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Abstract
We describe the maximume-likelihood parameter estimation problem and how the Expectation-
Maximization (EM) algorithm can be used for its solution. We first describe the abstract
form of the EM algorithm as it is often given in the literature. We then develop the EM pa-
rameter estimation procedure for two applications: 1) finding the parameters of a mixture of
Gaussian densities, and 2) finding the parameters of a hidden Markov model (HMM) (i.e.,
the Baum-Welch algorithm) for both discrete and Gaussian mixture observation models.
We derive the update equations in fairly explicit detail but we do not prove any conver-
gence properties. We try to emphasize intuition rather than mathematical rigor.






1 Maximum-likelihood

Recall the definition of the maximume-likelihood estimation problem. We have a density function
p(x|O®) that is governed by the set of paramei@rée.g.,p might be a set of Gaussians a@dould

be the means and covariances). We also have a data set d¥ sepposedly drawn from this
distribution, i.e. X = {x1,...,xy}. Thatis, we assume that these data vectors are independent and
identically distributed (i.i.d.) with distributiop. Therefore, the resulting density for the samples is

N
p(X|0) = [[ p(xi|©) = L(O]%).
i=1

This function(©|X) is called the likelihood of the parameters given the data, or just the likelihood
function. The likelihood is thought of as a function of the parame®evghere the data’ is fixed.
In the maximum likelihood problem, our goal is to find Bethat maximizesC. That is, we wish
to find ©* where
©* = argmaxL(0|X).
©

Often we maximizéog(L(©|X)) instead because it is analytically easier.

Depending on the form gf(x|©) this problem can be easy or hard. For example(i|©)
is simply a single Gaussian distribution whe®e = (u,o?), then we can set the derivative of
log(£(©|X)) to zero, and solve directly fqr ando? (this, in fact, results in the standard formulas
for the mean and variance of a data set). For many problems, however, it is not possible to find such
analytical expressions, and we must resort to more elaborate techniques.

2 Basic EM

The EM algorithm is one such elaborate technique. The EM algorithm [ALR77, RW84, GJ95, JJ94,
Bis95, Wu83] is a general method of finding the maximume-likelihood estimate of the parameters of
an underlying distribution from a given data set when the data is incomplete or has missing values.

There are two main applications of the EM algorithm. The first occurs when the data indeed
has missing values, due to problems with or limitations of the observation process. The second
occurs when optimizing the likelihood function is analytically intractable but when the likelihood
function can be simplified by assuming the existence of and values for additionaliggibg(or
hidder) parameters. The latter application is more common in the computational pattern recognition
community.

As before, we assume that datais observed and is generated by some distribution. We call
X theincomplete dataWe assume that a complete data set exdsts (X', )) and also assume (or
specify) a joint density function:

p(z|®) = p(x,y[0©) = p(y|x, ©)p(x[O)

Where does this joint density come from? Often it “arises” from the marginal density function
p(x|©) and the assumption of hidden variables and parameter value guesses (e.g., our two exam-
ples, Mixture-densities and Baum-Welch). In other cases (e.g., missing data values in samples of a
distribution), we must assume a joint relationship between the missing and observed values.
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With this new density function, we can define a new likelihood funci®| 2) = L(O|X,)) =
p(X,Y|©), called the complete-data likelihood. Note that this function is in fact a random variable
since the missing informatiop is unknown, random, and presumably governed by an underlying
distribution. That is, we can think af(©|X,Y) = hx e ()) for some functiorhx o(-) whereX
and© are constant and! is a random variable. The original likelihod{®|X) is referred to as the
incomplete-data likelihood function.

The EM algorithm first finds the expected value of the complete-data log-likelloged X', Y |O)
with respect to the unknown dajagiven the observed dafd and the current parameter estimates.
That is, we define:

Q(6,00™) = E [10gp(x, ¥|0)[X,00)] (1)

Where®(-1) are the current parameters estimates that we used to evaluate the expectaon and
are the new parameters that we optimize to incréase

This expression probably requires some explanationThe key thing to understand is that
X and ©=1) are constants® is a normal variable that we wish to adjust, gpids a random
variable governed by the distributigi{y| X, ©(¢~1). The right side of Equation 1 can therefore be
re-written as:

E {logp(X,y|®)|X,®(i71)} =/

log p(X,y|©)f(y|x, 06 V)dy. )
yeY

Note thatf(y|X, ®¢ 1) is the marginal distribution of the unobserved data and is dependent on
both the observed dafd and on the current parameters, @ids the space of valugscan take on.

