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4 Perception

One of the most important tasks of autonomous systems of any kind isto acquire knowledge
about its environment. Thisis done by taking measurements using various sensors and then
extracting meaningful information from those measurements.

In this chapter we present the most common sensors used in mobile robots and then discuss
strategies for extracting information from the sensors. For more detailed information about
all of the sensors used on mobile robots, refer to the comprehensive book Sensors for Mobile
Robotswritten by H.R. Everett [2].

4.1 Sensors for Mobile Robots
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Fig4.1 Examples of robots with multi-sensor systems:
a) HelpMate from Transition Research Corp.
b) B21 from Real World Interface
c) Roboart I1, built by H.R. Everett [ 2]
d) The Savannah River Ste nuclear surveillance robot

Thereisalarge variety of sensors used in mobile robots (Fig. 4.1). Some sensors are used
to measure simple values like the internal temperature of a robot’s electronics or the rota-
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78 Autonomous Mobile Robots

tional speed of the motors. Others, more sophisticated sensors can be used to acquire infor-
mation about the robot’ s environment or even to directly measure arobot’s global position.
In this chapter we focus primarily on sensors used to extract information about the robot’s
environment. Because a mobile robot moves about, it will frequently encounter unforeseen
environmental characteristics, and therefore such sensing is particularly critical. We begin
with afunctional classification of sensors. Then, after presenting basic tools for describing
asensor’ s performance, we proceed to describe selected sensors in detail.

4.1.1 Sensor Classification

We classify sensors using two important functional axes: proprioceptive/exter oceptive and
passive/active.

Proprioceptive sensors measure values interna to the system (robot); e.g. motor speed,
wheel load, robot arm joint angles, battery voltage.

Exter oceptive sensors acquire information from the robot’ s environment; e.g. distance mea-
surements, light intensity, sound amplitude. In addition, exteroceptive sensor’s measure-
ments are interpreted by the robot in order to extract meaningful environmental features.

Passive sensors measure ambient environmental energy entering the sensor. Examples of
passive sensors include temperature probes, microphones and CCD cameras.

Active sensors emit energy into the environment, then measure the environmental reaction.
Because active sensors can manage more controlled interactions with the environment, they
often achieve superior performance. However, active sensing introduces several risks. the
outbound energy may affect the very characteristicsthat the sensor is attempting to measure.
Furthermore, an active sensor may suffer due to interference between its signal and those
beyond its control, for example emitted by other nearby robots, or similar sensors on the
same robot. Examples of active sensorsinclude wheel quadrature encoders, ultrasonic sen-
sors and laser rangefinders.

Table 4.1 provides an overview classification of the most useful sensors for mobile robot
applications. The sensors types which are highlighted (bold italic) will be detailed further
in the proceeding sections.

Table4.1:
PC: P
General Classification Sensor Proprioceptiv | pasive
(typical use) Sensor System EC: A:
s Active
Exter oceptive
Tactile Sensors Contact switches, bumpers EC P
(detection of physical contactor | Optical barriers EC A
closeness; security switches) Non-contact proximity sensors EC A
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Table4.1:
PC: p:
General Classification Sensor Pfopfigceptiv Passive
(typical use) Sensor System EC: A:
Exter oceptive Active
Wheel/motor sensors Brush Encoders PC P
(wheel/motor speed and posi- Potentiometers PC P
tion) Synchros, Resolvers PC A
Optical Encoders PC A
Magnetic Encoders PC A
Inductive Encoders PC A
Capacitive Encoders PC A
Heading sensors Compass EC P
(orientation of the robot in rela- Gyroscopes PC P
tion to afixed reference frame) Inclinometers EC P/A
Ground based beacons GPS EC A
(localization in afixed reference | Active optical or RF beacons EC A
frame) Active ultrasonic beacons EC A
Reflective beacons EC A
Active ranging Reflectivity sensors EC A
(reflectivity, time-of-flight and Ultrasonic sensor EC A
geometric triangul ation) Laser rangefinder EC A
Optical triangulation (1D) EC A
Structured light (2D) EC A
M otion/speed sensors Doppler radar EC A
(relative speed to fixed or mov- | Doppler sound EC A
ing objects)
Vision-based sensors CCD/CMOS camera(s) EC P
(visual ranging, whole-image Visual ranging packages
analysis, segmentation, object Object tracking packages
recognition)

The sensor classes in Table (4.1) are arranged in ascending order of complexity and de-
scending order of technological maturity. Tactile sensors and proprioceptive sensors are
critical to virtually all mobile robots, and are well understood and easily implemented.
Commercial quadrature encoders, for example, may be purchased as part of the gearmotors
used in amobilerobot. At the other extreme, visual interpretation by means of one or more
CCD/CMOS cameras provides a broad array of potential functionalities, from obstacle
avoidance and localization to human face recognition. However, commercially available

sensor unitsthat provide visual functionalities are only now beginning to emerge[105, 106].
4.1.2 Characterizing Sensor Performance

The sensors we describe in this chapter vary greatly in their performance characteristics.
Some sensors provide extreme accuracy in well-controlled laboratory settings, but are over-
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80 Autonomous Mobile Robots

come with error when subjected to real-world environmental variations. Other sensors pro-
vide narrow, high precision data in a wide variety settings. In order to quantify such
performance characteristics, in this section we formally define the sensor performance ter-
minology that is used in the rest of this chapter.

4.1.2.1 Basic sensor response ratings

A number of sensor characteristics can be rated quantitatively in alaboratory setting. Such
performance ratings will necessarily be best-case scenarios when the sensor is placed on a
real-world robot, but are nevertheless useful.

Dynamic rangeis used to measure the spread between the lower and upper limits of inputs
values to the sensor while maintaining normal sensor operation. Formally, the dynamic
range isthe ratio of the maximum input value to the minimum measurableinput value. Be-
cause thisraw ratio can be unwieldy, it is usually measured in Decibels, which is computed
as ten times the common logarithm of the dynamic range. However, there is potential con-
fusion in the calculation of Decibels, which are meant to measure the ratio between powers,
such as Watts or Horsepower. Suppose your sensor measures motor current and can register
valuesfrom aminimum of 1 Milliwatt to 20 Watts. The dynamic range of this current sensor
is defined as:

10 xlog[%}: 43dB (4.1)

Now suppose you have a voltage sensor that measures the voltage of your robot’ s battery,
measuring any value from 1 Millivolt to 20 Volts. Voltage is not a unit of power, but the
sguare of voltage is proportional to power. Therefore, we use 20 instead of 10:

20

20log [O 001

J: 86dB (4.2)

Rangeis aso an important rating in mobile robot applications because often robot sensors
operate in environments where they are frequently exposed to input values beyond their
working range. In such cases, it is critical to understand how the sensor will respond. For
example, an optical rangefinder will have a minimum operating range, and can provide spu-
rious data when measurements are taken with object closer than that minimum.

Resolution is the minimum difference between two values that can be detected by a sensor.
Usually, thelower limit of the dynamic range of asensor isequal to itsresolution. However,
in the case of digital sensors, thisis not necessarily so. For example, suppose that you have
a sensor that measures voltage, performs an analog-to-digital conversion and outputs the
converted value as an 8-bit number linearly corresponding to between 0 and 5 Volts. If this

sensor istruly linear, thenit has 28 _1 total output val ues, or aresol ution of % = 20mV.

Linearity is an important measure governing the behavior of the sensor’s output signal as
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theinput signal varies. A linear responseindicatesthat if two inputsx andy result in thetwo
outputs f(x) andf(y), then for any valuesa and b, f(ax + by) = af(x) + bf(y). This meansthat
aplot of the sensor’ s input/output response resultsin a straight line.

Bandwidth or Frequency is used to measure the speed with which a sensor can provide a
stream of readings. Formally, the number of measurements per second is defined asthe sen-
sor’s frequency in Hertz. Because of the dynamics of moving through their environment,
mobile robots often are limited in maximum speed by the bandwidth of their obstacle detec-
tion sensors. Thus increasing the bandwidth of ranging and vision-based sensors has been
aprincipa goal in the robotics community.

4.1.2.2 In Situ sensor performance

The above sensor characteristics can be reasonably measured in alaboratory environment,
with confident extrapolation to performancein real-world deployment. However, a number
of important measures cannot be reliably acquired without deep understanding of the com-
plex interaction between all environmental characteristics and the sensorsin question. This
is most relevant to the most sophisticated sensors, including active ranging sensors and vi-
sual interpretation sensors.

Sensitivity itself isadesirabletrait. Thisisameasure of the degree to which an incremental
changein the target input signal changes the output signal. Formally, sensitivity istheratio
of output change to input change. Unfortunately, however, the sensitivity of exteroceptive
sensors is often confounded by undesirable sensitivity to other environmental parameters.

Cross-sengitivity is the technical term for sensitivity to environmental parameters that are
orthogonal to the target parameters for the sensor. For example, a flux-gate compass can
demonstrate high sensitivity to magnetic north and is therefore of use for mobile robot nav-
igation. However, the compass will also demonstrate high sensitivity to ferrous building
materials, so much so that its cross-sensitivity often makes the sensor uselessin someindoor
environments. High cross-sensitivity of a sensor is generaly undesirable, especialy so
when it cannot be modeled.

Error of asensor isdefined asthe difference between the sensor’ s output measurements and
the true values being measured, within some specific operating context. Given atrue value
v and ameasured valuem, we can defineerror as. error = m—v. Accuracy isdefined as
the degree of conformity between the sensor’ s measurement and the true value, and is often
expressed as a proportion of the true value (e.g. 97.5% accuracy):

Im—vlg

g%lccuracy—l— —

(4.3)

Of course, obtaining the ground truth, v, can be difficult or impossible, and so establishing
a confident characterization of sensor accuracy can be problematic. Further, it isimportant
to distinguish between two different sources of error:

Systematic errors are caused by factors or processes that can in theory be modeled. These
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errors are, therefore, deterministic (i.e. predictable). Poor calibration of alaser rangefinder,
unmodeled slope of ahallway floor and a bent stereo camera head due to an earlier collision
are all possible causes of systematic sensor errors.

Random errors cannot be predicted using a sophisticated model nor can they be mitigated
with more precise sensor machinery. These errors can only be described in probabilistic
terms (i.e. stochastically). Hue instability in a color camera, spurious rangefinding errors
and black level noisein acamera are al examples of random errors.

Precision if often confused with accuracy, and now we have the tools to clearly distinguish
these two terms. Intuitively, high precision relates to reproducibility of the sensor results.
For example, one sensor taking multiple readings of the same environmental state has high
precision if it produces the same output. In another example, multiple copies of this sensors
taking readings of the same environmental state have high precision if their outputs agree.
Precision does not, however, have any bearing on the accuracy of the sensor’s output with
respect to the true value being measured. Suppose that therandom error of a sensor is char-
acterized by some mean value m and a standard deviation s . The formal definition of pre-
cision istheratio of the sensor’s output range to the standard deviation:

precision = %g_e (4.9

Note that only s and not m has impact on precision. In contrast mean error mis directly
proportional to overall sensor error and inversely proportional to sensor accuracy.

4.1.2.3 Characterizing error: the challenges in mobile robotics

Mobile robots depend heavily on exteroceptive sensors. Many of these sensors concentrate
on acentral task for the robot: acquiring information on objectsin the robot’ simmediate vi-
cinity so that it may interpret the state of its surroundings. Of course, these "objects" sur-
rounding therobot are all seen fromtherobot’ slocal referenceframe. And sincethe systems
we study are mobile, their ever-changing position and their motion has a significant impact
on overall sensor behavior. In this section, empowered with the terminology of the last two
sections, we describe how dramatically the sensor error of amobile robot disagrees with the
ideal picture drawn in the previous section.

