(number of SV)

Few SV - Small fraction 

of original data

Convex optimization

(SMO solver)

Parameters grow O(M*N)

GMR
EM, iterative technique, 

needs several runs

Parameters grow O(K*N2)

M: number of datapoints; N: Dimension of data; K: Number of Gauss Functions in GMM model