In the best of cases, this marginal distribution is a simple analytical expression of the assumed pa-
rameter®(i—1) and perhaps the data. In the worst of cases, this density might be very hard to obtain.
Sometimes, in fact, the density actually used g, X'|0¢ 1) = f(y|x,0¢ D) f(x |06 1) but

this doesn't effect subsequent steps since the extra fafato’|©(—1)) is not dependent 06.

As an analogy, suppose we have a functign -) of two variables. Considet(¢,Y) where
6 is a constant an& is a random variable governed by some distributfgi{y). Theng(6) =
Ex[h(0,Y)] = [, h(0,y)fy(y)dy is now a deterministic function that could be maximized if
desired.

The evaluation of this expectation is called the E-step of the algorithm. Notice the meaning of
the two arguments in the functiad@(©, ©’). The first argumen® corresponds to the parameters
that ultimately will be optimized in an attempt to maximize the likelihood. The second argument
©’ corresponds to the parameters that we use to evaluate the expectation.

The second step (the M-step) of the EM algorithm is to maximize the expectation we computed
in the first step. That is, we find:

0@ = argmaxQ(®, 0 V).
©

These two steps are repeated as necessary. Each iteration is guaranteed to increase the log-
likelihood and the algorithm is guaranteed to converge to a local maximum of the likelihood func-
tion. There are many rate-of-convergence papers (e.g., [ALR77, RW84, Wu83, JX96, XJ96]) but
we will not discuss them here.

'Recall thatE[h(Y)|X = z] = fy h(y) fr | x (y|z)dy. In the following discussion, we drop the subscripts from
different density functions since argument usage should should disambiguate different ones.



A modified form of the M-step is to, instead of maximizigy®, ©¢ 1), we find somed®
such thatQ(0®), 9¢-1)) > Q0,0 1), This form of the algorithm is called Generalized EM
(GEM) and is also guaranteed to converge.

As presented above, it's not clear how exactly to “code up” the algorithm. This is the way,
however, that the algorithm is presented in its most general form. The details of the steps required
to compute the given quantities are very dependent on the particular application so they are not
discussed when the algorithm is presented in this abstract form.

3 Finding Maximum Likelihood Mixture Densities Parameters via EM

The mixture-density parameter estimation problem is probably one of the most widely used appli-
cations of the EM algorithm in the computational pattern recognition community. In this case, we
assume the following probabilistic model:

p(x]|©) Zazpz x|6;)

where the parameters a@e= (a4, ...,anm,01,...,0x) Such thatzij‘il o; = 1 and eaclp; is a
density function parameterized By. In other words, we assume we haVecomponent densities
mixed together withl/ mixing coefficientsy;.

The incomplete-data log-likelihood expression for this density from theAlasagiven by:

N N M
log(£(8|X)) = log [ [ p(z:|©) =) log <Z aij(fBil%))
i=1 j=1

i=1

which is difficult to optimize because it contains the log of the sum. If we condides incomplete,
however, and posit the existence of unobserved data ifems {y;}¥ ; whose values inform us
which component density “generated” each data item, the likelihood expression is significantly
simplified. That is, we assume that € 1, ..., M for eachi, andy; = k if the it» sample was
generated by the!® mixture component. If we know the valuesYf the likelihood becomes:

N
log(£(0©|X,))) = log(P(X,)|0)) Zlog (:lyi) P(y)) = Y log Py, (il6y,))
=1
which, given a particular form of the component densities, can be optimized using a variety of
techniques.

The problem, of course, is that we do not know the value¥ .off we assumey is a random
vector, however, we can proceed.

