

APPLIED MACHINE LEARNING

Recap: Statistics

Discrete Probabilities
Probability Density Functions

Discrete Probabilities

Consider two random variables x and y taking discrete values over the intervals $[1....N_x]$ and $[1....N_y]$ respectively.

P(x=i): the probability that the variable x takes value $i \in [1....N_x]$.

Two properties:

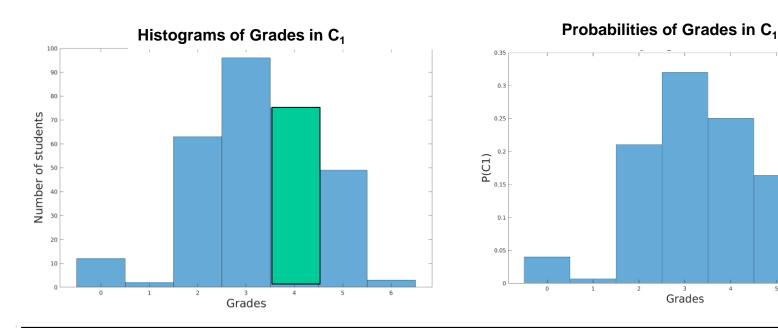
$$0 \le P(x=i) \le 1, \ \forall i=1,...,N_x,$$

$$\sum_{i=1}^{N_x} P(x=i) = 1.$$

Idem for P(y = j), $j = 1,...N_y$

Discrete Probabilities

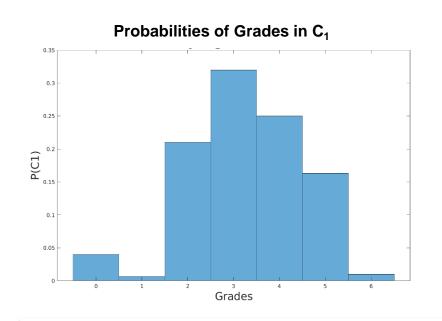
Distribution of grades of 300 students in courses C₁

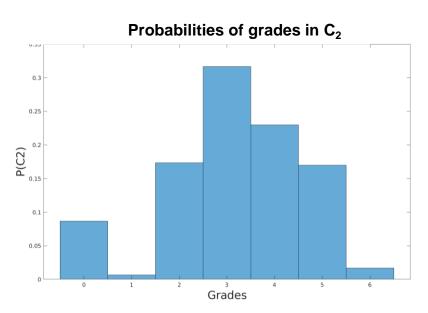


What is the probability that a student receives a grade of 4 in C_1 ?

$$P(x=4) = \frac{\text{Nb of instances of } x = 4}{\text{Total nb of measurements } x}$$

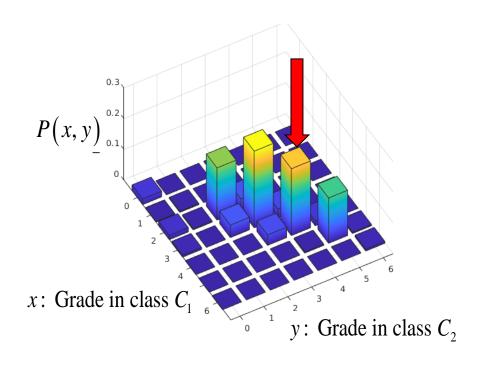
Joint Probabilities





What is the probability that a student receives a grade of 4 in both C_1 and C_2 ?

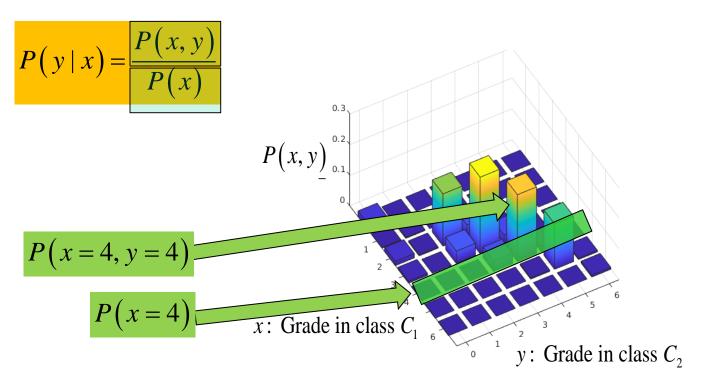
Joint Probabilities



What is the probability that a student receives a grade of 4 in both C_1 and C_2 ?

