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Clustering Principle

Start with a set of datapoints

Algorithm does not know the true labels

It knows neither the number of groups nor
what regroup datapoints

After PCA projection,

Groups are easier to tell apart

Clustering methods will automatically
find how to regroup points.
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Clustering Principle

Clustering can be used as:

o Feature extraction method: for identifying underlying structure in data
and salient features, best visualized through cluster prototype.

o Compression method: for organizing the data and summarizing it
through cluster prototypes.

A cluster prototype can be:
= Atypical datapoint, best representative of the cluster
= The average (centroid) of the datapoints in the cluster
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Clustering, features, metrics

Which subgroups of pictures are similar and why?
High intra-class similarity is necessary

for achieving a good clustering
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Clustering Principle

Groups of points are said to belong to the same cluster
if they are similar enough.

- measure of similarity.

K-Means and soft-K-means minimize a measure of distance of all
datapoints attached to the cluster to its centroid, using norm-p.

p N P

Measure of distance: d(x',u*) = z (o} — )|

i=1

DBSCA uses a lower bound on norm-2 (size of ball) and on number of
datapoints to decide on cluster assignment.@
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedmi2020

© & G https://participant turningtechnologies.eu/en/join oo v IiND & =

ﬁ? TurningPoint Nsignin - @

Hello Guest!

appliedmI2020

Join Session
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When is intra-class similarity
the highest ?
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A. when one classifies images of
faces with and without glasses;

B. when one classifies images of
personl against person2.
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U Personl without glasses

U Person2 with glasses

Intra-class
~ similarity low

o Inter-class
E similarity low .
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Inter-class similarity is lower than o 9
intra-class similarity when one Y

classifies images of personl 3
against person2, for one of the 2 .1 o0 e oz o3 o4 o5 05 o7 o3 09 io it
persons Projection onto first two principal components after PCA

: Intra-class
Intra-class similarity is low when similarity high similarity
classifying persons with glasses
vs persons without glasses,

especially for person2.
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Projection along e’
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Would K-means (with K=2 and
norm-2) be able to separate
the two persons correctly?

A. Yes, always
B. Yes, sometimes

C. No, always -
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Projection onto first two principal components after PCA

10



Applied Machine Learning EPFL

.C)
[+:]

o
o

[2)]

0:5 N
§° °
Nn=2 .
%
0r & o
® e
0:1 a
0.0 Oil 0.2 0.3 0.4 0.5 06 0.7 0.8 08 1.0

Would K-means (with K=2 and
norm-2) be able to separate the
two persons correctly?

Yes, sometimes

11



Applied Machine Learning EPFL

0.8
0.7
@
0.6
@
0:5 <t
@ ®
[ 3
U ‘
&
- .
2 |
0 [ ]
_ 0o 0:1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09.10

Would K-means (with K=2 and
norm-2) be able to separate the
two persons correctly?

Yes, sometimes

12
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48.57%

U Personl without glasses

U Person2 with glasses

25.71% 25.71%
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Would K-means (K=2) with .
other L-p norms be able to ., { .
separate the two persons .
Correctly alWayS? . -0.1 0.0 0.1 0:2 0:3 04 0.5 0.6 0.7 0:8 09‘ 1.0 11
A. Yes
B. No

C. 1ldo not know -
13
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Would K-means (K=2) with
other L-p norms be able to Linf
separate the two persons

correctly always?

In general, NO. The decision boundary is determined by the positioning of the
centroids, which are influenced by a) the ratio across intra-cluster distance / inter-
cluster distance and b) their position at initialization.

The p of the norm changes the softness of the boundary.

14
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74.03%
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Would soft K-means be able
to separate the two persons L

correctly with a large B for a .

good initialization ? r;
A. Yes
B. No (=a sk r))

C. I1donot know

15
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@ At convergence

00 01 02 03 04 05 06 07 08 09 10

Would soft K-means be able
to separate the two persons
correctly with a large B for a
good initialization?

Yes. It takes into account close-by
datapoints, and discards influence of
datapoints far away.

16
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/Apoorinitialization .« Atconvergence
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Would soft K-means be able to separate the
two persons correctly with a large B with a
poor initialization of the centroids?

Yes, even when the two centroids are initialized close to
one another and in one region of the space. The centroids
are quickly attracted by either of the two groups.