Blurring of systematic and random errors

Active ranging sensors tend to have failure modes that are triggered largely by specific rel-
ative positions of the sensor and environment targets. For example, asonar sensor will prod-
uct specular reflections, producing grossly inaccurate measurements of range, at specific
angles to a smooth sheetrock wall. During motion of the robot, such relative angles occur
at stochastic intervals. Especially in amobile robot outfitted with aring of multiple sonars,
the chances of one sonar entering this error mode during robot motionishigh. From the per-
spective of the moving robot, the sonar measurement error is a random error in this case.
Y et, if the robot were to stop, becoming motionless, then a very different error modality is
possible. If the robot’s static position causes a particular sonar to fail in this manner, the
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sonar will fail consistently and will tend to return precisely the same reading time after time.
Once the robot is motionless, the error appears systematic and with high precision.

The fundamental mechanism at work here is the cross-sensitivity of mobile robot sensorsto
robot pose and robot-environment dynamics. The models for such cross-sensitivity are not,
in an underlying sense, truly random. However, these physical interrelationships are rarely
modeled and therefore, from the point of view of anincomplete model, the errors appear ran-
dom during motion and systematic when the robot is at rest.

Sonar is not the only sensor subject to this blurring of systematic and random error modes.
Visual interpretation through the use of a CCD camerais aso highly susceptible to robot
motion and position because of camera dependency on lighting changes, lighting specularity
(e.g. glare) and reflections. Theimportant point isto realize that, while systematic error and
random error are well-defined in acontrolled setting, the mobile robot can exhibit error char-
acteristics that bridge the gap between deterministic and stochastic error mechanisms.

Multi-modal error distributions

It iscommon to characterize the behavior of asensor’ srandom error in termsof aprobability
distribution over various output values. In general, one knows very little about the causes
of random error and therefore several simplifying assumptions are commonly used. For ex-
ample, we can assume that the error is zero-mean, in that it symmetrically generates both
positive and negative measurement error. We can go even further and assume that the prob-
ability density curve is Gaussian. Although we discuss the mathematics of thisin detail in
Section 4.2, it is important for now to recognize the fact that one frequently assumes sym-
metry aswell asunimodal distribution. This meansthat measuring the correct valueis most
probable, and any measurement that isfurther away islesslikely than all measurements that
are closer to the correct value. These are strong assumptions that enable powerful mathe-
matical principlesto be applied to mobile robot problems, but it isimportant to realize how
wrong these assumptions often are.

Consider, for example, the sonar sensor once again. When ranging an object that reflects
the sound signal well, the sonar will exhibit high accuracy, and will induce random error
based on noise, for example, in thetiming circuitry. This portion of its sensor behavior will
exhibit error characteristics that are fairly symmetric and unimodal. However, when the so-
nar sensor is moving through an environment and is sometimes faced with materials that
cause coherent reflection rather than returning the sound signal to the sonar sensor, then the
sonar will grossly overestimate distance to the object. In such cases, the error will be biased
toward positive measurement error and will be far from the correct value. The error is not
strictly systematic, and so we are left modeling it as a probability distribution of random er-
ror. Sothe sonar sensor hastwo separate types of operational modes, onein which the signal
does return and some random error is possible, and the second in which the signal returns
after a multi-path reflection, and gross overestimation error occurs. The probability distri-
bution could easily be bimodal in this case, and since overestimation is more common than
underestimation it will also be asymmetric.

As a second example, consider ranging via stereo vision. Once again, we can identify two
modes of operation. If the stereo vision system correctly correlates two images, then the re-
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sulting random error will be caused by camera noise and will limit the measurement accu-
racy. But the stereo vision system can also correlate two images incorrectly, aligning two
fence posts for example that are not the same post in the real world. In such a case, stereo
vision will exhibit gross measurement error, and one can easily imagine such behavior vio-
lating both the unimodal and the symmetric assumptions.

Thethesisof thissectionisthat sensorsthat arein active usein amobile robot may be subject
to multiple modes of operation and, when the sensor error is characterized, unimodality and
symmetry may be grossly violated. Nonetheless, as you will see, many successful mobile
robot systems make use of these assumptions and the resulting mathematical techniques
with great empirical success.

The previous sections have presented a terminology with which we can characterize the ad-
vantages and disadvantages of various mobile robot sensors. In the following sections, we
do so for asampling of the most commonly used mobile robot sensors today.

4.1.3 Wheel/motor sensors

Wheel/motor sensors are exclusively proprioceptive devices use to measure the internal
state and dynamics of amobilerobot. These sensors have vast application outside of mobile
robotics and, as a result, mobile robotics has enjoyed the benefits of high-quality, low-cost
wheel and motor sensors that offer excellent resolution. In the next subsection, we sample
just one such sensor, the optical incremental encoder.

4.1.3.1 Optical Encoders

Optical incremental encoders have become the most popular device for measuring angular
position within a motor drive or at the shaft of a wheel or steering mechanism. In mobile
robotics, encoders are used to control the position or speed of wheelsand other motor-driven
joints. Because these sensors of proprioceptive, their estimate of position is best in the ref-
erence frame of the robot and, when applied to the problem of robot localization, significant
corrections are required as discussed in Chapter 5.

An optical encoder is basically a mechanical light chopper that produces a certain number
of sine or square wave pulsesfor each shaft revolution. It consists of an illumination source,
afixed grating that masks the light, arotor disc with afine optical grid that rotates with the
shaft, and fixed optical detectors. Astherotor moves, the amount of light striking the optical
detectors varies based on the alignment of the fixed and moving gratings. In robotics, the
resulting sine wave is transformed into a discrete square wave using a threshold to choose
between light and dark states. Resolution is measured in Cycles Per Revolution. The min-
imum angular resolution can be readily computed from an encoder’s CPR rating. A typical
encoder in mobile robotics may have 2,000 CPR while the optical encoder industry can
readily manufacture values of 10,000 CPR. Interms of required bandwidth, it is of course
critical that the encoder be sufficiently fast to count at the shaft spin speedsthat are expected.
Industrial optical encoders present no limitation in terms of bandwidth to mobile robot ap-
plications.

Usually in mobile robotics the quadrature encoder isused. In this case, asecond illumina
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Fig4.2 Optical wheel encoder: The observed phase relationship between channel
A and B pulse trains are used to determine the direction of the rotation. A
single dlot in the outer track generates a reference (index) pulse per revolu-
tion.
tion and detector pair is placed 90° shifted with respect to the original in terms of the rotor
disc. Theresulting twin square waves, shown in Fig. 4.2, provide significantly more infor-
mation. The ordering of which square wave produces arising edge first identifies the direc-
tion of rotation. Furthermore, the four detectably different states improve the resolution by
afactor of four with no change to the rotor disc. Thus, a 2,000 CPR encoder in quadrature
yields 8,000 counts. Further improvement is possible by retaining the sinusoidal wave mea-
sured by the optical detectorsand performing sophisticated interpolation. Such methods, al-
though rare in mobile robotics, can yield 1000-fold improvements in resolution.

As with most proprioceptive sensors, encoders are generally in the controlled environment
of a mobile robot’s internal structure, and so systematic error and cross-sensitivity can be
engineered away. The accuracy of optical encoders is often assumed to be 100% and, al-
though thismay not entirely correct, any errorsat the level of an optical encoder are dwarfed
by errors downstream of the motor shaft.

4.1.4 Heading Sensors

Heading sensors can be proprioceptive (gyroscope, inclinometer) or exteroceptive (com-
pass). They are used to determine the robots orientation and inclination. They allow, togeth-
er with an appropriate velocity information, to integrate the movement to an position
estimate. This procedure, which has its roots in vessel and ship navigation, is called dead
reckoning.

4.1.4.1 Compasses

The two most common modern sensors for measuring the direction of a magnetic field are
the Hall Effect and Flux Gate compasses. Each has advantages and disadvantages, as de-
scribed below.

The Hall Effect describes the behavior of electric potential in a semiconductor when in the
presence of amagnetic field. When aconstant current is applied across the length of a semi-
conductor, there will be avoltage difference in the perpendicular direction, across the semi-
conductor’s width, based on the relative orientation of the semiconductor to magnetic flux
lines. In addition, the sign of the voltage potential identifies the direction of the magnetic
field. Thus, asingle semiconductor provides ameasurement of flux and direction along one
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Fig4.3 Digital compasses. Sensors such as the Digital/Analog hall effect sensors
shown, available from Dinsmore [ http://dinsmoregroup.convdico], enable
inexpensive (< $USL5) sensing of magnetic fields.

dimension. Hall Effect digital compasses are popular in mobile robotics, and contain two
such semiconductors at right angles, providing two axes of magnetic field (threshol ded) di-
rection, thereby yielding one of 8 possible compass directions. The instruments are inex-
pensive but also suffer from a range of disadvantages. Resolution of a digital hall effect
compass is obviously poor. Internal sources of error include the nonlinearity of the basic
sensor and systematic bias errors at the semiconductor level. The resulting circuitry must
perform significant filtering, and this lowers the bandwidth of hall effect compasses to val-
ues that are slow in mobile robot terms. The hall effect compasses pictured in figure 4.3
needs 2.5 seconds to settle after a 90° spin.

The Flux Gate compass operates on adifferent principle. Two small coilsarewound on fer-
rite cores and are fixed perpendicular to one-another. When aternating current is activated
in both coils, the magnetic field causes shifts in the phase depending upon its relative align-
ment with each coil. By measuring both phase shifts, the direction of the magnetic field in
two dimensions can be computed. The flux-gate compass can accurately measure the
strength of a magnetic field and has improved resolution and accuracy; however it is both
larger and more expensive than aHall Effect compass.

Regardless of the type of compass used, amajor drawback concerning the use of the Earth’s
magnetic field for mobile robot applications involves disturbance of that magnetic field by
other magnetic objects and man-made structures, as well as the bandwidth limitations of
electronic compasses and their susceptibility to vibration. Particularly in indoor environ-
ments, mobile robotics applications have generally avoided the use of compasses, athough
a compass can conceivably provide local orientation information.

4.1.4.2 Gyroscope

Gyroscopes are heading sensors which preserve their orientation in relation to afixed refer-
ence frame. Thusthey provide an absolute measure for the heading of amobile system. Gy-
roscopes can be classified in two categories, the mechanical gyroscopes and the optical
gyroscopes.

Mechanical Gyroscopes

The concept of amechanical gyroscoperelieson theinertial properties of afast spinning ro-
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Fig4.4 Two axis mechanical gyroscope

tor. The property of interest is known as the gyroscopic precession. If you try to rotate a
fast spinning wheel around its vertical axis, you will feel a harsh reaction in the horizontal
axis. Thisis due to the angular momentum associated with a spinning wheel and will keep
the axis of the gyroscope inertially stable. The reactive torque t and thus the tracking sta-
bility with the inertial frame are proportional to the spinning speed w, the precession speed
Wand the wheel’ sinertial.

t = lww (4.5)

By arranging a spinning wheel as seen in Figure 4.4, no torque can be transmitted from the
outer pivot to the wheel axis. The spinning axis will therefore be space-stable (i.e. fixed in
aninertial referenceframe). Nevertheless, the remaining friction in the bearings of the gyro-
axis introduce small torques, thus limiting the long term space stability and introducing
small errors over time. A high quality mechanical gyroscope can cost up to $100.000 and
has an angular drift of about 0.1° in 6 hours.

For navigation, the spinning axis has to be initialy selected. If the spinning axisis aligned
with the north-south meridian, the earth’ srotation has no effect on the gyro’ shorizontal axis.
If it points east-west, the horizontal axis reads the earth rotation.

Rate gyros have the same basic arrangement as shown in Figure 4.4 but with a slight modi-
fication. The gimbals are restrained by atorsional spring with additional viscous damping.
This enables the sensor to measure angular speeds instead of absolute orientation.

Optical Gyroscopes

Optical gyroscopes are a relatively new innovation. Commercia uses began in the early
1980’ swhen they werefirst installed in aircraft. Optical gyroscopes are angular speed sen-
sors that use two monochromatic light beams, or lasers, emitted from the same source in-
stead of moving, mechanical parts. They work on the principle that the speed of light
remains unchanged and, therefore, geometric change can cause light to take a varying
amount of timeto reach its destination. One laser beam is sent traveling clockwise through
afiber while the other travels counterclockwise. Because the laser traveling in the direction
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of rotation has a dlightly shorter path, it will have ahigher frequency. Thedifferencein fre-
guency Df of thetwo beamsisaproportional to the angular velocity Wof the cylinder. New
solid-state optical gyroscopes based on the same principle are build using microfabrication
technology, thereby providing heading information with resolution and bandwidth far be-
yond the needs of mobile robotic applications. Bandwidth, for instance, can easily exceed
100K Hz while resolution can be smaller than 0.0001°/hr.