We first must derive an expression for the distribution of the unobserved data. Let'’s first guess
at parameters for the mixture density, i.e., we guess@at (of,...,a3,,67,...,60%,) are the
appropriate parameters for the likeliho6g09|X, ). Given®9, we can easily compu@-(miw]g.)
for eachi andj. In addition, the mixing parameters; can be though of as prior probabilities
of each mixture component, thatdg = p(component). Therefore, using Bayes’s rule, we can
compute:

p(y|a: ) _ agipyi ($z|9§1) _ O‘Zipyi(wiwgi)
o p(zi|©9) Sriy ofpk(w:]67)

3
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and
N
i=1

wherey = (y1,...,yn) IS an instance of the unobserved data independently drawn. When we
now look at Equation 2, we see that in this case we have obtained the desired marginal density by
assuming the existence of the hidden variables and making a guess at the initial parameters of their
distribution.

In this case, Equation 1 takes the form:

Q(0,07) = > log(L(B|X,y))p(y|X,©7)

yeY
N N
= 3 N log (ay,py (2il6y,)) [ p(yjlz;, ©9)
yGT i=1 j=1

N
= Z Z Z Zlog ay,pyl xlww H y]|$],

y1= 1y21 ynv=1i=1 j=1
M N M N

= Z Z Z Zzél,yl log QyPe .”B,|9( H yJIm],

yllyzl yn=1i=1/¢=1 j=1

N
= ZZlog ape(z:|0p)) Z Z Z Ot,y; Hp Yjlz;, ©7 (3)

{=1i=1 y1=1y2=1 yn=1

In this form,Q(©, ©9) looks fairly daunting, yet it can be greatly simplified. We first note that
foreel,...,M,

M N

M M
Z Z Z dt,y; Hp yjlzj, ©9)

y1=1ly2=1 yn=1

M M M M N
= (Z DD DT D | | p(yjle,@"))p(ﬂlwi,@g)

y1=1 yi—1=1ly;r1=1 yn=1j=1,j#i

N M
= ]I (Z p(yjle,@g)> p(f|zi, ©%) = p({|zi, ©9) (4)

j=1,j#i \y;=1

since>M, p(i|z;,©9) = 1. Using Equation 4, we can write Equation 3 as:

Q6,09 = ZZlog oype(zi]6p)) p(£L| i, ©9)

Z 1i=1
M N
= ZZIOg Oé[ £|$“®g +Zzlog D¢ $1|0€)) (awl,gg) (5)
{=1i=1 {=1i=1

To maximize this expression, we can maximize the term contamjrand the term containing
6, independently since they are not related.
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To find the expression fax,, we introduce the Lagrange multipliarwith the constraint that
> ¢ a4 = 1, and solve the following equation:

o M N
dog > log(ag)p(tlai, ©9) + A (Zg: ap — 1)] =0

{=11=1

or
N

1
> —p(blz;,©9) + A =0
Qy

i=1
Summing both sizes ovér we get thath = — N resulting in:

LN
= > p(tlzi, ©9)

=1

For some distributions, it is possible to get an analytical expressiofig&asrfunctions of everything
else. For example, if we assurdaimensional Gaussian component distributions with meand
covariance matrix, i.e.,0 = (u, X) then

1 Lz ~Lp_
pl($|ulfazl) = We 2( ”’l)Tze ( P'l). (6)

To derive the update equations for this distribution, we need to recall some results from matrix
algebra.

The trace of a square matriX #) is equal to the sum ofl’s diagonal elements. The trace of a
scalar equals that scalar. AlsoAr+ B) = tr(A) + tr(B), and t{AB) = tr(BA) which implies
thaty"; 7 Az; = tr(AB) whereB = ¥, z;z. Also note thatA| indicates the determinant of a
matrix, and thatA=1| = 1/|A].