Joint distribution:
$$P(x = 4, y = 4) = \frac{\text{Nb of instances of } (x = 4, y = 4)}{\text{Total nb of joint measurements } (x, y)}$$

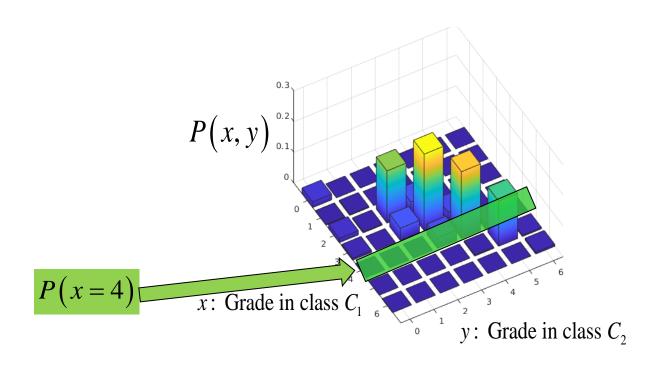
Conditional Probabilities



What is the probability that a student receives a grade of 4 in C_2 if s/he has received a grade of 4 in C_1 ?

Conditional probability: P(y = 4 | x = 4)

Marginal Probabilities



The *marginal probability* that variable x takes value x_i is given by:

$$P(x=i) := \sum_{i=1}^{N_y} P(x=i, y=j)$$

Conditional probabilities and statistical independence

$$P(x, y) = P(y \mid x)P(x)$$

If x and y are independent

$$\Rightarrow P(y \mid x) = P(y) \text{ and } P(x \mid y) = P(x)$$

$$\Rightarrow P(x, y) = P(x)P(y)$$

How can we tell if *x* and *y* are independent?

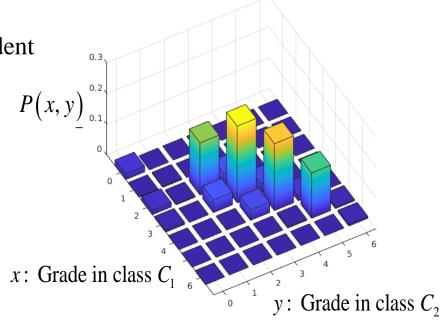
Conditional probabilities and statistical independence

If x and y are independent

$$P(y \mid x) = P(y)$$

and

$$P(x \mid y) = P(x)$$



How can we tell if *x* and *y* are independent?

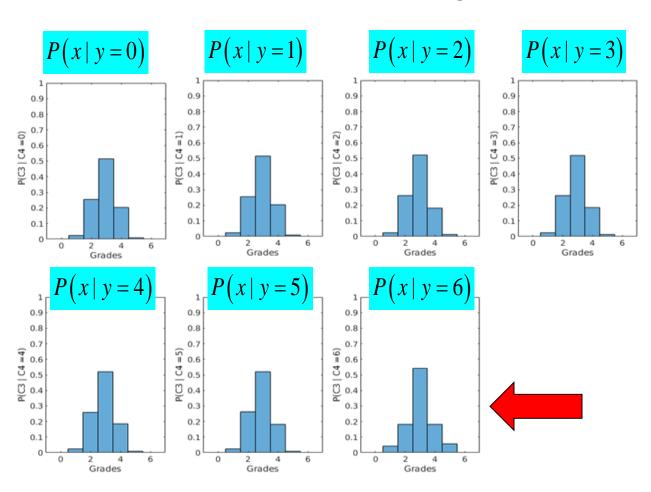
Conditional probabilities and statistical independence

If x and y are independent

$$P(y \mid x) = P(y)$$

and

$$P(x \mid y) = P(x)$$



If all the conditional distributions are identical, the variables are independent.

Marginal, Joint and Conditional Probabilities

- To compute the marginal, one needs the joint distribution p(x,y).
- If x is a multidimensional variable \rightarrow the marginal is a joint distribution!
- \clubsuit The marginals of N variables taking K values corresponds to N(K-1) probabilities.
- \bullet The joint distribution corresponds to $\sim N^K$ probabilities.
- * The joint distribution is far richer than the marginals.

Pros of computing the joint distribution:

Provides statistical dependencies across all variables and the marginal distributions

Cons:

Computational costs grow exponentially with number of dimensions (statistical power: 10 samples to estimate each parameter of a model)

→ Compute solely the conditional if you care only about dependencies across variables (see class on non-linear regression).