4.1.5 Ground-Based Beacons

One elegant approach to solving the localization problem in mobile robotics isto use active
or passive beacons. Using the interaction of on-board sensors and the environmental bea-
cons, therobot can identify its position precisely. Although the general intuition isidentical
to that of early human navigation beacons, such as stars, mountains and lighthouses, modern
technology has enabled sensorsto |ocalize an outdoor robot with accuracies of better than 5
cm within areas that are kilometersin size.

In the following subsection, we describe one such beacon system, the Global Positioning
System (GPS), which isextremely effective for outdoor ground-based and flying robots. In-
door beacon systems have been generally less successful for a number of reasons. The ex-
pense of environmental modification in an indoor setting isnot amortized over an extremely
large useful area, asit isfor examplein the case of GPS. Furthermore, indoor environments
offer significant challenges not seen outdoors, including multipath and environment dynam-
ics. A laser-based indoor beacon system, for example, must disambiguate the one true | aser
signal from possibly tens of other powerful signals that have reflected off of walls, smooth
floorsand doors. Confounding this, humansand other obstacles may be constantly changing
the environment, for example occluding the one true path from the beacon to the robot. In
commercia applications such as manufacturing plans, the environment can be carefully
controlled to ensure success. In less structured indoor settings, beacons have nonetheless
been used, but the problems are mitigated by careful beacon placement and the useful of pas-
sive sensing modalities.

4.1.5.1 The Global Positioning System

The GPSwasinitially devel oped for military use but isnow freely availablefor civilian nav-
igation. There are at least 24 operational GPS satellites at al times. The satellites orbit ev-
ery 12 hours at a height of 20.190km. Four satellites are located in each of six planes
inclined 55° with respect to the plane of the earth’s equator (figure 4.5).

These satellites continuously transmits data that indicates its location and the current time.
Therefore, GPS receivers are completely passive but exteroceptive sensors. The GPS satel-
lites synchronize their transmissions so that their signals are sent at the sametime. When a
GPS receiver reads the transmission of two or more satellites, the arrival time differences
inform the receiver as to its relative distance to each satellite. By combining information
regarding the arrival time and instantaneous location of four satellites, the receiver can infer
its own position. In theory, such triangulation requires only three data points. However,
timing is extremely critical in the GPS application because the time intervals being mea
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Fig4.5 Calculation of position and heading based on GPS

sured are in the nanoseconds. It is, of course, mandatory that the satellites be well synchro-
nized. To thisend, they are updated by ground stations regularly and each satellite carries
on-board atomic clocks for timing.

But, the GPS receiver clock is also important so that the travel time of each satellite’ strans-
mission can be accurately measured. But GPS receivers have a simple quartz clock. So,
although 3 satellites would ideally provide position in three axes, the GPS receiver requires
4 satellites, using the additional information to solvefor 4 variables: three position axes plus
atime correction.

The fact that the GPS receiver must read the transmission of 4 satellites simultaneously is a
significant limitation. GPS satellite transmissions are extremely low-power, and reading
them successfully requires direct line-of-sight to the satellite. Thus, in confined spaces such
as heavily populated areas with tall buildings and forests, oneis unlikely to receive 4 satel-
litesreliably. Of course, most indoor spaces will also fail to provide sufficient visibility of
the sky for a GPS receiver to function. For these reasons, GPS has been a popular sensor in
mobile robotics, but has been relegated to projectsinvolving mobile robot traversal of wide-
open spaces and autonomous flying machines.

A number of factors affect the performance of alocalization sensor that makes use of GPS.
First, it isimportant to understand that, because of the specific orbital paths of the GPS sat-
ellites, coverageisnot geometrically identical in different portions of the Earth and therefore
resolution is not uniform. Specifically, at the North and South poles, the satellites are very
close to the horizon and, thus, while resolution in the latitude and longitude directions is
good, resolution of altitude isrelatively poor as compared to more equatorial locations.

The second point is that GPS satellites are merely an information source. They can be em-
ployed with various strategies in order to achieve dramatically different levels of localiza-
tion resolution. The basic strategy for GPS use, called pseudorange and described above,
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generally performs at aresolution of 15m. An extension of this method isdifferential GPS,
which makes use of a second receiver that is static and at aknown exact position. A number
of errors can be corrected using thisreference, and so resolution improvesto the order of 1m
or less. A disadvantage of thistechniqueisthat the stationary receiver must beinstalled, its
location must be measured very carefully and of course the moving robot must be within ki-
lometers of this static unit in order to benefit from the DGPS technique.

A further improved strategy is to take into account the phase of the carrier signals of each
received satellite transmission. There are two carriers, at 19cm and 24cm, therefore signif-
icant improvements in precision are possible when the phase difference between multiple
satellites is measured successfully. Such receivers can achieve 1cm resolution for point po-
sitions and, with the use of multiple receivers asin DGPS, sub-1cm resolution.

A final consideration for mobile robot applicationsis of course bandwidth. GPS will gen-
erally offer no better than 200 - 300ms latency, and so one can expect no better than 5Hz
GPSupdates. On afast-moving maobilerobot or flying robot, this can mean that local motion
integration will be required for proper control due to GPS latency limitations.

4.1.6 Active Ranging

Active range sensors continue to be the most popular sensors in mobile robotics. Many
ranging sensors have a low price point, and most importantly al ranging sensors provide
easily interpreted outputs: direct measurements of distance from the robot to objects in its
vicinity. For obstacle detection and avoidance, most mobile robots rely heavily on active
ranging sensors. But the local freespace information provided by range sensors can aso be
accumulated into representations beyond the robot’ s current local referenceframe. Thusac-
tive range sensors are a'so commonly found as part of the localization and environmental
modeling processes of mobile robots. It is only with the slow advent of successful visual
interpretation competency that we can expect the class of active ranging sensors to eventu-
aly, but slowly, lose their primacy as the sensor class of choice among mobile roboticists.

Below, we present two time-of-flight active range sensors, the ultrasonic senor and the laser
rangefinder. Then, we present two geometric active range sensors, the optical triangulation
sensor and the structured light sensor.

4.1.6.1 Time-of-Flight active ranging

Time-of-flight ranging makes use of the propagation speed of sound or an electromagnetic
wave. Ingeneral, the traveled distance of a sound of electromagnetic waveis given by:

d=cxt (4.6)

where
d = distance traveled (usually round-trip)
¢ = speed of wave propagation
t = time of flight.
It isimportant to point out that the propagation speedv of sound isaround 0.3 m/mswhereas
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the speed of el ectromagnetic signalsare 0.3 m/ns, whichisonemilliontimesfaster. Thetime
of flight for atypical distance, say 3 meters, is 10 ms for an ultrasonic system but only 10
nsfor alaser rangefinder. It isthus evident that measuring the time of flight t with electro-
magnetic signalsis not an easy task at al. Thisexplainswhy laser range sensors have only
recently become affordable and robust for use on mobile robots.

The quality of time-of-flight range sensors depends mainly on:
» Uncertainties in determining the exact time of arrival of the reflected signal

Inaccuraciesin the time of flight measurement (particularly with laser range sensors)

The dispersal cone of the transmitted beam (mainly with ultrasonic range sensors)

Interaction with the target (e.g. surface absorption, specular reflections)

Variation of propagation speed
* The speed of the mobile robot and target (in the case of a dynamic target)

As discussed below, each type of time-of-flight sensor has high sensitivity to a particular
subset of the above list of factors.

The Ultrasonic Sensor (time-of-flight, sound)

The basic principle of an ultrasonic sensor is to transmit a packet of (ultrasonic) pressure
waves and to measure the timeit takes for thiswave to reflect and return to the receiver. The
distance d of the object causing the reflection can be calculated based on the propagation
speed of sound c and the time of flight t.

_cxt
d= > 4.7)
The speed of sound cinair isgiven by
c = JORT (4.8)

where
g ratio of specific heats
R: gas constant
T: temperature in degree Kelvin
In air at standard pressure and 20° Celsius the speed of sound is approximately ¢ = 343 m/s.

Figure 4.6 shows the different signal output and input of an ultrasonic sensor. First, a series
of sound pulses are emitted, comprising the wave packet. An integrator also beginsto lin-
early climb in value, measuring the time from the transmission of these sound waves to de-
tection of an echo. A threshold valueis set for triggering an incoming sound wave asavalid
echo. Thisthreshold isoften decreasing in time, because the amplitude of the expected echo
decreases over time based on dispersal asit travels longer. But during transmission of the
initial sound pulses and just afterwards, the threshold is set very high to suppress triggering
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the echo detector with the outgoing sound pulses. A transducer will continue to ring for up
to several milliseconds after the initial transmission, and this governs the blanking time of
the sensor. Note that if, during the blanking time, the transmitted sound were to reflect off
of an extremely close object and return to the ultrasonic sensor, it will fail to be detected.

However, once the blanking interval has passed, the system will detect any above-threshold
reflected sound, triggering a digital signal and producing the distance measurement using
the integrator value.

The ultrasonic wave typically has a frequency between 40 and 180 kHz and is usually gen-
erated by a piezo or electrostatic transducer. Often the same unit is used to measure the re-
flected signal, although the blanking interval can be reduced through the use of separate
output and input devices. Frequency can be used to select a useful range when choosing the
appropriate ultrasonic sensor for amobile robot. Lower frequencies correspond to alonger
range, but with the disadvantage of longer post-transmission ringing and, therefore, the need
for longer blanking intervals. Most ultrasonic sensors used by mobile robots have an effec-
tive range of roughly 12cm to 5 metres. The published accuracy of commercia ultrasonic
sensors varies between 98% and 99.1%. In mobile robot applications, specific implementa-
tions generally achieve aresolution of approximately 2cm.

In most cases one may want a narrow opening angle for the sound beam to obtain also pre-
cise directional information about objects that are encountered. This is a major limitation
since sound propagatesin acone-like manner (fig. 4.7) with opening angles around 20°- 40°.
Consequently, when using ultrasonic ranging one does not acquire depth data points but,




4 Perception 93

0.5 meters

Fig 4.8 Typical readings of a ultrasonic
system: a) 360° scan
b) results from different geo-
metric primitives[9].

rather, entire regions of constant depth. This means that the sensor tells us only that thereis
an object at acertain distancein the areaof the measurement cone. The sensor readings must
be plotted as segments of an arc (sphere for 3D) and not as point measurements (fig. 4.8).
However, recent research devel opments show significant improvement of the measurement
quality in using sophisticated echo processing [87].

Ultrasonic sensors suffer from several additional drawbacks, namely in the areas of error,
bandwidth and cross-sensitivity. The published accuracy valuesfor ultrasonics are nominal
values based on successful, perpendicular reflections of the sound wave off an acoustically
reflective material. Thisdoes not capture the effective error modality seen on amobile robot
moving through its environment. As the ultrasonic transducer’s angle to the object being
ranged varies away from perpendicular, the chances become good that the sound waves will
coherently reflect away from the sensor, just aslight at a shallow angle reflects off of amir-
ror. Therefore, thetrue error behavior of ultrasonic sensors a conglomerate, with awell-un-
derstood error distribution near the true value in the case of a successful retro-reflection, and
amore poorly-understood set of range values that are grossly larger than the true value in
the case of a coherent reflection away from the sensor. Of course, the acoustic properties of
the material being ranged have direct impact on the sensor’ s performance. Again, theimpact
is discrete, with one material possibly failing to produce a reflection that is sufficiently
strong to be sensed by the unit. For example, foam, fur and cloth can, in various circum-
stances, acoustically absorb the sound waves.