We’'ll need to take derivatives of a function of a matyixA) with respect to elements of that
matrix. Therefore, we defin% to be the matrix withi, 52 entry [%fj)] wherea; ; is the

i, 7" entry of A. The definition also applies taking derivatives with respect to a vector. First,

8z Az _ (A 4 AT)z. Second, it can be shown that whris a symmetric matrix:

OlA] _ | Ay ifi=
S| 24y fiA

da;,;

whereA, ; is thei, jt* cofactor ofA. Given the above, we see that:

dlog |A| Aij/|Al  ifi=j 1 giay 41
= ’ ) =24"" — A
oA { 24;/|A] i # diag4 ™)

by the definition of the inverse of a matrix. Finally, it can be shown that:

Otr(AB)
0A

= B + BT — Diag(B).
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Taking the log of Equation 6, ignoring any constant terms (since they disappear after taking
derivatives), and substituting into the right side of Equation 5, we get:

M N

3> log (pe(wilpe, o)) p(£]zi, ©9)
—1i=1
- M N, )
= 2> <_§ log(|Xel) — 5(% — o) "8, (i — W)) p(l|z;,©9) @
=1i=1

with which we can easily solve fqr, to obtain:

g = N zip(z;, ©9)
>, p(l|z;, ©9)

To find ¥, note that we can write Equation 7 as:

> B tog (127 1) Y. p(llar, ©9) — 5 3" p(tles, 0)tr (57 (o — o) (s — o))
=1 =1 =1

M N 1 N
Zl log (|27 1) - p(tla:, ©9) — 3 3 p(tles, ©)tr (EZINU)]
=1 i=1

=1

whereNy; = (z; — pe)(zi — )"
Taking the derivative with respect E)[l, we get:

N N

. 1 .
2 (tlz:, ©9) (25 — diag(e)) — 5 > p(¢lzi, ©) (2N — diag(Ny;:))
-1 i=1

L\Dln—t

l\')lr—l

N
Z (l|z;,©9) (2M,; — diag(My,;))

= 25 diag(S)

whereMy; = ¥, — Ny; and wheres' = 3 Z ~1 p(£|z;, ©9) M, ;. Setting the derivative to zero, i.e.,

25 —diag(S) = 0, implies thatS = 0. This gives

N
Zp(ﬂxi, @g) (Eg — Ng’i) =0
=1

or
_ S o, ©9)Nei S5y p(éles, ©9) (i — pe) (@i — pe)”

YN p(llzi,09) >N p(l)z;, ©9)




Summarizing, the estimates of the new parameters in terms of the old parameters are as follows:
1N
ap® = = p(llzi, ©9)
N =

Mnew _ sz\il xip(awi? @g)
P —
Zi]il p(£|xi’ (-)g)
Sy p(Elas, ©9) (@i — ppe) (s — puge)”
Zi]\il p(aa"i’ @g)
Note that the above equations perform both the expectation step and the maximization step

simultaneously. The algorithm proceeds by using the newly derived parameters as the guess for the
next iteration.

E’?C’u) —

4 Learning the parameters of an HMM, EM, and the Baum-Welch
algorithm

A Hidden Markov Model is a probabilistic model of the joint probability of a collection of random
variables{O,,...,0r,Q1,...,Qr}. TheO; variables are either continuous or discrete observa-
tions and the; variables are “hidden” and discrete. Under an HMM, there are two conditional
independence assumptions made about these random variables that make associated algorithms
tractable. These independence assumptions are 1}thédden variable, given thé — 1)st

hidden variable, is independent of previous variables, or:

P(Qt|Q¢-1,0¢-1,-..,Q1,01) = P(Q4|Q¢-1),

and 2), thet® observation, given th&” hidden variable, is independent of other variables, or:

P(O¢|Q7,01,Qr-1,01-1,- -, Qt41, 0141, Qt, Qt—1,0¢—1, ..., Q1,01) = P(O|Qy).

In this section, we derive the EM algorithm for finding the maximume-likelihood estimate of the
parameters of a hidden Markov model given a set of observed feature vectors. This algorithmis also
known as the Baum-Welch algorithm.

Q: is a discrete random variable witN possible value§1...N}. We further assume that
the underlying “hidden” Markov chain defined B(Q:|Q:-1) is time-homogeneous (i.e., is inde-
pendent of the time). Therefore, we can represeR{Q;|Q;_1) as a time-independent stochastic
transition matrixA = {a; ;} = p(Q: = j|Q:—1 = ¢). The special case of time= 1 is described
by the initial state distributiony; = p(Q1 = 7). We say that we are in stajaat timet if Q; = j. A

particular sequence of states is described by (g1, - .., gr) Whereq, € {1... N} is the state at
timet.
A particular observation sequenckis described a® = (O; = o01,...,0r = or). The

probability of a particular observation vector at a particular tirfer statej is described by:
bj(or) = p(Or = 04|Q: = j). The complete collection of parameters for all observation distri-
butions is represented By = {b;(-)}.