17
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Would soft K-means be able to = 0.01
separate the two persons correctly
with a small B with poor
Initialization of the centroids? e el

. . < >e 5 >
No. With a small 3, all centroids are to o i

the mean of the dataset and end up
superimposed to one another.
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Would DBSCAN be able to
separate the two persons
correctly when mdata=17

A. Yes, always
B. Yes, sometimes
C. No, always

EPFL

U Personl without glasses
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Projection onto first two principal components after PCA
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75.71%

U Personl without glasses
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Would K-means or DBSCAN L
. 3

be able to separate the 4 = .
classes correctly? rd

A. K-means would
B. DBSCAN would

C. Neither would -
21
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Neither of the two methods can cluster the 4 clusters correctly as the
distance within clusters is bigger than across clusters for the glasses/no-
glasses groups.
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Would K-means be able to

separate the 4 classes
correctly?

A. Yes, always
B. Yes, sometimes
C. No, always

23
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Evaluation of Clustering Methods

Two types of measures: Internal versus external measures

Internal measures rely on datapoints only and on a good choice of
measure of similarity:

Examples: RSS, BIC and AIC
External measures rely on ground truth (class labels):

» Example: F1-measure

25
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Which of the three metrics (AIC, BIC and
RSS) would be most informative to
determine the best solution across the 3
solutions below?

A. RSS
B. AIC
C. BIC

26
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AlIC, BIC, RSS measures of performances for K-
Means

As the number of parameters (here K) remains the same, the BIC
and AIC measures are affected only by the RSS measure. All three
metrics will hence convey the same information.

Number of free

AlCprcs = RSS + B <—— parameters B=(K*N)
K: # clusters

N: # dimensions

RSS=Y > x|

k:]. XECk

BICRSS — RSS + ln(M) B
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RSS for K-Means:

Goal of K-means is to find cluster centers u* which minimize distortion.

RSS:ZK: > x =

k=1 x'ec,
By T K we | RSS, what is the optimal K such that RSS — 07
» RSS = 0when K = M.One has as many clusters as datapoints!

Measure of
Distortion

<«
2

. Rantl:bn}Galussian .

M:100 datapoints a4t | 0 '.-_.. RSS: 0
N: 2 dimensions 3 w. K: M clusters
i :
or “'..":' ®
A . s°
= ‘3. “ o®
-3 2% 3
: - igh
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» However, it can still be used to determine an ‘optimal’ K by monitoring the
slope of the decrease of the measure as K increases.

28
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Semi-supervised clustering

A subset of the date points are labelled. — Cluster 1

X2

y:_
—— Cluster 2

% Class 1y=+1

W Class 2 y=-1

Clustering F1-Measure :

F, provides a measure of how good the clustering is:
F [0,1]

F, =1 1is the optimum.

Tradeoff between clustering correctly all datapoints of the same class in the same
cluster and making sure that each cluster contains points of only one class.
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F1-measure and other metrics:

20% datapoints labelled

e BIC F1=1

*rifﬁit

Which is the correct number of clusters?

30
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F1-measure and other metrics:

50% datapoints labelled

wm  BIC F1=1

(

Which is the correct number of clusters?

31
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F1-measure and other metrics:

Projections onto two first eigenvectors

True number of clusters was 5.

32
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Which is the
best solution?

A. K=2
B. K=3
C. K=4

92.86%

3.57% 3.57%

K=2 K=3 K=4

401
252
297

258
252
275

356
256
283

265
266
290

cPrL

F1-measure
(computed
on 20%
labelled
datapoints)

0.5

0.61
0.72

F1-measure
(computed

on 50%
labelled
datapoints)

0.62

0.75
0.52
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cPrL

Original dataset

True value: K=3

Trust F1 with more datapoint labelled
Optimum on all 3 metrics.

2 258
3 252
4 275

265
266
290

F1-measure
(computed on

50% labelled
datapoints)

0.62
0.75

0.52
34
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3 Original dataset
L True value: K=3

K-means is sensitive to initialization. Make sure to repeat and
take best run when comparing results in RSS, AIC and BIC.
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Clustering methods -- exercise

Which clustering method (Hard/Soft k-means, DBSCAN ) would
you use to cluster each of the following datasets and why?

36



Applied Machine Learning EPFL

Use the cheapest clustering method (in computational costs) whenever possible.

The cheapest is hard K-means, followed by soft K-means (computing an exponential is
more costly than computing norm 2) and then DBSCAN.

»
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Hard K-means is
possible but may find
wrong solution
because intra-cluster
distance is smaller
than inter-cluster

disance

DBSCAN
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Hard K-means and soft Kmeans both possible;

The large group helps to fl_nq_th_e cqrrect solution Hard K-means 37
irrespective of initialization
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