A fina limitation for ultrasonic ranging lies in the category of bandwidth. Particularly in
moderately open spaces, a single ultrasonic sensor has arelatively slow cycletime. For ex-
ample, measuring the distance to an object that is 3 meters away will take such a sensor
20ms, limiting its operating speed to 50 Hz. But if the robot has aring of 20 ultrasonic sen-
sors, each firing sequentially and measuring to minimize interference between the sensors,
then the ring’ s cycle time becomes 0.4s and the overall update frequency of any one sensor
isjust 2.5Hz. For arobot conducting moderate speed motion while avoiding obstacles using
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Fig4.9 Schematic of laser rangefinding by phase-shift measurement.

ultrasonics, this update rate can have a measurable impact on the maximum speed possible
while still sensing and avoiding obstacles safely.

Laser Rangefinder (time of flight, electromagnetic)

The laser rangefinder is atime-of-flight sensor that achieves significant improvements over
the ultrasonic range sensor due to the use of laser light instead of sound. Thistype of sensor
consists of a transmitter which illuminates a target with a collimated beam (e.g. laser), and
areceiver capable of detecting the component of light which is essentially coaxial with the
transmitted beam. Often referred to as optical radar or lidar (light detection and ranging),
these devices produce a range estimate based on the time needed for the light to reach the
target and return. A mechanical mechanism with amirror sweepsthe light beam to cover the
required scenein aplane or even in 3 dimensions, using arotating, nodding mirror.

One way to measure the time of flight for the light beam is to use a pulsed laser and then
measured the elapsed time directly, precisely asin the ultrasonic solution described earlier.
Electronics capable of resolving picoseconds are required in such devices and they are there-
forevery expensive. A second method isto measure the beat frequency between afrequency
modulated continuous wave (F.M.C.W.) and its received reflection. Another, even easier
method is to measure the phase shift of the reflected light. We describe this final approach
in detail.

Phase-Shift Measurement

Near infrared light (from an LED or alaser) iscollimated and transmitted from the transmit-
ter T in figure 4.9 and hits a point P in the environment. For surfaces having a roughness
greater than the wavelength of the incident light, diffuse reflection will occur, meaning that
thelight isreflected almost isotropically. The wavelength of theinfrared light emitted is 824
nm meaning that most surfaces with the exception of only highly polished reflecting objects,
will be diffuse reflectors. The component of the infrared light which falls within the receiv-
ing aperture of the sensor will return almost parallel to the transmitted beam, for distant ob-
jects.

The sensor transmits 100% amplitude modulated light at a known frequency and measures
the phase shift between the transmitted and reflected signals. Figure 4.10 shows how this
technique can be used to measure range. The wavelength of the modulating signal obeysthe
equation c = fl where cisthe speed of light and f the modulating frequency. For f =5 Mhz
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Fig4.10 Range estimation by measuring the phase shift between transmitted and re-
ceived signals.

(asinthe A.T&T. sensor), | =60 meters. Thetotal distance D’ covered by the emitted light
is

D'=L+2D = L+34] (4.9)
2p

where D and L are the distances defined in figure 4.9. The required distance D, between the
beam splitter and the target, is therefore given by

I

D = 4_pq (4.10)
whereq isthe electronically measured phase difference between the transmitted and reflect-
ed light beams, and| the known modulating wavel ength. It can be seen that the transmission
of asingle frequency modul ated wave can theoretically result in ambiguous range estimates
since for example if | = 60 meters, atarget at a range of 5 meters would give an indistin-
guishable phase measurement from a target at 65 meters, since each phase angle would be
360° apart. We therefore define an * ambiguity interval” of | , but in practice we note that the
range of the sensor is much lower than| due to the attenuation of the signal in air.

It can be shown that the confidence in the range (phase estimate) is inversely proportional
to the sguare of the received signal amplitude, directly affecting the sensor’s accuracy.
Hence dark, distant objectswill not produce as good range estimates as close, bright objects.

In figure 4.11 the schematic of a typical 360° laser range sensor and two examples are
shown. Figure 4.12 shows a typical range image of a 360° scan taken with an laser range
Sensor.

Asyou will expect, the angular resolution of laser rangefindersfar exceedsthat of ultrasonic
sensors. The Sick laser scanner shown in Figure 4.11 achieves an angular resolution of 0.5°.
Depth resolution is approximately 5¢cm, over arange from 5cm up to 20m or more, depend-
ing upon the brightness of the object being ranged. This device performs 25 180° scans per
second but has no mirror nodding capability for the vertical dimension.

Aswith ultrasonic ranging sensors, an important error mode involves coherent reflection of
the energy. With light, thiswill only occur when striking a highly polishes surface. Practi-
cally, amobile robot may encounter such surfacesin theform of apolished desktop, file cab-
inet or of course amirror. Unlike ultrasonic sensors, laser rangefinders cannot detect the
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presence of optically transparent materials such as glass, and this can be a significant obsta-
clein environments, such as museums, where glass is commonly used.

4.1.6.2 Triangulation-based Active Ranging

Triangulation-based ranging sensors use geometrical properties manifest in their measuring
strategy to establish distance readings to objects. The simplest class of triangulation-based
rangers are active because they project aknown light pattern (e.g. apoint, aline or atexture)
onto the environment. The reflection of the known pattern is captured by a receiver and,
together with known geometric values, the system can use simple triangulation to establish
range measurements. |If the receiver measures the position of the reflection along a single
axis, we call the sensor an optical triangulation sensor in 1D. If the receiver measures the
position of the reflection along two orthogonal axes, we call the sensor astructured light sen-
sor. These two sensor types are described in the two subsections below.
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Optical Triangulation (1D sensor)

The principle of optical triangulation in 1D is straightforward, as depicted in figure 4.13. A
collimated beam (e.g. focused infrared L.E.D., laser beam) is transmitted toward the target.
Thereflected light is collected by alensand projected onto aposition sensitive device (PSD)
or linear camera. Given the geometry of figure 4.13 the distance D is given by

D =f (4.11)

L
X
The distance is proportional to 1/x, therefore the sensor resolution is best for close objects
and becomes poor at a distance. Sensors based on this principle are used in range sensing up

to one or two meters, but also in high precision industrial measurements with resolutions far
below one pm.

Optical triangulation devices can provide relatively high accuracy with very good resolution
(for close objects). However, the range of such adeviceisnormally fairly limited by geom-
etry. For example, the optical triangulation sensor pictured in Figure 4.14 operates over a
distance range of between 8cm and 80cm. It isinexpensive as compared to ultrasonic and
laser rangefinder sensors, costing only about $10. Although more limited in range than so-
nar, the optical triangulation sensor has an extremely high bandwidth and does not suffer
from cross-sensitivities that are more common in the sound domain.

Structured Light (2D sensor)

If one replaced the linear camera or PSD of an optical triangulation sensor with a two-di-
mensional receiver such asaCCD or CMOS camera, then one can recover distanceto alarge
set of pointsinstead of to only one point. The emitter must project aknown pattern, or struc-
ture light, onto the environment. Many systems exist which either project light textures (fig.
4.15b) or emit collimated light (possibly laser) by means of arotating mirror. Y et another
popular alternativeisto project alaser stripe (fig. 4.15a) by turning alaser beam into a plane
using aprism. Regardlessof how it iscreated, the projected light has aknown structure, and
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Fig4.14 A commercially available, low-cost optical triangulation sensor: the Sharp

GP2D12 Infrared Rangefinders provides either analog or digital distance
measures and costs only about $15.

therefore the image taken by the CCD or CMOS receiver can befiltered to identify the pat-
tern’ s reflection.

Note that the problem of recovering depth isin this casefar ssimpler than the problem of pas-
siveimage analysis. In passive image analysis, as we discuss later, existing featuresin the
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environment must be used to perform correlation, while the present method projects a
known pattern upon the environment and thereby avoids the standard correlation problem
altogether. Furthermore, the structure light sensor is an active device; so, it will continue to
work in dark environments as well as environment in which the objects are featureless (e.g.
uniformly colored and edgeless). Stereo vision, for example, would fail in such circum-
stances.

Figure 4.15¢ shows a one dimensional active triangulation geometry. We can examine the
trade-off in the design of triangulation systems by examining the geometry in figure 4.15c.
The measured valuesin the system area and u the distance of theilluminated point from the
origin in the imaging sensor. (Note the imaging sensor here can be a camera or an array of
photo diodes of a position sensitive device (e.g. a2D PSD).

From figure 4.15c, simple geometry shows that:

b xu b xf
= = — 4.12
XZ feota—u’ % foota—-u (4.12)
wheref isthe distance of the lensto the imaging plane. In the limit, the ratio of image reso-
lution to range resolution is defined as the triangulation gain G, and from equation 4.12 is

given by:

u _ _ b xf
M- =2Z (4.13)
1z Py

Thisshowsthat the ranging accuracy, for agivenimageresolution, isproportional to source/
detector separation b and focal length f, and decreases with the square of therange z. In a
scanning ranging system, thereisan additional effect on the ranging accuracy, caused by the
measurement of the projection anglea. From equation 4.12 we see that:

.2
fa _ _ bsna
ﬂ_Z =G, = _ZZ (4.19)

We can summarize the effects of the parameters on the sensor accuracy as follows:

» Baselinelength b: the smaller b isthe more compact the sensor can be. The larger b
isthe better the range resolution will be. Note also however, that although these sen-
sors do not suffer from the correspondence problem, the disparity problem still oc-
curs. Asthe baseline length b is increased, one introduces the chance that, for close
objects, the illuminated point(s) may not bein the receiver’ sfield of view.

» Detector length and focal lengthf: A larger detector length can provide either alarger
field of view or animproved range resolution or partial benefits for both. Increasing
the detector length however means a larger sensor head and worse electrical charac-
teristics (increase in random error and reduction of bandwidth). Also, a short focal
length gives alarge field of view at the expense of accuracy and vice versa.
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At one time, laser stripe-based structured light sensors were common on several mobile ro-
bot bases as an inexpensive alternative to laser rangefinding devices. However, with thein-
creasing quality of laser rangefinding sensors in the 1990’ s the structure light system has
become relegated largely to vision research rather than applied mobile robotics.

4.1.7 Motion/Speed sensors

Some sensors directly measure the relative motion between the robot and its environment.
Since such Motion sensors detect relative motion, so long as an object is moving relative to
the robot’ s reference frame, it will be detected and its speed can be estimated. There are a
number of sensors that inherently measure some aspect of motion or change. For example,
the Pyroel ectric sensor detects changein heat. When ahuman walks across the sensorsfield
of view, his motion triggers a change in heat in the sensor’s reference frame. In the next
subsection, we describe an important type of motion detector, those based on the Doppler
effect. These sensors represent a well-known technology with decades of general applica-
tions behind them. For fast-moving mobile robots such as autonomous highway vehicles
and unmanned flying vehicles, Doppler-based motion detectors are the obstacle detection
sensor of choice.

4.1.7.1 Doppler Effect Based Sensing (radar or sound)

Anyonewho has noticed the changein siren pitch that occurs when an approaching firetruck
passes by is familiar with the doppler effect.
A transmitter emits an electromagnetic or sound wave with a frequency fi. It is either re-

ceived by areceiver (fig. 4.16a) or reflected from an object (fig. 4.16b). The measured fre-
guency f, at thereceiver isafunction of therelative speed v between transmitter and receiver

according to

fo=f (4.15)

if the transmitter is moving and

f. = f(1+vec) (4.16)
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if the receiver is moving.

In the case of a reflected wave (fig. 4.16b) there is a factor of two introduced, since any
change x in relative separation affects the round-trip path length by 2x. Furthermore, in such
situations it is generally more convenient to consider the change in frequency Df, known as
the Doppler shift, as opposed to the Doppler frequency notation above.