There are two forms of output distributions we will consider. The first is a discrete observation
assumption where we assume that an observation is ofiepofsible observation symbalg €
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V = {v1,...,vr}. Inthis case, ib; = vy, thenb;(ot) = p(O; = vi|g: = j). The second form
of probably distribution we consider is a mixture f multivariate Gaussians for each state where
bj(0) = S04 cjeN (odlje, Zje) = S0%4 cjebje(or)-

We describe the complete set of HMM parameters for a given mode\ by( A, B, 7). There
are three basic problems associated with HMMs:

1. Findp(OJ|A) for someO = (ol,...,or). We use the forward (or the backward) procedure
for this since it is much more efficient than direct evaluation.

2. Given som&) and some), find the best state sequenge= (q1,...,qr) that explaing0.
The Viterbi algorithm solves this problem but we won’t discuss it in this paper.

3. Find\* = argmaxp(O|\). The Baum-Welch (also called forward-backward or EM for
A
HMMSs) algorithm solves this problem, and we will develop it presently.

In subsequent sections, we will consider only the first and third problems. The second is addressed
in [RJ93].

4.1 Efficient Calculation of Desired Quantities

One of the advantages of HMMs is that relatively efficient algorithms can be derived for the three
problems mentioned above. Before we derive the EM algorithm directly using foection, we
review these efficient procedures.

Recall the forward procedure. We define

Oli(t) :P(Ol =01,...,0¢ =04,Q¢ = l|/\)

which is the probability of seeing the partial sequeage. ., o; and ending up in stateat timet.
We can efficiently define;(t) recursively as:

1. a;(1) = mbi(o1)
2. aj(t+1) = [Zf\il ai(t)aij} bj(ot+1)
3. p(O[A) = Zz']il oi(T)
The backward procedure is similar:
Bi(t) = p(Ot41 = 041, --.,07 = or|Qr = i, \)

which is the probability of the ending partial sequebnge, . . ., or given that we started at state
at timet. We can efficiently defing;(¢) as:

1. Bi(T) = 1
2. Bi(t) = XN aijbj(0r41)Bj(t + 1)

3. p(O|)) = ¥, Bi(1)mibi(o1)



We now define
7i(t) = p(Qr = i|O0, A)
which is the probability of being in staieat timet for the state sequene2 Note that:
P(O[)) X1p(0,Q: = 34|N)

Also note that because of Markovian conditional independence
( )/31( ) (Ola ., 04, Q¢ :i|A)p(Ot+17"',OT|Qt :laA) :p(oaQt :2|>‘)
so we can define things in terms®f(t) andg;(t) as

e
) = SN (08,0

p(Qt = i|0’ )‘) =

We also define
§ij(t) = p(Qr =4, Qt+1 = 7|0, N)
which is the probability of being in staieat timet and being in statg at timet + 1. This can also
be expanded as:

13 ( ) (Qt =1, Q1 = J, O|)\) Otz(t)azyb (0t+1)3j(t + 1)
o p(O[A) 1 i ai(t)aijbi(oi1)Bi(t + 1)
or as:
€i(t) = p(Q¢ = i|O)p(0t41--. 07, Qi1 = §|Qt = i, A)  vi(t)aijbj(0s41)B;(t + 1)
ij

p(0t+1...07|Qt =1, ) - Bi(t)
If we sum these quantities across time, we can get some useful values. I.e., the expression

T

> it

t=1

is the expected number of times in statnd therefore is the expected number of transitions away
from statei for O. Similarly,

T-1
> &is(t)
t=1
is the expected number of transitions from statie statej for O. These follow from the fact that

> i(t) =Y E[L(i)] = E[Y_ L(i)]

and

D &5t ——ZEItlJ ZItlJ
t

wherel (i) is an indicator random variable thatlisvhen we are in stateat timet, and;(z, j) is
a random variable that iswhen we move from stateto statej after timet.

