
Applied Machine Learning

Linear, Weighted and Locally Weighted Regression

In this exercise you will compare three different regression techniques (x ∈ RN and y ∈ R), namely:

1. Regular Least Squares (RLS):

� Regressor: y = wTx+ b

� Optimisation: w = (XXT )−1Xy

2. Weighted Least Squares (WLS):

� Regressor: y = wTx+ b

� Optimisation: w = (ZZT )−1Zv where Z = XB1/2 and v = B1/2y

3. Locally Weighted Regression (LWR):

� Regressor: y =

(
M∑
i=1

βi(x)y
i

)
/

(
M∑
i=1

βi(x)

)
The beta is a kernel density function centred on a point i: βi(x) = exp(−1

2∥x
i − x∥

1
2 )

� Optimisation: no-optimisation, data driven.
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Figure 1: Three datasets, the black circles depict the data points. x is the input and y is the output
and we wish to estimate y = f(x).

A) In Figure 1, three different datasets are given

1. Draw the solution that RLS would give you for datasets 1 to 3 (do not consider the colored
points in dataset 2).
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2. Given the set of weights β = [14 ,
1
4 ,

1
4 , 0,

1
4 ], apply WLS to dataset 1 and draw the resulting

regression function.

3. What solution WLS would give for dataset 2, considering that the blue (point x1) and the
red data point (point x2) are weighted with β(x) = 1

x .

4. Draw the solutions of LWR for dataset 3 with each of the given kernels (see Figure 1, Bottom
right).

B) Your lab (Lab 1) is studying a rare type of particles. Using particles with different sizes your
lab took measurements of their speed. You wanted more data so you asked a cooperating lab (Lab
2) to share their measurements with you (figure 2). Lab 1 was using a measuring instrument with
the Gaussian error e1 ∼ N (0, 10), while the error of Lab 2 measurements was e2 ∼ N (0, 20). You
want to find out what’s the linear relation between the speed of a particle and its size. Which
regression method should you use, and how would you use it?

Figure 2: The datapoints collected from the two labs.
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Least Squares

In the lecture you have covered linear function estimators of the following form:

yi = f(xi;w, b) = wTxi + b (1)

where w ∈ RN and x ∈ RN are (N × 1) column vectors, b is the scalar intercept and y is the
predictor.

Given you have a set of M data points, X = [x1, . . . ,xi, . . . ,xM ], and associated predictors,
y = [y1, . . . , yi, . . . , yM ]. Consider the Sum of Squared Error (SSE) as your loss function and derive
the optimal choice of parameters of the linear regressor for the bivariate case:

yi = wxi + b (2)

SSE =

M∑
i=1

(
yi − f(xi)

)2
=

M∑
i=1

e2i (3)

where ei is the error between the target and predicted value.
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Control of Robotic Manipulator (to be done at home)

Consider the 3 degree of freedom, q = {q1, q2, q3}, robotic arm in Fig. 3. The vector q denotes
the current joints’ position while x ∈ R2 is the location in the 2D space of the tip of the robotic
arm, also known as end-effector. The position of the end-effector is connected to the joints’ position

q1

q2

q3 x0

x*

Figure 3: 3 degree of freedom robotic manipulator.

through the forward kinematics equation x = ϕ(q).

A) We are interested in generating a joints velocity vector, q̇, that would move the end-effector
of the robot from the current location x0 towards the goal location x∗. Show that the optimal q̇ is
the solution of a least-square linear (unweighted) regression of the form w = (XXT )−1XTy (Hint:

the derivative of the forward kinematics with respect to the joints’ position is J(q) = ∂ϕ(q)
∂q , also

know as Jacobian).

B) We would like to move the first joint of the robot without changing the current location of the
end-effector. Is there any other joints velocity vector q̇, solution of the linear regression problem
derived in the previous step, that would achieve this?
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