2f,vcosq
r = C

Df = f—f (4.17)

_ Dfxc
~ 2f,cosq (4.18)

where:
Df = Doppler frequency shift
g = relative angle between direction of motion and beam axis

The Doppler effect applies to sound and electromagnetic waves. It has a wide spectrum of
applications:

» Sound waves: e.g. industrial process control, security, fish finding, measure of
ground speed

 Electromagnetic waves:. e.g. vibration measurement, radar systems, object tracking

A current application areais both autonomous and manned highway vehicles. Both micro-
wave and laser radar systems have been designed for this environment. Both systems have
equivalent range, but laser can suffer when visual signals are deteriorated by environmental
conditions such asrain, fog, etc. Commercial microwave radar systems are already avail-
able for installation on highway trucks. These systems are called VORAD (vehicle on-
board radar) and have atotal range of approximately 150m. With an accuracy of approxi-
mately 97%, these systems report range rate from 0 to 160 km/hr with aresolution of 1 km/
hr. The beam is approximately 4° wide and 5° in elevation. One of the key limitations of
radar technology is its bandwidth. Existing systems can provide information on multiple
targets at approximately 2 Hz.

4.1.8 Vision-based sensors

Vision isour most powerful sense. It provides us with an enormous amount of information
about the environment and enables rich, intelligent interaction in dynamic environments. It
istherefore not surprising that agreat deal of effort has been devoted to providing machines
with sensors that mimic the capabilities of the human vision system. The first step in this
process is creation of sensing devices that capture the same raw information, light, that the
human vision system uses. The next subsection describes the two current technologies for
creating vision sensors. CCD and CMOS. These sensors have specific limitationsin perfor-
mance when compared to the human eye, and it isimportant for you to understand these lim-
itations. Afterwards, the second and third subsections describe vision-based sensorsthat are
commercialy available, like the sensors discussed previously in this chapter, along with
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Fig4.17 Commercially available CCD chipsand CCD cameras. Because this tech-
nology is relatively mature, cameras are available in widely varying forms
and costs [ http: //mww.howstuffwor ks.convdigital -camera2.htm] .

their disadvantages and most popular applications.

4.1.8.1 CCD and CMOS sensors

The Charged Coupled Device (CCD) is the most popular basic ingredient of robotic vision
systemstoday. The CCD chip (seeFig. 4.17) isan array of light-sensitive picture elements,
or pixels, usually with between 20,000 and 2 million pixelstotal. Each pixel can be thought
of asalight-sensitive, discharging capacitor that is5 to 25 micronsin size. First, the capac-
itors of all pixels are charged fully, then the integration period begins. As photons of light
strike each pixel, they liberate electrons, which are captured by electric fields and retained
at the pixel. Over time, each pixel accumulates avarying level of charge based on the total
number of photonsthat have struck it. After the integration period is complete, the relative
charges of al pixelsneedto befrozen and read. InaCCD, thereading processis performed
at one corner of the CCD chip. The bottom row of pixel charges are transported to this cor-
ner and read, then the rows above shift down and the process repeats. This means that each
charge must be transported across the chip, and it iscritical that the value be preserved. This
requires specialized control circuitry and custom fabrication techniques ensure the stability
of transported charges.

The photodiodes used in CCD chips (and CMOS aswell) are not equally sensitiveto all fre-
guenciesof light. They are sensitive to light between 400nm and 1000nm wavelength. Itis
important to remember that photodiodes are less sensitive to the ultraviol et part of the spec-
trum (e.g. blue) and are extremely sensitive to the infrared portion (e.g. heat).

Y ou can see that the basic light-measuring processis colorless: it is just measuring the total
number of photons that strike each pixel in the integration period. There are two common
approaches for creating color images. If the pixels on the CCD chip are grouped into 2x2
sets of 4, then red, green and blue dyes can be applied to acolor filter so that each individual
pixel receives only light of one color. Normally, two pixels measure green while one pixel
each measures red and blue light intensity. Of course, this 1-chip color CCD approach has
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ageometric resolution disadvantage. The number of pixelsin the system has been effective-
ly cut by afactor of 4, and therefore the image resolution output by the CCD camerawill be
sacrificed.

The 3-chip color camera avoids these problems by splitting the incoming light into three
complete (lower intensity) copies. A separate CCD chip at receives the light, with one red,
green or bluefilter over each entire chip. Thus, in parallel, each chip measures light inten-
sity for one color, and the camera must combine the CCD chips outputs to create a joint
color image. Resolutionispreserved in this solution, although the 3-chip color cameras are,
asyou would expect, significantly more expensive and therefore more rarely used in mobile
robotics.

Both 3-chip and single chip color CCD cameras suffer from the fact that photodiodes are
much more sensitive to the near-infrared end of the spectrum and so the overall system de-
tects blue light much more poorly than red and green. To compensate, the gain must be in-
creased on the blue channel, and this introduces significantly greater absolute noise on blue
than on red and green. It is not uncommon to assume at least 1 - 2 bits of additional noise
on the blue channel. Although there is no satisfactory solution to this problem today, over
time the processes for blue detection have been improved and we expect this trend to con-
tinue.

The CCD camera has several camera parameters that affect its behavior. 1n some cameras,
these parameter value are fixed. In yet others, the values are constantly changing based on
built-in feedback loops. In still other, high-end cameras, the user can modify the values of
these parameters via software. The iris position and shutter speed regulate the amount of
light being measured by the camera. Theirisissimply amechanical aperture that constricts
incoming light, just as in standard 35mm cameras. Shutter speed regulates the integration
period of the chip. In higher-end cameras, the effective shutter speed can be as brief at 1/
30,000s and aslong as 2s. Cameragain controlsthe overall amplification of the analog sig-
nal, prior to A/D conversion. But it is very important to understand that, even though the
image may appear brighter after setting high gain, the shutter speed and iris may not have
changed at all. Thus gain merely amplifies the signal, and amplifies along with the signal
all of the associated noise and error. Although useful in applications where imaging is done
for human consumption (e.g. photography, television), gainis of little value to a mobilero-
boticist.

In color cameras, an additional control exists for gamma, or white balance. Depending on
the source of illumination in a scene (e.g. fluorescent lamps, incandescent lamps, sunlight,
underwater filtered light, etc.) the relative measurements of red, green and blue light that de-
fine pure white light will change dramatically. The human eyes compensate for all such ef-
fects in ways that are not fully understood, however, the camera can demonstrate glaring
inconsistencies in which the same table looks blue in one image, taken during the night, and
yellow in another image, taken during the day. White balance controls enable the user to
change the mixture of red, green and blue that is defined as white in order to maintain more
consistent color definitionsin varying contexts.

The key disadvantages of CCD cameras are primarily in the areas of inconstancy and dy-
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namic range. As mentioned above, a number of parameters can change the brightness and
colors with which a camera creates its image. Manipulating these parameters in a way to
provide consistency over time and over environments, for example ensuring that a green
shirt always looks green, and something dark grey is always dark grey, remains an open
problem in the vision community. For more details in the fields of color constancy and |u-
minosity constancy, consult [reference - Roland, | can provide references for this stuff].

The second class of disadvantages relates to the behavior of a CCD chip in environments
with extreme illumination. In cases of very low illumination, each pixel will receive only a
small number of photons. The longest possible integration period (i.e. shutter speed) and
camera optics (i.e. pixel size, chip size, lens focal length and diameter) will determine the
minimum level of light for which the signal is stronger than random error noise. In cases of
very high illumination, a pixel fills its well with free electrons and, as the well reaches its
limit, the probability of trapping additional electrons falls and therefore the linearity be-
tween incoming light and electronsin the well beginsto degrade. Thisistermed saturation
and can indicate the existence of afurther problem related to cross-sensitivity. When awell
hasreached itslimit, then additional light within the remainder of the integration period may
cause further charge to spread into neighboring pixels, causing them to report incorrect val-
ues or even reach secondary saturation. This effect, called blooming, means that individual
pixel values are not truly independent, as one would want.

The camera parameters may be adjusted for an environment with aparticular light level, but
the problem remains that the dynamic range of a camerais limited by the well capacity of
the individual pixels. For example, a high quality CCD may have pixels that can hold
40,000 electrons. Thenoiselevel for reading thewell may be 11 electrons, and therefore the
dynamic range will be 40,000:11, or 3,600:1, which is 35dB.

CMOS technology

The Complementary Metal Oxide Semiconductor (CMOS) chip is a significant departure
fromthe CCD. It too hasan array of pixels, but located alongside each pixel are several tran-
sistors specific to that pixel. Just asin CCD chips, al of the pixels accumulate charge during
the integration period. During the data collection step, the CMOS takes a new approach:
the pixel-specific circuitry next to every pixel measures and amplifies the pixel’s signal, all
in parallel for every pixel in the array. Using more traditional wires used in general semi-
conductor chips, the resulting pixel values are all carried to their destinations.

CMOS had a number of advantages due to its novel approach. First and foremost, thereis
no need for the specialized clock drivers and circuitry required in the CCD to transfer each
pixel’s clock down all of the array columns and across all of itsrows. This also means that
specialized semiconductor manufacturing process are not required to create CMOS chips.
Therefore, the same production lines that create microchips can create inexpensive CMOS
chipsaswell (see Fig. 4.18). The CMOS chip is so much simpler that it consumes signifi-
cantly less power; incredibly, it operates with a power consumption that is 1/100 times the
power consumption of aCCD chip. Inamobilerobot, power isa scarce resource and there-
fore thisis an important advantage.
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Fig4.18 A commercially available, low-cost CMOS camera with lens attached.

On the other hand, several disadvantages also relate to the CMOS chip. Most importantly,
the circuitry next to each pixel consumes valuable real estate on the face of the light-detect-
ing array. Many photons hit the transistors rather than the photodiode, making the CMOS
chip significantly less sensitive than an equivalent CCD chip. Second, the CMOS technol-
ogy is younger and, as aresult, the best resolution that one can purchase in CMOS format
continues to be far inferior to the best CCD chips available. Time will doubtless bring the
high end units closer to one-another in performance.

Given this summary of the mechanism behind CCD and CMOS chips, one can appreciate
the sensitivity of any vision-based robot sensor to its environment. As compared to the hu-
man eye, these chips all have far poorer adaptation, cross-sensitivity and dynamic range. As
aresult, vision sensors today continue to be fragile. Only over time, as the underlying per-
formance of imaging chipsimproves, will significantly more robust vision-based sensors be
born.

4.1.8.2 Visual ranging sensors

Range sensing is extremely important in mobile robotics asit isabasic input for successful
obstacle avoidance. Aswe have seen earlier in this chapter, anumber of sensors are popular
in robotics explicitly for them ability to recover depth estimates: ultrasonic, laser rangefind-
er, optical rangefinder, etc. Itisnatural to attempt to implement ranging functionality using
vision chipsaswell.

However, a fundamental problem with visual images makes rangefinding relatively diffi-
cult. Any vision chip collapses the three-dimensional world into a two-dimensional image
plane, thereby losing depth information. If one can make strong assumptions regarding the
size of objects in the world, or their particular color and reflectance, then one can directly
interpret the appearance of the two-dimensional image to recover depth. But such assump-
tionsarerarely possiblein real-world mobile robot applications. Without such assumptions,
a single picture does not provide enough information to recover spatial information. The
general solution isto recover depth by looking at several images of the scene to gain more
information, hopefully enough to at least partially recover depth. The images used must be
different, so that taken together they provide additional information. They could differ in
viewpoint, yielding stereo or motion algorithms. An alternativeisto create different images,
not by changing the viewpoint, but by changing the camera geometry, such as the focal
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focal plane
image plane

Y, Z)/

Fig4.19 Depiction of the camera optics and its impact on the image. In order to get
a sharp image, the image plane must coincide with the focal plane. Other-
wisetheimage of the point (x,y,z) will be blurred in theimage as can be seen
in the drawing above.

length or lens iris. This is the fundamental idea behind depth from focus and depth from
defocus techniques.

In the next section, we outline the general approach to the depth from focus techniques be-
cause it presents a straightforward and efficient way to create a vision-based range sensor.
Subsequently, we present detailsfor the correspondence-based techniques of depth from ste-
reo and motion.

Depth from focus

The depth from focus class of techniques relies on the fact that image properties change as
afunction, not only of the scene being viewed, but also of the camera parameters. The re-
lationship between camera parameters and the image propertiesis depicted in figure 4.19.

