Linear, Weighted and Locally Weighted Regression

In this exercise you will compare three different regression techniques ($\mathbf{x} \in \mathbb{R}^N$ and $y \in \mathbb{R}$), namely:

1. Regular Least Squares (RLS):

• Regressor: $y = w^T \mathbf{x} + b$

• Optimisation: $w = (XX^T)^{-1}Xy$

2. Weighted Least Squares (WLS):

• Regressor: $y = w^T \mathbf{x} + b$

• Optimisation: $w = (ZZ^T)^{-1}Zv$ where $Z = XB^{1/2}$ and $v = B^{1/2}y$

3. Locally Weighted Regression (LWR):

• Regressor: $y = \left(\sum_{i=1}^{M} \beta_i(\mathbf{x}) y^i\right) / \left(\sum_{i=1}^{M} \beta_i(\mathbf{x})\right)$

The beta is a kernel density function centred on a point i: $\beta_i(\mathbf{x}) = \exp(-\frac{1}{2}\|\mathbf{x}^i - \mathbf{x}\|^{\frac{1}{2}})$

• Optimisation: no-optimisation, data driven.

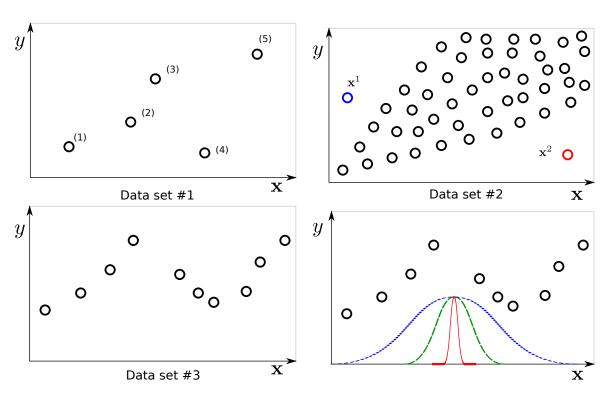


Figure 1: Three datasets, the black circles depict the data points. \mathbf{x} is the input and y is the output and we wish to estimate $y = f(\mathbf{x})$.

A) In Figure 1, three different datasets are given

1. Draw the solution that RLS would give you for datasets 1 to 3 (do not consider the colored points in dataset 2).

- 2. Given the set of weights $\beta = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, \frac{1}{4}]$, apply WLS to dataset 1 and draw the resulting regression function.
- 3. What solution WLS would give for dataset 2, considering that the blue (point \mathbf{x}^1) and the red data point (point \mathbf{x}^2) are weighted with $\beta(\mathbf{x}) = \frac{1}{\mathbf{x}}$.
- 4. Draw the solutions of LWR for dataset 3 with each of the given kernels (see Figure 1, Bottom right).
- B) Your lab (Lab 1) is studying a rare type of particles. Using particles with different sizes your lab took measurements of their speed. You wanted more data so you asked a cooperating lab (Lab 2) to share their measurements with you (figure 2). Lab 1 was using a measuring instrument with the Gaussian error $e_1 \sim \mathcal{N}(0, 10)$, while the error of Lab 2 measurements was $e_2 \sim \mathcal{N}(0, 20)$. You want to find out what's the linear relation between the speed of a particle and its size. Which regression method should you use, and how would you use it?

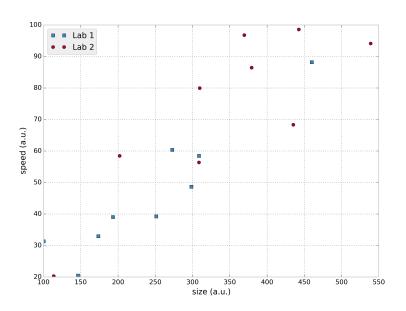


Figure 2: The datapoints collected from the two labs.

Least Squares

In the lecture you have covered linear function estimators of the following form:

$$y^{i} = f(\mathbf{x}^{i}; \mathbf{w}, b) = \mathbf{w}^{\mathrm{T}} \mathbf{x}^{i} + b \tag{1}$$

where $\mathbf{w} \in \mathbb{R}^N$ and $\mathbf{x} \in \mathbb{R}^N$ are $(N \times 1)$ column vectors, b is the scalar intercept and y is the predictor.

Given you have a set of M data points, $X = [\mathbf{x}^1, \dots, \mathbf{x}^i, \dots, \mathbf{x}^M]$, and associated predictors, $\mathbf{y} = [y^1, \dots, y^i, \dots, y^M]$. Consider the Sum of Squared Error (SSE) as your loss function and derive the optimal choice of parameters of the linear regressor for the **bivariate** case:

$$y^i = wx^i + b (2)$$

$$SSE = \sum_{i=1}^{M} (y^{i} - f(x^{i}))^{2} = \sum_{i=1}^{M} e_{i}^{2}$$
(3)

where e_i is the error between the target and predicted value.

Control of Robotic Manipulator (to be done at home)

Consider the 3 degree of freedom, $\mathbf{q} = \{q_1, q_2, q_3\}$, robotic arm in Fig. 3. The vector \mathbf{q} denotes the current joints' position while $\mathbf{x} \in \mathbb{R}^2$ is the location in the 2D space of the tip of the robotic arm, also known as end-effector. The position of the end-effector is connected to the joints' position

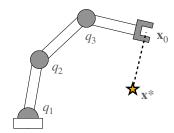


Figure 3: 3 degree of freedom robotic manipulator.

through the forward kinematics equation $\mathbf{x} = \phi(\mathbf{q})$.

- **A)** We are interested in generating a joints velocity vector, $\dot{\mathbf{q}}$, that would move the end-effector of the robot from the current location \mathbf{x}_0 towards the goal location \mathbf{x}^* . Show that the optimal $\dot{\mathbf{q}}$ is the solution of a least-square linear (unweighted) regression of the form $\mathbf{w} = (XX^T)^{-1}X^T\mathbf{y}$ (Hint: the derivative of the forward kinematics with respect to the joints' position is $J(\mathbf{q}) = \frac{\partial \phi(\mathbf{q})}{\partial \mathbf{q}}$, also know as Jacobian).
- **B)** We would like to move the first joint of the robot without changing the current location of the end-effector. Is there any other joints velocity vector $\dot{\mathbf{q}}$, solution of the linear regression problem derived in the previous step, that would achieve this?