Probability Distributions, Density Functions

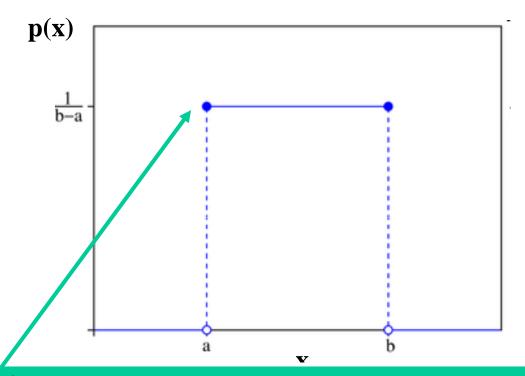
p(x) a **continuous function** is the **probability density function** or **probability distribution function** (PDF) (sometimes also called **probability distribution** or simply **density**) of variable x.

$$p(x) \ge 0, \quad \forall x \in \mathbb{R}$$

$$\int_{-\infty}^{\infty} p(x) dx = 1$$

Probability Distributions, Density Functions

- \Box The pdf is not bounded by 1.
- \Box It can grow unbounded, depending on the value taken by x.



p(X=x) does <u>not</u> give the probability. The probability must be computed from the cumulative density function.

PDF equivalency with Discrete Probability

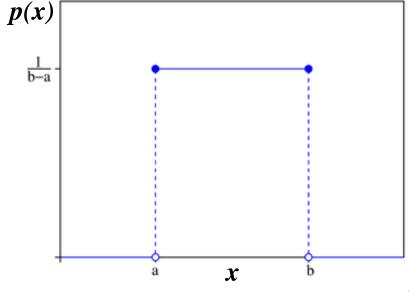
The cumulative distribution function (or simply *distribution function*) of *X* is:

$$D_{x}(x^{*}) = P(x \le x^{*})$$

$$D_{x}(x^{*}) = \int_{-\infty}^{x^{*}} p(x)dx, \quad x \in \mathbb{R}$$

 $p(x) dx \sim \text{probability of } x \text{ to fall within an infinitesimal interval } [x, x + dx]$

PDF equivalency with Discrete Probability

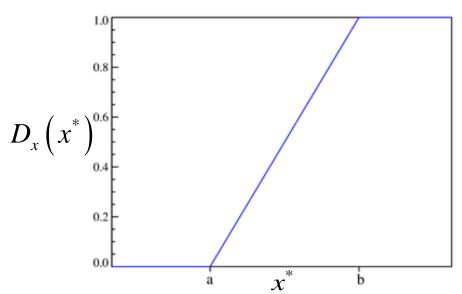


Probability that *x* takes a value in the subinterval [a,b] is given by:

$$P(x \le b) := D_x(x \le b) = \int_{-\infty}^b p(x)dx$$

$$P(a \le x \le b) = D_x(x \le b) - D_x(x \le a)$$

$$P(a \le x \le b) = \int_{-\infty}^b p(x)dx = 1$$



Expectation

The *expectation* of the random variable x with probability P(x) (in the discrete case) and pdf p(x) (in the continuous case), also called the *expected value* or *mean*, is the mean of the observed value of x weighted by p(x). If X is the set of observations of x, then:

When x takes discrete values:
$$\mu = E\{x\} = \sum_{x \in X} xP(x)$$

For continuous distributions:
$$\mu = E\{x\} = \int_X x \cdot p(x) \cdot dx$$

Statistical Independence and and uncorrelatedness

$$x_1$$
 and x_2 are statistically independent if:
 $p(x_1 \mid x_2) = p(x_1)$ and $p(x_2 \mid x_1) = p(x_2)$
 $\Rightarrow p(x_1, x_2) = p(x_1) p(x_2)$

$$x_1$$
 and x_2 are uncorrelated if $cov(x_1, x_2) = 0$.
 $cov(x_1, x_2) = E\{x_1, x_2\} - E\{x_1\} E\{x_2\}$
 $\Rightarrow E\{x_1, x_2\} = E\{x_1\} E\{x_2\}$