9



Jumping the gun a bit, our goal in forming an EM algorithm to estimate new parameters for the
HMM by using the old parameters and the data. Intuitively, we can do this simply using relative
frequencies. l.e., we can define update rules as follows:

The quantity

7 = (1) (8)
is the expected relative frequency spent in siatetime 1.
The quantity
D Vi 1G]

a 9
YT ) ©
is the expected number of transitions from statie statej relative to the expected total number of
transitions away from state
And, for discrete distributions, the quantity

7. . E;{:l 50t,vk7i(t)
) = T ) (0

is the expected number of times the output observations have been egyaltole in state:
relative to the expected total number of times in state

For Gaussian mixtures, we define the probability that#tecomponent of th&*® mixture
generated observation as

cirbis(ot)
bi (Ot)

whereX;; is a random variable indicating the mixture component at tifioe state:.
From the previous section on Gaussian Mixtures, we might guess that the update equations for
this case are:

Yie(t) = vi(t) =p(Q¢ =1, X3 = £|O, N)

Ccip = Zt 1 ’Yzl(t)
Zt:l Yi (t)

ig = >y vie(t)or
' Z?:l Yie(t)

ST yie(t) (00 — prie) (08 — pie) ™
Sq vie(t)

When there areéZ observation sequences tié being of lengthT,, the update equations be-
come:

Yig =

5:1’)’5(1)
E
E1Ef17§z()
IZt 1%()
pOyl 12?1 Vio(t)of
12,: 1%[()

m =

Cig =

Hie =

10



P ¥ris 1%[( ) (0§ — pie) (0f — pae)”
1Zt 1’)’14( )

and
Zf L e 5i(t)
1Et 1%( )

These relatively intuitive equations are in fact the EM algorithm (or Balm-Welch) for HMM
parameter estimation. We derive these using the more typical EM notation in the next section.

aij =

4.2 Estimation formula using the@ function.

We considerO = (o4, ...,o0r) to be the observed data and the underlying state sequerce
(¢1,.--,9r) to be hidden or unobserved. The incomplete-data likelihood function is given by
P(O|)) whereas the complete-data likelihood functionAg0, g|A). The @ function therefore
is:
QA X) = 3" 1og P(0,4|A)P(0, gl X)
qeQ
where)’ are our initial (or guessed, previous, eteltimates of the parameters and wh@ris the
space of all state sequences of lerifjth
Given a particular state sequengeepresenting?(O, q|\') is quite easy. l.e.,

T

P(O,q|)) = my, H g, 1q:bg(0t)
t=1

The@ function then becomes:

QAN) = Y log m, P(O,qIN)+ Y (Zlogaqt lqt> p(0,qIX)+ > <Zlogbqt(0t)> P(0,q|X)

qeQ qeQ geQ \t+1
(11)

Since the parameters we wish to optimize are now independently split into the three terms in the
sum, we can optimize each term individually.
The first term in Equation 11 becomes

N
> log g, P(0,q|X) = log mip(O0, qo = i|X)
q€Q i=1

since by selecting alf € Q, we are simply repeatedly selecting the valuegyoko the right hand
side is just the marginal expression for time= 0. Adding the Lagrange multipliey, using the
constraint thad ", m; = 1, and setting the derivative equal to zero, we get:

o (N N
o (Z log m;p(O,q0 = i|\') + 7(2 T — 1)) =0

i=1 =1

2For the remainder of the discussion gmimedparameters are assumed to be the initial, guessed, or previous param-
eters whereas the unprimed parameters are being optimized.