The basic formula governing image formation relates the distance of the object from the
lens, d in the above figure, to the distance e from the lens to the focal point, based on the
focal length f of the lens:

+
f

(4.19)

[oR ] )
D I

If the image plane is located at distance e from the lens, then for the specific object voxel
depicted, al light will be focused at a single point on the image plane and the object voxel
will befocused. However, when the image planeisnot at e, asis depicted in Figure (4.19),
then the light from the object voxel will form be cast on the image planeasablur circle. To
afirst approximation, the light is homogeneously distributed throughout thisblur circle, and
the radius R of the circle can be characterized according to the equation:

_Ld

R_2e

(4.20)

AsshowninFigure (4.19), L isthe diameter of thelensor apertureand d isthe displacement
of the image plan from the focal point.
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Given these formulae, severa basic optical effectsare clear. For example, if the aperture or
lensisreduced to apoint, asin apin-hole camera, then the radius of the blur circle approach-
eszero. Thisisconsistent with the fact that decreasing the iris aperture opening causes the
depth of field to increase until al objectsarein focus. Of course, the disadvantage of doing
so isthat we are allowing less light to form the image on the image plane and so thisis prac-
tical only in bright circumstances.

The second property that can be deduced from these optics equations rel ates to the sensitiv-
ity of blurring as afunction of the distance from the lens to the object. Suppose the image
planeis at afixed distance 1.2 from alens with diameter L = 0.2 and focal length f = 0.5.
We can see from Equation (4.20) that the size of the blur circle R changes proportionally
with the image plane displacement d. If the object isat distanced = 1, then from Equation
(4.19) we can compute e=1 and therefore d = 0.2. Increase the object distancetod =2 and

asaresult d =0.533. Using Equation (4.20) in each case we can compute R=0.02 R=0.08
respectively. This demonstrates high sensitivity for defocusing when the object is close to
thelens.

In contrast, suppose the object isat d = 10. In this case we compute e = 0.526. But if the
object is again moved one unit, to d = 11, then we compute e = 0.524. Then resulting blur
circlesareR= 0.117 and R=0.129, far less than the quadrupling in R when the obstacleis
1/10 the distance from the lens. This analysis demonstrates the fundamental limitation of
depth from focus techniques. they lose sensitivity as objects move further away (given a
fixed focal length). Interestingly, thislimitation will turn out to apply to virtualy all visual
ranging techniques, including depth from stereo and depth from motion.

Nevertheless, camera optics can be customized for the depth range of the intended applica-
tion. For example, a"zoom" lenswith avery largefocal lengthf will enable range resolution
at significant distances, of course at the expense of field of view. Similarly, alargelensdi-
ameter, coupled with avery fast shutter speed, will lead to larger, more detectable blur cir-
cles.

Given the physical effects summarized by the above equations, one can imagine a visual
ranging sensor that makes use of multipleimagesinwhich cameraopticsarevaried (e.g. im-
age plane displacement d) and the same scene is captured (see Fig. 4.20). In fact this ap-
proach is not a new invention. The human visua system uses an abundance of cues and
techniques, and one system demonstrated in humansis depth from focus. Humans vary the
focal length of their lens continuously at arate of about 2 Hz. Such approaches, in which
the lens optics are actively searched in order to maximize focus, are technically called depth
fromfocus. In contrast, depth from defocus means that depth is recovered using a series of
images that have been taken with different camera geometries.

Depth from focus methods are one of the simplest visual ranging techniques. To determine
the range to an object, the sensor simply moves the image plane (via focusing) until maxi-
mizing the sharpness of the object. When the sharpness is maximized, the corresponding
position of the image plane directly reportsrange. Some autofocus cameras and virtually all
autofocus video cameras use this technique. Of course, a method is required for measuring
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Fig 4.20 Two images of the same scene taken with a camera at two different focusing
positions. Note the significant change in texture sharpness between the
near surface and far surface.

the sharpness of an image or an object within theimage. The most common techniques are
approximate measurements of the sub-image gradient:

sharpness; = § [1(x y) —1(x—1,y)| (4.21)
X,y
sharpness, = § (I(x y)—1(x-2,y—2)) (4.22)
X,y

A significant advantage of the horizontal sum of differences technique (Equation (4.21)) is
that the calculation can be implemented in analog circuitry using merely arectifier and a
low-pass filtered high-pass filter. Thisis a common approach in commercial cameras and
video recorders. Thisdoesindicate that such systems may be sensitive to contrast along one
particular axis, although in practical termsthisisrarely an issue.

However depth from focusis an active search method and will be slow because it takestime
to change the focusing parameters of any camera. This method is therefore not applicable
to mobile robots in highly dynamic environments.

A variation of the depth from focus technique has been applied to a mobile robot, demon-
strating obstacle avoidance in avariety of environments aswell as avoidance of concave ob-
stacles such as steps and ledges [Roland, reference our journal article on Cheshm. | can give
you the appropriate reference]. This robot uses three monochrome cameras placed as close
together as possible with fixed but different focusing positions on each lens (Fig. 4.21).

Several times each second, all three cameras are simultaneously used to capture three imag-
es of the same scene. The images are each divided into five columns and three rows, or 15
subregions. The approximate sharpness of each region is computed using a variation of
Equation (4.22), leading to atotal of 45 sharpnessvalues. Note that Equation 22 calculates
sharpness along diagonals but skips one row. This is due to a subtle but important issue.
Many cameras produce imagesininterlaced mode. This meansthat the even rows are cap-
tured first, then afterwards the odd rows are captured. When such a camerais used in dy-
namic environments, for example on a moving robot, then adjacent rows show the dynamic
scene at two different time points, differing up to /30 seconds. The result is an artificial
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Fig4.21 The Cheshmrobot uses three monochrome cameras asits only ranging sen-
sor for obstacle avoidance in the context of humans, static obstacles such as
bushes and convex obstacles such as ledges and steps. Roland, when | get
back to CMU | can send you a high-quality nice picture of the robotw/kids

blurring due to motion and not optical defocus. By comparing only even-number rows we

avoid thisinterlace side effect.

Recall that the three images are each taken with a camera with a different focus position.
Based on the focusing position, we can call each image close, medium or far. A 5x3 coarse
depth map of the scene is constructed quickly by simply comparing the sharpness values of
each three corresponding regions. Thus, the depth map assigns only two bits of depth infor-
mation to each region using the values close, medium and far. The critical step isto adjust
the focus positions of all three cameras so that flat ground in front of the obstacle resultsin
medium readings in one row of the depth map. Then, both close and far readings will indi-
cate convex and concave obstacles respectively, enabling simple obstacle avoidance.

Note that, because the optical axes of the three cameras are not perfectly aligned, there will
be perspective shiftsthat would be eliminated using an optical 1-to-3 splitter. Nevertheless,
the coarse resolution of the algorithm enables effective obstacle avoidance without such op-
tics.

Although sufficient for obstacle avoidance, the above depth from focus algorithm presents
unsatisfyingly coarserangeinformation. The alternative isdepth from defocus, the most de-
sirable of the focus-based vision techniques.

Depth from defocus methods take asinput two or moreimages of the same scene, taken with
different, known camera geometry. Given the images and the camera geometry settings, the
goal isto recover the depth information of the three-dimensional scene represented by the
images. We begin by deriving the relationship between the actual scene properties (irradi-
ance and depth), camerageometry settings and the imageg that isformed at theimage plane.

Thefocused image f(x,y) of asceneisdefined asfollows. Consider a pinhole aperture (L=0)
inlieu of thelens. For every point p at position (x,y) on theimage plane, draw alinethrough
the pinhole aperture to the corresponding, visible point P in the actual scene. We define
f(x,y) astheirradiance (or light intensity) at p due to the light from P. Intuitively, f(x,y) rep-
resents the intensity image of the scene perfectly in focus.

The point spread function h(Xg, Y4, X1, Y1, R ) s defined asthe amount of irradiance from
point P in the scene (corresponding to (X;, y;) inthefocused imagef that contributesto point
(xg, yg) in the observed, defocused image g. Note that the point spread function depends
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not only upon the source, (X, y;) , and the target, (xg, yg) , but also on R, the blur circle ra

dius. R, inturn, depends upon the distance from point P to the lens, as can be seen by study-
ing Equations (4.19) and (4.20).

Given the assumption that the blur circle is homogeneous in intensity, we can define h as
follows:

1 . 2 2
= if (g =%)" + (Vg =¥ £R
h(Xg Yo %6 Y Ry y) = |PR
g Jgr fr Yy X, Y p

0 if (%=X + (Yg—yp*) >R’

(4.23)

Intuitively, point P contributes to the image pixel (xg, yg) only when the blur circle of point
P containsthe point (xg, yg) . Now we can writethe general formulathat computesthe value

of each pixel intheimage, (X, y) , asafunction of the point spread function and the focused
image:

0(%g Yg) = & NXg Vg X Vs R (X, Y) (4.24)
Xy

This equation relates the depth of scene pointsviaR to the observed imageg. Solving for R
would provide us with the depth map. However, this function has another unknown, and
that is f, the focused image. Therefore, one image alone is insufficient to solve the depth
recovery problem, assuming we do not know how the fully focused image would |ook.

Given two images of the same scene, taken with varying camera geometry, in theory it will
be possible to solve for g aswell as R because f stays constant. There are anumber of algo-
rithms for implementing such a solution accurately and quickly. The classical approach is
known as inverse filtering because it attempts to directly solve for R, then extract depth in-
formation from this solution. One special case of the inverse filtering solution has been
demonstrated with areal sensor. Suppose that the incoming light is split and sent to two
cameras, one with alarge aperture and the other with a pinhole aperture [94]. The pinhole
aperture results in a fully focused image, directly providing the value of f. With this ap-
proach, there remains a single equation with a single unknown, and so the solution is
straightforward. Pentland has demonstrated such a sensor, with several meters of range and
better than 97% accuracy. Note, however, that the pinhole aperture necessitates a large
amount of incoming light, and that furthermore the actual image intensities must be normal -
ized so that the pinhole and large-diameter images have equivalent total radiosity. Morere-
cent depth from defocus methods use statistical techniques and characterization of the
problem as a set of linear equations [93]. These matrix-based methods have recently
achieved significant improvements in accuracy over al previous work.

In summary, the basic advantage of the depth from defocus method is its extremely fast
speed. The equations above do not require search to find the solution, as would the correla-
tion problem faced by depth from stereo methods. Perhaps more importantly, the depth
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from defocus methods also need not capture the scene at different perspectives, and are
therefore unaffected by occlusions and the disappearance of objectsin a second view.

Aswith all visual methods for ranging, accuracy decreases with distance. And the accuracy
can be extreme; these methods have been used in microscopy to demonstrate ranging at the
micrometer level.

Stereo vision

Stereo vision of one of several techniques in which we recover depth information from two
images that depict the scene from different perspectives. The theory of depth from stereo
has been well understood for years, while the engineering challenge of creating a practical
stereo sensor has been formidable [15, 16, 22]. Recent times have seen the first success on
thisfront, and so after presenting a basic formalism of stereo ranging, we describe the state
of the art algorithmic approach and one of the recent, commercially available stereo sensors.

The geometry of stereo

First, we consider a simplified case in which two cameras a placed with their optical axes
parallel, at a separation (called the baseline) of b, shown in Figure 4.22.

In thisfigure, apoint on the object is described as being at coordinate (X,y,2) with respect to
a central origin located between the two camera lenses. The position of this point’s light
rays on each camera simage is depicted in camera-specific local coordinates. Thus, the or-

igin for the coordinate frame referenced by points of the form (x;,y, ) islocated at the center
of lens|.
From the figure 4.22, it can be seen that
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- = . and I = (425)
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wheref is the distance of both lenses to the image plane. Note from equation 4.25 that:

X =X, [_3
y4

— = (4.27)

where the difference in the image coordinates, x, - x, is called the disparity. Thisis an im-

portant term in stereo vision, because it is only by measuring disparity that we can recover
depth information. Using the disparity and solving all three above equations provides for-
mulae for the three dimensions of the scene point being imaged:

« = b(x|+xr)c12; y = b(y|+yr)c12; L= b

(4.28)
X, — X, X — X, X, — X

r

Observations from these equations are as follows:

1. Distanceisinversely proportional to disparity. The distance to near objects can there-
fore be measured more accurately than that to distant objects, just aswith depth from
focustechniques. In general thisisalright for mobile robotics, because for navigation
and obstacle avoidance closer objects are of higher importance.

