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Classification with Gaussian Mixture Models
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From Clustering to Classification with GMM
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1Cy  2 Cy 

Binary classification
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GMM clustering with two Gaussian functions with isotropic/spherical covariance

From Clustering to Classification with GMM
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From Clustering to Classification with GMM

1

2

Need to determine the boundary across the clusters (classes) 



APPLIED MACHINE LEARNINGApplied Machine LearningApplied Machine Learning

From Clustering to Classification with GMM
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1Cy  2 Cy 

Binary classification

( | )     what is ?xyp c c

x
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Determining the boundary across two pdf-s

We must determine the class with class label c that is most likely to have 

generated the datapoint :   ( | )x p y c x

( ) ( | )
Bayes's rule:     ( | )

( )
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Parameter Estimation

We can estimate ( ) and ( | ) from data.p y c p x y c 
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where: 
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Fit a single Gaussian by maximum likelihood:
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Parameters estimation

This can be omitted if classes are balanced (equally likely).
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To determine the class label, compute optimal Bayes classifier.

Gaussian ML Discriminant Rule
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2-class problem, conditional densities to belong to classes C1 and C2:

   1 21 A point  belongs to class  if  | |x C p y C x p y C x  
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Gaussian Discriminant Rule
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Optimal Bayes’s classifier
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Assuming equal class distribution,  and replacing in Equation (2)
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Example of binary classification using one Gauss pdf per class 

and Bayes rule (isotropic Gaussian functions)

Train each Gaussian separately, using dataset of Class 1 for 

Gaussian 1 and dataset of class 2 for Gaussian 2 
10

Classification with two Gaussians

1 Gauss pdf trained on 

points of Class 1
One Gauss pdf trained 

on points of class 2
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Example of binary classification using one Gauss pdf per class 

and Bayes rule (diagonal Gaussian functions)

Classification with two Gaussians
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Example of binary classification using one Gauss pdf per class 

and Bayes rule (full covariance Gaussian functions)

Classification with two Gaussians
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Classification with two Gaussians
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Maximum Likelihood Discriminant Rule

A maximum likelihood classifier chooses the class label that is the most likely.

Conditional density that a data point x has associated class label y=c is:

The maximum likelihood (ML) discriminant rule predicts the class of an 
observation x using:  

( ) ( | )cp x p x y c 

( ) arg max ( )c
c

c x p x
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Gaussian ML Discriminant Rules

Muticlass problem with k=1…K classes, conditional densities for each class is a 
multivariate Gaussian: 

   | ~ | ,k kp x y k p x  

ML discriminant rule is minimum of minus the log-likelihood (equiv. to 
maximizing the likelihood):

     
1

( ) arg min log
T

k k k k k

k

C x x x 


     

Maximum Likelihood Discriminant Rule for Multi-Classes

For multiple class classification: 1) Train one Gaussian per class; 2) 
choose the class that minimizes the above argument.
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Example of 4-classes classification using 

4 Gaussian distributions
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Maximum Likelihood Discriminant Rule for Multi-Classes
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Maximum Likelihood Discriminant Rule for Multi-Classes

Example of 4-classes classification using 

4 Gaussian distributions
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Classification with GMM-s

   
1

1Muti-class problem with classes, and each class is modeled with 

a GMM composed of  multivariate Gaussian functions:
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Each of the K GMM fits each class separately 

 No information on the class probability p(y=i). 

When comparing the likelihood p(x|y) directly, as above, this is equivalent to 

assuming equal class probability.

18



APPLIED MACHINE LEARNINGApplied Machine Learning

Unbalanced class 

distribution

Unbalanced dataset: 
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Classification with GMM-s

Force equal class 

distribution
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 Classification in GMM can be expressed as a Maximum Likelihood problem.

 It has a closed form solution for each datapoint.

 The boundary across classes can be very complex and depends on the complexity of 

the GMM.

 Unbalanced class distribution can be compensated for if we can estimate it.

 Clustering with GMM does not have the class labels. It ends up merging the classes 

when these are too tight.

 Classification has class labels and can hence determine boundary between two tight 

groups, but this comes at the price of labeling the data.
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Classification with GMM-s: summary