®Note here that we assume the initial distribution starts &t 0 instead oft = 1 for notational convenience. The
basic results are the same however.
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Taking the derivative, summing ovéto getr, and solving forr;, we get:

- P00 =iX)
" P(OW)
The second term in Equation 11 becomes:
T N N T
Z (Zlogaqt_lqt> (0, q|\) ZZZlogam (O,qt-1=1,q: = j|\)
qeQ \t=1 i=1j=1t=1

because for this term, we are, for each tiéleoking over all transitions fromi to j and weighting
that by the corresponding probability — the right hand side is just sum of the joint-marginal for time
t — 1 andt. In a similar way, we can use a Lagrange multiplier with the const@ﬁll a;; = 1to
get:
ag = S PO, g1 =1,q = j|\)
’ Z;le P(O,q:1 =1|X)
The third term in Equation 11 becomes:

T N T
Z (Zlogbqt(ot)> (0,q\) ZZlogb 01)p(0, gt = i|\")
t=1

qeQ i=1t=1

because for this term, we are, for each titn®oking at the emissions for all states and weighting
each possible emission by the corresponding probability — the right hand side is just the sum of the
marginal for timet.

For discrete distributions, we can, again, use use a Lagrange multiplier but this time with the
constraintzfz1 b;(j) = 1. Only the observations that are equabjocontribute to thekt* proba-
bility value, so we get:
Zg:l P(Oa qt = i|)‘,)50t,vk

Z?:l P(O,Qt = Z|)‘I)

For Gaussian Mixtures, the form of thg function is slightly different, i.e., the hidden vari-
ables must include not only the hidden state sequence, but also a variable indicating the mixture
component for each state at each time. Therefore, we can@vete

QM N) =Y > log P(O,q,m|A)P(O,q,m|X)
qgeQ meM

bi(k) =

wherem is the vectorn = {mg, 1, mg,2, . . ., mg, 7} that indicates the mixture component for each
state at each time. If we expand this as in Equation 11, the first and second terms are unchanged
because the parameters are independent @fhich is thus marginalized away by the sum. The

third term in Equation 11 becomes:

T N M T
Z Z <E log bg, (ot,mqtt)> (0,q,m|\") ZZZlog citbie(0))p(O, @ = i, mg,e = LX)
geQ@meM \t=1 i=14=1t=1

This equation is almost identical to Equation 5, except for an addition sum component over the
hidden state variables. We can optimize this in an exactly analogous way as we did in Section 3,
and we get:

Srq Pge = i,mg, = £|O, N)
Y1 X5 Pla = 6,mge = €O, X))

Gl =
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and

_ Yy 0tP(g = i,mge = ¢IO,X)
Sioq Pl = i,mge = €O, X)

23]

)

= ZtT:l(Ot — pig)(0s — NiZ)TP(Qt =1, Mgt = {0, )\')

2il T . ’
Zt:l P(Qt =1, Mgt = €|07 A )

As can be seen, these are the same set of update equations as given in the previous section.
The update equations for HMMs with multiple observation sequences can similarly be derived
and are addressed in [RJ93].

References

[ALR77] A.P.Dempster, N.M. Laird, and D.B. Rubin. Maximum-likelihood from incomplete data

[Bis95]
[GJ95]

[3J94]

[IX96]

[RJ93]

[RW84]

[Wu83]

[XJ96]

via the em algorithmJ. Royal Statist. Soc. Ser.,,B89, 1977.
C. Bishop.Neural Networks for Pattern Recognitio@larendon Press, Oxford, 1995.

Z. Ghahramami and M. Jordan. Learning from incomplete data. Technical Report Al Lab
Memo No. 1509, CBCL Paper No. 108, MIT Al Lab, August 1995.

M. Jordan and R. Jacobs. Hierarchical mixtures of experts and the em algdeéhral
Computation6:181-214, 1994.

M. Jordan and L. Xu. Convergence results for the em approach to mixtures of experts
architecturesNeural Networks8:1409-1431, 1996.

L. Rabiner and B.-H. Juan§undamentals of Speech Recogniti®tentice Hall Signal
Processing Series, 1993.

R. Redner and H. Walker. Mixture densities, maximum likelihood and the em algorithm.
SIAM Review26(2), 1984.

C.F.J. Wu. On the convergence properties of the em algoritima.Annals of Statistics
11(1):95-103, 1983.

L. Xu and M.I. Jordan. On convergence properties of the em algorithm for gaussian
mixtures.Neural Computation8:129-151, 1996.

13