2. Disparity is proportional to b. For agiven disparity error, the accuracy of the depth
estimate increases with increasing baseline b.

3. Asbisincreased however, because the physical separation between the camerasis
increased, some objects may appear in one camerabut not in the other. Such objects
by definition will not have a disparity and therefore will not be ranged successfully.

4. A point in the scene visible to both cameras produces apair of image points (onevia
each lens) known as a conjugate pair. Given one member of the conjugate pair, we
know that the other member of the pair lies somewhere along aline known as an epi-
polar line. In the case depicted by Fig. (4.22), because the cameras are perfectly
aligned with one-another, the epipolar lines are horizontal lines (i.e. along the x di-
rection).

However the assumption of perfectly aligned cameras is normally violated in practice. In
order to optimize the range of distances that can be recovered, it is often useful to turn the
cameras inward towards one-another for example. Figure 4.22 shows the orientation vec-
tors that are necessary to solve this, more general, problem. We will express the position of
a scene point P in terms of the reference frame of each camera separately. The reference
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frames of the cameras need not be aligned, and can indeed be at any arbitrary orientation
relative to one-another.

For example the position of point P will be described in terms of the left camera frame as:
'y = (X, Y}, Z)) . Notethat these are the coordinates of point P, not the position of its coun-

terpart in the left cameraimage. P can aso be described in terms of the right camera frame
as. r', = (X,¥, Z,). If wehavearotation matrix R and translation matrix r, relating the

relative positions of cameras| andr, then we can define r', intermsof r';:
'y = Rxr' +r, (4.29)

whereRisa3x 3 rotation matrix andrq = offset trand ation matrix between the two cameras.

Expanding equation 4.29 yields:

Xy F11 P12 Tag) (X9 |Tot
Ye| = |Fa1 T2 Taa| V1| T [Fo2 (4.30)
Z, Fa1 32 T30 |Z)]  |Mog

The above equations have two uses:

1.Wecouldfind r', if weknew R, ', andr,. Of course, if weknew r'; then we would

have completeinformation regarding the position of P relative to the left camera, and
so the depth recovery problem would be solved. Notethat, for perfectly aligned cam-
erasasin Figure (4.22), R=I (theidentify matrix).

2. We could calibrate the system and find rq4, r15 ... given aset of conjugate pairs
{ (XII’ yII’ le)! (Xlra ylr; er)} .

In order to carry out the calibration step of step 2 above, we must find values for 12 un-
knowns. Therefore calibration will require 12 equations. This means that calibration re-
quires, for agiven scene, 4 conjugate points. The standard approach to calibration involves
creation and use of a calibration tool, often awhite cube or panel with black marks that can
easily be located with smple vision algorithms. The known object is placed at several ori-
entations to the stereo camera system and a number of conjugate points are quickly identi-
fied. Research continues on robust methods for adaptively identifying calibration
parameters on-the-fly.

Assuming that the calibration step is complete, we can now formalize the range recovery
problem. To begin with, we do not have the position of P available, and therefore

(X, ¥, Z)) and (X,,Y,, Z,) areunknowns. Instead, by virtue of the two cameras we have
pixels on the image planes of each camera, (x,y,,z) and (X.,Y,, z). Given the focal
length f of the cameras we can relate the position of P to the left cameraimage as follows:
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(4.31)

L et us concentrate first on recovery of thevalues Z| and Z, . From equations 4.30 and 4.31
we can compute these values from any two of the following equations:

X Y ) _ X
3?117 Tl F13gZ1* To1 = ?rzr (4.32)
X Y ) _ Y,
3?217 Tl Fosg?1 * Top = ?rzr (4.33)
X Y O —
3?31; MRk rssgzl trog = Zy (4.34)

The same process can be used to identify valuesfor X' and y', yielding completeinformation
about the position of point P. But using the above equations requires us to have identified
conjugate pairsin the left and right camera images. image points that originate at the same
object point P inthe scene. Thisfundamental challenge, identifying the conjugate pairs and
thereby recovering disparity, is the correspondence problem. Intuitively, the problem is,
given two images of the same scene from different perspectives, how can we identify the
same object pointsin both images? For every such identified object point, we will be able
to recover its 3D position in the scene.

The correspondence problem, or the problem of matching the same object in two different
inputs, has been one of the most challenging problems in the computer vision field and the
artificial intelligence field. The basic approach in nearly all proposed solutions involves
converting each image in order to create more stable and more information-rich data. With
this more reliable data in hand, stereo algorithms search for the best conjugate pairs repre-
senting as many of theimages’ pixels as possible.

The search process is well understood, but the quality of the resulting depth maps depends
heavily upon the way in which images are treated to reduce noise and improve stability.
This has been the chief technology driver in stereo vision algorithms, and one particular
method has become widely used in commercially available systems.

Zero crossings of Laplacian of Gaussian

The zero crossings of Laplacian of Gaussian (ZLoG) isastrategy for identifying featuresin
the left and right camera images that are stable and will match well, yielding high-quality
stereo depth recovery. This approach has seen tremendous successin the field of stereo vi-
sion, having been implemented commercially in both software and hardware with good re-
sults. It hasled to several commercial stereo vision systems and yet it is extremely simple.
Here we summarize the approach and explain some of its advantages.

The core of ZLoG isthe Laplacian transformation of an image. Intuitively, thisis nothing
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more than the second derivative. Formally, the Laplacian L(x,y) of animage with intensities
[(x,y) is defined as:

2 2
L(xy) = %+% (4.35)
> Ty

So the Laplacian represents the second derivative of the image, and is computed along both
axes. Such atransformation, called aconvolution, must be computed over the discrete space
of image pixel values, and therefore an approximation of Equation (4.35) isrequired for ap-
plication:

L =PAI (4.36)

We depict adiscrete operator P, called akernel, that approximates the second derivative op-
eration along both axesasa 3 x 3 table:

010
1-41 (4.37)

010

Application of the kernel P to convolve an imageissimple. The kernel defines the contri-
bution of each pixel in the image to the corresponding pixel in thetarget aswell asitsneigh-
bors. For example, if apixel (5,5) intheimagel hasvaluel(5,5)=10, then application of the
kernel depicted by Equation (4.37) causes pixel 1(5,5) to make the following contributions
to the target imageL:

L(5,5) +=-40;

L(4,5) += 10;

L(6,5) += 10;

L(5,4) += 10;

L(5,6) += 10;
Now consider the graphical example of a step function, representing a pixel row in which
the intensities are dark, then suddenly there isajump to very bright intensities. The second
derivative will have a sharp positive peak followed by a sharp negative peak, as depicted in
Figure (4.23). The Laplacian is used because of this extreme sensitivity to changes in the
image. But the second derivative isin fact over-sensitive. We would like the Laplacian to
trigger large peaks due to real changesin the scene' s intensities, but we would like to keep
signal noise from triggering false peaks.
For the purpose of removing noise dueto sensor error, the ZL oG agorithm applies Gaussian

smoothing first, then executes the Laplacian convolution. Such smoothing can be effected
via convolution with a3 x 3 table that approximates Gaussian smoothing:
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Fig4.23 Sep function example of second derivative shape and the impact of noise.
12 1
16 16 16
24 2 (4.38)
16 16 16
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Gaussian smoothing does not really remove error, it merely distributesimage variations over
larger areas. This should seem familiar. In fact, Gaussian smoothing is almost identical to
the blurring caused by defocused optics. It is, nonetheless, very effective at removing high
frequency noise, just as blurring removesfine-grained detail. Notethat, like defocusing, this
kernel does not change the total illumination but merely redistributesit (by virtue of the di-
visor 16).

The result of Laplacian of Gaussian (LoG) image filtering is atarget array with sharp posi-
tive and negative spikes identifying boundaries of change in the original image. For exam-
ple, asharp edgeintheimagewill result in both apositive spike and anegative spike, located
on either side of the edge.

To solve the correspondence problem, we would like to identify specific featuresin LoG
that are amenable to matching between the left camera and right camerafiltered images. A
very effective feature has been to identify each zero crossing of the LoG as such afeature.
Many zero crossings do lie at edges in images, but their occurrence is somewhat broader
than that. An interesting characteristic of zero crossings is that they are very sharply de-
fined, covering just one "pixel” width in the filtered image. The accuracy can even be fur-
ther enhanced by using interpolation to establish the position of the zero crossing with sub-
pixel accuracy. All told, the accuracy of the zero crossing featuresin ZL oG have made them
the preferred features in state-of-the-art stereo depth recovery agorithms.
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Fig4.24 Extracting depth information from a stereo image
al and a2: left and right image
bl and b2: vertical edge filtered left and right image
filter =[124-2-10-2421]
c. confidence image:
bright = high confidence (good texture)
dark = low confidence (no texture)
d: depth image (disparity):
bright = close, dark = fare

Stereo Vision Example
Figure 4.24 showsthe different steps required to extract depth information from a stereo im-
age.

Commercial stereo vision sensors

Several commercial stereo vision depth recovery sensors have been availablefor researchers
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Fig 4.25 The SYM module mounted on EPFL’s Shrimp robot.

over the past 10 years. A popular unit in mobile robotics today is the Digital Stereo Head
(or SVM) from Videre Design shown in Fig. 4.25.

The SVM uses the Laplacian of Gaussian operator, following it by tessellating the resulting
array into subregions within which the sum of absolute values are computed. The corre-
spondence problem is solved at the level of these sub-regions, a process called area corre-
lation and after correspondence is solved the results are interpolated to 1/4 pixel precision.
An important feature of SVM isthat it produces, not just a depth map, but distinct measures
of match quality for each pixel. Thisisvaluable because such additional information can be
used over time to eliminate spurious, incorrect stereo matches.

The performance of SVM providesagood representative of the state of the art in stereo rang-
ing today. The SVM consists of sensor hardware, including two CMOS cameras and DSP
hardware. Inaddition, the SVM includes stereo vision software that makes use of a standard
computer (e.g. a Pentium processor). On a 320x240 pixel image pair, the SVM assigns one
of 32 discrete levels of disparity (i.e. depth) to every pixel at arate of 12 frames per second
(based on the speed of a 233 Mhz Pentium 11). This compares favorably to both laser
rangefinding and ultrasonics, particularly when one appreciates that ranging information
with stereo is being computed for not just one target point, but all target pointsin the image.

It isimportant to note that the SVM uses CM OS chipsrather than CCD chips, demonstrating
that resolution sufficient for stereo vision algorithms is readily available using the less ex-
pensive, power-efficient CMOS technology.

Theresolution of avision-based ranging system will depend upon the range to the object, as
we have stated before. It is instructive to observe the published resolution values for the
SVM sensor. Although highly dependent on the camera optics, using a standard 6mm focal
length lens pair, the SVM claims a resolution of 10mm at 3 meters range, and a resolution
of 60mm at 10 metersrange. These values are based on ideal circumstances, but neverthe-
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less exemplify the rapid loss in resolution that will accompany vision-based ranging.

4.1.8.3 Motion and Optical Flow

A great deal of information can be recovered by recording time varying images from afixed
(or moving) camera. Firstly we distinguish between the motion field and optical flow:

» Motion field: this assigns a velocity vector to every point in animage. If apoint in
the environment moves with velocity v, then this induces a velocity v; in the image

plane. It is possible to determine mathematically the relationship between v; and v,

» Optical flow: it can aso betrue that brightness patterns in the image move as the ob-
ject that causes them moves (light source). Optical flow is the apparent motion of
these brightness patterns.

