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Classification with Gaussian Mixture Models
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From Clustering to Classification with GMM

Binary classification
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From Clustering to Classification with GMM

GMM clustering with two Gaussian functions with isotropic/spherical covariance
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From Clustering to Classification with GMM

Need to determine the boundary across the clusters (classes)

Boundary: all points x such that p(y=C*|x)=p(y=C?|x)
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From Clustering to Classification with GMM

Binary classification g

___________________________

P(Y=C|x): what is ¢ ?
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Determining the boundary across two pdf-s

We must determine the class with class label ¢ that is most likely to have
generated the datapoint x: p(y =c|Xx)

p(y=c)p(x|y=c)
p(x)

Bayes'srule: p(y=c|Xx)=

p(y =c): Probability of class ¢

p(x|y =c):class conditional distribution of x
~ how the samples are distributed within class c.

p(x): Marginal on x
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Parameters estimation

We can estimate p(y =c) and p(x| y =c) from data.

N, :num. of samples in class c

N : total number of samples
This can be omitted if classes are balanced (equally likely).

p(y=c)= % where:

Fit a single Gaussian by maximum likelihood:

p(x|]y=c)~ P(Xlﬂc,Zc) 1, X, . mean and covariance matrix
1 N, 1 N, T
He :N_in 2 :N_Z(Xi — e ) (% — 4,
c i=1

c I=1




Applied Machine Learning =PrL

Gaussian Discriminant Rule

2-class problem, conditional densities to belong to classes C! and C2:

p(X| y=C1)~ p(x|,u1’21)— N2 T e (x=24)(Z1) " (X—14)
(27) " [Z4

1 T
p(X1y=C?)~ p(X| 1y, E,) = ———py & ) 0k
(27) 7 [Z,

To determine the class label, compute optimal Bayes classifier.

A point x belongs to class C* if p(y=C"[x)> p(y=C?|x)
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Optimal Bayes’s classifier

p(y=C'[x)>p(y=C?[x) (1)

By Bayes: p(y=C'|[x)= P(x]y= C())p(y C), i=12.

(2)

p(xly=C')p(y=C') p(xly=C*)p(y=C?)
)

>
p(x) p(x
Assuming equal class distribution, p(y =C") = p(y=C?) and replacing in Equation (2)

(xly=¢) | (p(xly=c)
:E(x|;f/:C2)> :InLE(Xli’/=CZ)]>O

T

o (st () (st gl < (x ) (5°) (s g
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Classification with two Gaussians
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............................................

1 Gauss pdf trained on £y One Gauss pdf trained
p0|nts Of Class 1 "'5'_'_./{?_' ...... .......... on pOintS Of CIaSS 2

@ ............... .............. = J ............... —

OTTTTTTTTTTPPIe A, < T e o LRRERREEEErr R P P PP PP PP PPPPP PP PP

T LT T T T T T T P P

0.125 0.25 0.375 0.5 0.625 .75

Example of binary classification using one Gauss pdf per class
and Bayes rule (isotropic Gaussian functions)

Train each Gaussian separately, using dataset of Class 1 for

Gaussian 1 and dataset of class 2 for Gaussian 2
10
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Classification with two Gaussians
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Example of binary classification using one Gauss pdf per class
and Bayes rule (diagonal Gaussian functions)

11
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Classification with two Gaussians
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Example of binary classification using one Gauss pdf per class
and Bayes rule (full covariance Gaussian functions)

12
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Classification with two Gaussians
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Maximum Likelihood Discriminant Rule

A maximum likelihood classifier chooses the class label that is the most likely.

Conditional density that a data point x has associated class label y=c is:

p.(X) = p(x]y=c)

The maximum likelihood (ML) discriminant rule predicts the class of an

observation X using: c(x) = argmax p. ()

C

14
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Maximum Likelihood Discriminant Rule for Multi-Classes

Muticlass problem with k=1...K classes, conditional densities for each class is a
multivariate Gaussian:

p(xly=Kk)~p(x|u 2

ML discriminant rule is minimum of minus the log-likelihood (equiv. to
maximizing the likelihood):

C*(x) = argkmin {(x—y")(zk)_l(x—yk)T + Iog‘z"‘}

For multiple class classification: 1) Train one Gaussian per class; 2)

choose the class that minimizes the above argument.
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Maximum Likelihood Discriminant Rule for Multi-Classes

Example of 4-classes classification using
4 Gaussian distributions

16
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Maximum Likelihood Discriminant Rule for Multi-Classes

Example of 4-classes classification using
4 Gaussian distributions

17
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Classification with GMM-s

Muti-class problem with y =C*...C" classes, and each class is modeled with

a GMM composed of L multivariate Gaussian functions:
k - k k
p(X| y=C )"ZalN(M 2 )
=1

ML discriminant rule is the minimum of -log-likelihood :

y =argmin{~log(p(x|y=C'))l

i=1..K

Each of the K GMM fits each class separately
—> No information on the class probability p(y=i).

When comparing the likelihood p(x|y) directly, as above, this is equivalent to
assuming equal class probability.

18
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Classification with GMM-s

3950 5amples
Unbalanced dataset: 3720 Positives
230 Negatives

Unbalanced class Force equal class
distribution distribution
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Classification with GMM-s: summary

O Clustering with GMM does not have the class labels. It ends up merging the classes
when these are too tight.

O Classification has class labels and can hence determine boundary between two tight
groups, but this comes at the price of labeling the data.

O Classification in GMM can be expressed as a Maximum Likelihood problem.

O It has a closed form solution for each datapoint.

L The boundary across classes can be very complex and depends on the complexity of
the GMM.

L Unbalanced class distribution can be compensated for if we can estimate it. 20