Statistical Independence and and uncorrelatedness

Independent

Uncorrelated

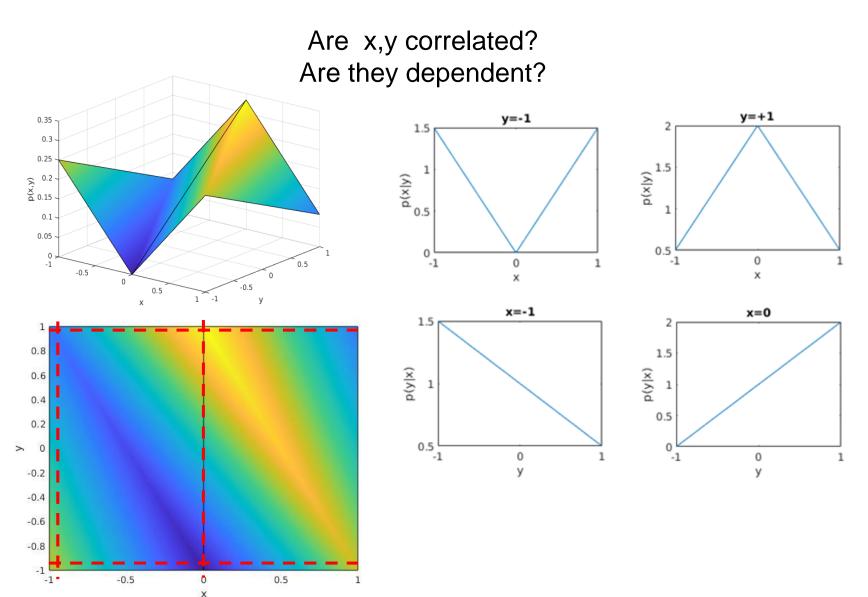
$$p(x_1, x_2) = p(x_1) p(x_2) \implies E\{x_1, x_2\} = E\{x_1\} E\{x_2\}$$

$$p(x_1, x_2) = p(x_1) p(x_2)$$
 $\not\leftarrow E\{x_1, x_2\} = E\{x_1\} E\{x_2\}$

Statistical independence ensures uncorrelatedness.

The converse is not true

Statistical Independence and and uncorrelatedness



Variance

 σ^2 , the variance of a distribution measures the amount of spread of the distribution around its mean:

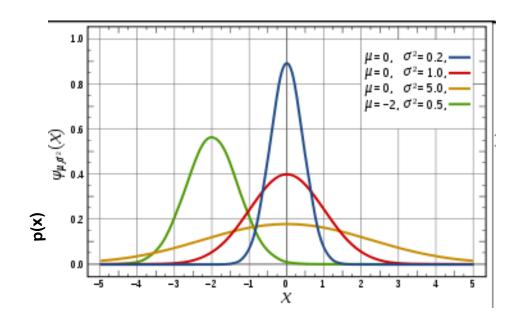
$$\sigma^{2} = Var(x) = E\{(x - \mu)^{2}\} = E\{x^{2}\} - [E\{x\}]^{2}$$

 σ is the standard deviation of x.

Parametric PDF

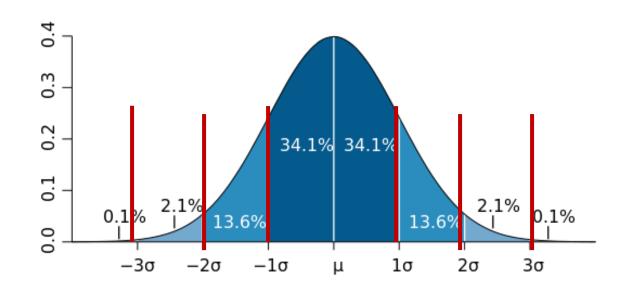
The uni-dimensional Gaussian or Normal distribution is a distribution with pdf given by:

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)}$$
, µ:mean, σ^2 :variance



The Gaussian function is entirely determined by its mean and variance. For this reason, it is referred to as a parametric distribution.

Mean and Variance in PDF

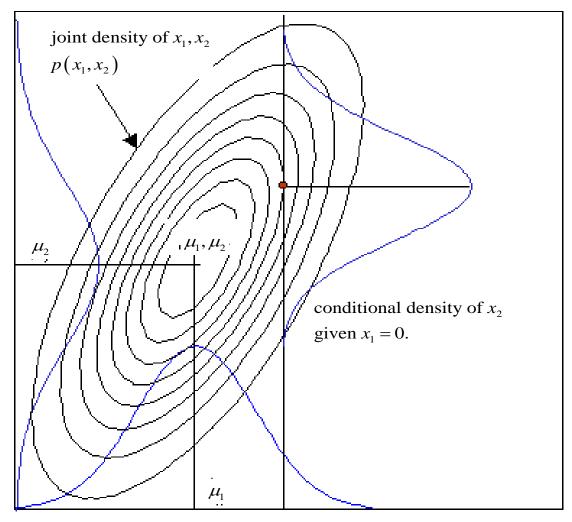


~68% of the data are comprised between +/- 1σ ~96% of the data are comprised between +/- 2σ ~99% of the data are comprised between +/- 3σ

This is no longer true for arbitrary pdf-s!

Marginal, Conditional Pdf of Gauss Functions

The conditional and marginal pdf of a multi-dimensional Gauss function are all Gauss functions!



marginal density of x_2