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Recap: Statistics 

Discrete Probabilities

Probability Density Functions
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ClusteringDiscrete Probabilities

  :   the probability that the variable  takes value [1..... ].xP x i x i N 

Consider two random variables  and  taking  values
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ClusteringDiscrete Probabilities

Distribution of grades of 300 students in courses C1

What is the probability that a student receives a grade of 4 in C1 ?

 
Nb of instances of 4

4
Total nb of measurements 

                       

x
P x

x


 

Histograms of Grades in C1                                                                      
Probabilities of Grades in C1                                                                      
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ClusteringJoint Probabilities

What is the probability that a student receives 

a grade of 4 in both C1 and C2?

Probabilities of Grades in C1          Probabilities of grades in C2
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ClusteringJoint Probabilities

 
 

 

Nb of instances of 
Joint distribution: 

4, 4
4, 4

Total nb of joint measurements ,

x y
P x y

x y

 
  

 ,P x y

1:  Grade in class x C

2:  Grade in class y C

What is the probability that a student receives 

a grade of 4 in both C1 and C2?
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ClusteringConditional Probabilities

What is the probability that a student receives 

a grade of 4 in C2 if s/he has received a grade of 4 in C1?

 Conditional probability: 4 | 4P y x 

1:  Grade in class x C

2:  Grade in class y C

 
 

 

,
|

P x y
P y x

P x


 4P x 

 4, 4P x y 

 ,P x y
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ClusteringMarginal Probabilities

 ,P x y

1:  Grade in class x C

2:  Grade in class y C

 4P x 

1

( ) : ( , )
yN

j

P x i P x i y j


   

The marginal probability that variable x takes value xi is given by:
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How can we tell if x and y are independent?
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 , ( | ) ( )P x y P y x P x

Conditional probabilities and statistical independence

If  and  are independent

( | ) ( ) and ( | ) ( )

x y

P y x P y P x y P x  

 , ( ) ( )P x y P x P y 
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Conditional probabilities and statistical independence

How can we tell if x and y are independent?

 ,P x y

1:  Grade in class x C

2:  Grade in class y C

If  and  are independent

( | ) ( ) 

          and

( | ) ( )

x y

P y x P y

P x y P x




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Conditional probabilities and statistical independence

If all the conditional distributions are identical, the variables are independent. 

 | 0P x y   | 1P x y   | 2P x y   | 3P x y 

 | 4P x y   | 5P x y   | 6P x y 

If  and  are independent

( | ) ( ) 

          and

( | ) ( )

x y

P y x P y

P x y P x




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ClusteringMarginal, Joint and Conditional Probabilities

 To compute the marginal, one needs the joint distribution p(x,y). 

 If x is a multidimensional variable  the marginal is a joint distribution!

 The marginals of N variables taking K values corresponds to N(K-1) probabilities.

 The joint distribution corresponds to ~NK probabilities.

 The joint distribution is far richer than the marginals. 

Pros of computing the joint distribution:

Provides statistical dependencies across all variables and the marginal distributions

Cons: 

Computational costs grow exponentially with number of dimensions 

(statistical power: 10 samples to estimate each parameter of a model)

 Compute solely the conditional if you care only about dependencies across

variables (see class on non-linear regression).
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ClusteringProbability Distributions, Density Functions

( ) 0,   

( ) 1

p x x

p x dx




  



p(x) a continuous function is the probability density function or probability 

distribution function (PDF) (sometimes also called probability distribution or 

simply density) of variable x. 
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ClusteringProbability Distributions, Density Functions

 The pdf is not bounded by 1. 

 It can grow unbounded, depending on the value taken by x.

p(x)

x
p(X=x) does not give the probability. The probability must be 

computed from the cumulative density function.
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ClusteringPDF equivalency with Discrete Probability

The cumulative distribution function (or simply distribution function) of X is:

   

 
*

* *

* ( ) ,      

x

x

x

D x P x x

D x p x dx x


 

 

p(x) dx ~ probability of x to fall within an infinitesimal interval [x, x + dx]
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( ) : ( ) ( )

( ) ( ) ( )

( ) ( ) 1

b

x

x x

b

a

P x b D x b p x dx

P a x b D x b D x a

P a x b p x dx


   

     

   





Probability that x takes a value 

in the subinterval [a,b] is given by:

PDF equivalency with Discrete Probability

 *

xD x

*x 15

p(x)

x
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Expectation
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 

 

When x takes discrete values:        ( )

For continuous distributions:        ( )

x X

X

E x xP x

E x x p x dx







 

   





The expectation of the random variable x with probability P(x) (in the discrete

case) and pdf p(x) (in the continuous case), also called the expected value or

mean, is the mean of the observed value of x weighted by p(x).

If X is the set of observations of x, then:
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Statistical Independence and and uncorrelatedness

1 2

1 2 1 2 1 2

1 2 1 2

 and  are statistically independent if:

( | ) ( )   and   ( | ) ( )

( , ) ( ) ( )

x x

p x x p x p x x p x

p x x p x p x

 

 

     

     

1 2 1 2

1 2 1 2 1 2

1 2 1 2

 and  are uncorrelated if cov( , ) 0.

cov( , ) ,

,

x x x x

x x E x x E x E x

E x x E x E x



 

 

17

Applied Machine Learning



APPLIED MACHINE LEARNINGApplied Machine LearningApplied Machine LearningApplied Machine Learning

           

           

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

,       ,

,       ,

p x x p x p x E x x E x E x

p x x p x p x E x x E x E x

  

  

Statistical independence ensures uncorrelatedness.

The converse is not true

Independent Uncorrelated

18
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Statistical Independence and and uncorrelatedness
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Are  x,y correlated?

Are they dependent?

Applied Machine Learning

Statistical Independence and and uncorrelatedness
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Variance
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      
222 2( )Var x E x E x E x         

2 , the variance of a distribution measures the amount of spread of the 

distribution around its mean:

 is the standard deviation of x.
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Parametric PDF

 

 
2

22 21
,    μ:mean,   σ :variance

2

x

p x e





 

 


 
 

The uni-dimensional Gaussian or Normal distribution is a distribution with pdf given by:

The Gaussian function is entirely determined by its mean and variance. 

For this reason, it is referred to as a parametric distribution.
Illustrations from Wikipedia 21
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Mean and Variance in PDF

~68% of the data are comprised between +/- 1

~96% of the data are comprised between +/- 2

~99% of the data are comprised between +/- 3

Illustrations from Wikipedia

This is no longer true for arbitrary pdf-s!

22
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Marginal, Conditional Pdf of Gauss Functions
The conditional and marginal pdf of a multi-dimensional Gauss function 

are all Gauss functions!

Illustrations from Wikipedia

 
1 2

1 2

joint density of ,

,

x x

p x x

2

1

conditional density of 

given 0.

x

x 

1 0x 

1

1marginal density of    x

2marginal density of    x

1

2 1 2, 
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