In our analysis here we assume that the optical flow pattern will correspond to the motion
field, although thisis not always true in practice. Thisisillustrated in figure 4.26a where a
sphere exhibits spatial variation of brightness, or shading, in the image of the sphere since
its surface is curved. If the surface moves however, this shading pattern will not move -
hence the optical flow is zero everywhere even though the motion field isnot zero. In figure
4.263a, the opposite occurs. Here we have a fixed sphere with a moving light source. The
shading in theimage will change asthe source moves. In this casethe optical flow isnonzero
but the motion field is zero. If the only information accessible to usis the optical flow and
we depend on this, we will get false results.

\‘/ \‘/‘/_’\\‘/

7/@\7 7/@\7 7/@\7
a) o b) o
Fig 4.26 Motion of the sphere or the light source here demonstrates that optical flow

is not always the same as the motion field.

Optical Flow

Let E (%, Y, t) betheimage irradiance at time t at the image point (x, y). If u (X, y) and v (X,
y) are the x and y components of the optical flow vector at that point, we need to search a
new image for a point where theirradiance will be the same at timet+dt, i.e.: a point (x+dx,
y+dy), where dx = udt and dx = udt. i.e:

E(x+udty +vdt, t +dt) = E(x, Y, 1) (4.39)

for asmall timeinterval, dt. From this single constraint u and v cannot be determined unique-
ly. We therefore use the fact that the optical flow field should be continuous almost every-
where. Hence if brightness varies smoothly with x, y and t we can expand the |eft hand side
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of equation 4.39 asa Taylor seriesto obtain:

E , o TE 4 qIE 4o
E(xy,t)+ dxﬂx + dyﬂy + dt o +e = E(xyt) (4.40)

where e contains second and higher order termsin dx etc. In the limit as dt tendsto zero we
obtain:

TEdx fEdy , IE _ (4.41)
fxdt qydt Tt
from which we can abbreviate:

_k. o, dy
=3 vV = . (4.42)
and
- IE _IE. £ _IE_
E, = o E, iy’ E, f 0 (4.43)
so that we obtain:
E.utEV+E =0 (4.44)

The derivatives E,, Ey and E; are estimated from the image. Equation 4.44 is known as the
optical flow constraint equation.

It can be seen that equation 4.44 represents a straight line in velocity (u, v) space. Hence a
local measurement of the three derivatives E, ... etc. can only identify this line and not
unique values for u and v. We therefore introduce an additional constraint.

Smoothness of the Optical Flow

We now make the assumption that optical flow patterns are smooth. We can do this mathe-
matically by finding a measure of departure from smoothness:

e = C‘I‘juz + vz)dxdy (4.45)

which isthe integral of the square of the magnitude of the gradient of the optical flow. We
also determine the error in the optical flow constraint equation (which in practice will not
quite be zero).

e = (fEU+ Ev+E) dxdy (4.46)
Both of these equations should be as small as possible so we want to minimize e + | €,

where | is a parameter that weights the error in the image motion equation relative to the
departure from smoothness. A large parameter should be used if the brightness measure-
ments are accurate and small if they are noisy.

This problem them amounts to the calculus of variations, and the Euler equations yield:

N°u = | (Eu+Ev+E)E, (4.47)

N = I (Eu+Ev+E)E, (4.48)

where;




4 Perception 121

Fig4.27 Color markers on the top of EPFL’s STeam Engine soccer robots enable a
color-tracking sensor to locate the robots and the ball in the soccer field.

(4.49)

which is the Laplacian operator.

Equation 4.47 and 4.48 form a pair of elliptical second order partial differential equations
which can be solved iteratively.

Discontinuities in Optical Flow

Where silhouettes (one object occluding another) occur, discontinuities in the optical flow
will occur. We should try to find these points to exclude them before the method above joins
them with a smooth solution.

Thisis done by incorporating segmentation into the iterative solutions to equations 4.47 and
4.48 above. After each iteration welook for regionswherethe flow changesrapidly. At these
points, weinhibit the next iteration of the above equations from smoothly connecting the so-
[ution across these points.

4.1.8.4  Color tracking sensors

Although depth from stereo will doubtless prove to be a popular application of vision-based
methods to mobile robotics, it mimics the functionality of existing sensors, including ultra-
sonic, laser and optical rangefinders. Animportant aspect of vision-based sensing isthat the
vision chip can provide sensing modalities and cues that no other mobile robot sensors pro-
vide. One such novel sensing modality is detecting and tracking color in the environment.

Color represents an environmental characteristic that is orthogonal to range, and it repre-
sents both a natural cue and, potentialy, artificial cues that can provide new information to
to amobilerobot. For example, the annual robot soccer events make extensive use of color
both for environmental marking and for robot localization (see Fig. 4.27).

Color sensing has two important advantages. First, detection of color is a straightforward
function of a singleimage, therefore no correspondence problem need be solved in such al-
gorithms. Second, because color sensing provides a new, independent environmental cue,

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



122 Autonomous Mobile Robots

if it iscombined (i.e. sensor fusion) with existing cues, such as data from stereo vision or
laser rangefinding we can expect significant information gains.

Efficient color tracking sensorsare now available commercialy. Below, we briefly describe
a commercial, hardware-based color-tracking sensor as well as a publicly available soft-
ware-based solution.

Cognachrome color tracking system

The Cognachrome Vision System is a color-tracking hardware-based sensor capable of ex-
tremely fast color tracking on a dedicated processor [110]. The system will detect color
blobs based on 3 user-defined colors at arate of 60 Hz. The Cognachrome system can detect
and report on a maximum of 25 objects per frame, providing centroid, bounding box, area,
aspect ratio and principal axis orientation information for each object independently.

This sensor uses a technique called constant thresholding to identify each color. In RGB
space, the user defines for each of R, G and B a minimum and maximum value. The three-
dimensional box defined by these six constraints forms a color bounding box, and any pixel
with RGB valuesthat are al within this bounding box isidentified asatarget. Target pixels
are merged into larger objects that are then reported to the user.

The Cognachrome sensor achieves a position resolution of one pixel for the centroid of each
object in afield that is 200 x 250 pixelsin size. The key advantage of this sensor, just as
with laser rangefinding and ultrasonics, is that there is no load on the mobile robot’s main
processor due to the sensing modality. All processing is performed on sensor-specific hard-
ware (i.e. a Motorola 68332 processor and a mated framegrabber).

CMVision color tracking software library

Because of the rapid speedup of processor in recent times, there has been a trend towards
executing basic vision processing on amain processor within the mobilerobot. Inthisspirit,
the CMVision color tracking software represents a state-of-the-art software solution for col-
or tracking in dynamic environments [97]. CMVision can track up to 32 colors at 30 Hz on
a standard 200 MHz pentium computer.

The basic algorithm this sensor uses is constant thresholding, as with Cognachrome, with
the chief difference that the YUV color space is used instead of the RGB color space when
defining a 6-constraint bounding box for each color. While R, G and B values encode the
intensity of each color, YUV separates the color (or chrominance) measure from the bright-
ness (or luminosity) measure. Y represents the image’ s luminosity while U and V together
captureitschrominance. Thus, abounding box expressed in YUV space can achieve greater
stability with respect to changesin illumination than is possible in RGB space.

The CMVision color sensor achieves a resolution of 160 x 120 and returns, for each object
detected, a bounding box and a centroid. The software for CMVision is available freely
[108] with a Gnu Public License at [109].

Interestingly, both the Cognachrome hardware col or sensor and the CMVision software col-
or sensor have thus far only been tested with CCD chip technology. Doubtless, as camera
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technology, particularly CMOS chip performance, improves and computers become even
faster, commodity color tracking sensors will become even more tenable.
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Fig4.28 A sample probability density function, showing a single probability peak
(i.e. unimodal) with asymptotic drops in both directions.

4.2 Representing Uncertainty

In Section (4.1.2) we presented aterminology for describing the performance characteristics
of asensor. As mentioned there, sensors are imperfect devices with errors of both the sys-
tematic and random variety. Random errors, in particular, cannot be corrected, and so they
represent atomic levels of sensor uncertainty.

But when you build a maobile robot, you combine information from many sensors, even us-
ing the same sensors repeatedly, over time, to possibly build a model of the environment.
How can we scale up, from characterizing the uncertainty of asingle sensor to the uncertain-
ty of the resulting robot system?

We begin by presenting a statistical representation for the random error associated with an
individual sensor [12]. With a quantitative tool in hand, the standard Gaussian uncertainty
model can be presented and evaluated. Finally, we present a framework for computing the
uncertainty of conclusionsdrawn from a set of quantifiably uncertain measurements, known
astheerror propagation law.

4.2.1 Statistical representation

We have already defined error asthe difference between a sensor measurement and the true
value. From astatistical point of view, we wish to characterize the error of a sensor, not for
one specific measurement but for any measurement. Let us formulate the problem of sens-

ing as an estimation problem. The sensor has taken a set of n measurementswith valuesr ;.

The godl is to characterize the estimate of the true value E[ X] given these measurements:
E[X] = g(rqrp %, r,) (4.50)

From this perspective, the true value is represented by a random (and therefore unknown)
variable X. We use aprobability density function to characterize the statistical properties of
the value of X.

In figure 4.28, the density function identifies, for each possible value x of X a probability
density f(x) aong the y-axis. The area under the curveis 1, indicating the perfect chance of
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X having some value;
N
0, f(x)dx = 1 (4.51)

The probability of the value of X falling between two limits a and b is computed as the
bounded integral:

Pla<XEb] = éf(x)dx (4.52)

The probability density function isauseful way to characterize the possible values of X be-
cause it not only captures the range of X but also the comparative probability of different
valuesfor X. Using f(x) we can quantitatively define the mean, variance and standard devi-
ation asfollows.

The mean value mis equivalent to the expected value E[ X] if we were to measure X anin-
finite number of times and average all of the resulting values. We can easily define E[ X] :

m= E[X] = 8; xF(x) dx (4.53)

Note in the above equation that calculation of E[X] isidentical to the weighted average of
all possible values of x. In contrast, the mean square value is ssimply the weighted average
of the squares of all values of x:

E[X? = i x2F(x) dx (4.54)

Characterization of the "width" of the possible values of X is akey statistical measure, and

this requiresfirst defining the variance s 2.

Var(X) = s = § (x—mf(x)dx (4.55)
2y

Finally, the standard deviation s issimply the square root of variance. s and s will play
important roles in our characterization of the error of a single sensor as well as the error of
amodel generated by combining multiple sensor readings.

Independence of random variables

With the tools presented above, we will often evaluate systems with multiple random vari-
ables. For instance, amobile robot’ s laser rangefinder may be used to measure the position
of afeature on the robot’ s right and, later, another feature on the robot’ s left. The position
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of each feature in the real world may be treated as arandom variable, X; and X, .

Two random variables X; and X, areindependent if the particular value of one has no bear-

ing on the particular value of the other. In this case we can draw several important conclu-
sions about the statistical behavior of X; and X, . First, the expected value (or mean value)

of the product of random variablesis equal to the product of their mean values:
E[X;X,] = E[X,]E[X,] (4.56)
Second, the variance of their sumsis equal to the sum of their variances:
Var (X, +X,) = Var(X,) +Var(X,) (4.57)

In mobile robotics, we will often assume the independence of random variables even when
this assumption is not strictly true. The simplification that results makes a number of the
existing mobile robot mapping and navigation algorithms tenable, as described in Chapter
5. A further smplification, described in the next sub-section, revolves around one specific
probability density function used more often than any other when modeling error, the Gaus-
sian distribution.

4.2.2 Gaussian distribution

The Gaussian distribution, also called thenormal distribution isused acrossengineering dis-
ciplines when a well-behaved error model is required for a random variable for which no
error model of greater felicity has been discovered. The Gaussian has many characteristics
that make it mathematically advantageous to other ad hoc probability density functions. It
issymmetric around the mean m. Thereisno particular biasfor being larger than or smaller
than m, and this makes sense when there is no information to the contrary. The Gaussian

distribution is also unimodal, with asingle peak that reaches amaximum at m (necessary for
any symmetric, unimodal distribution). This distribution also has tails (the value of f(x) as
x approaches —¥ and ¥ ) that only approach 0 asymptotically. This means that no amount
of error is impossible, although very large errors may be improbable. In this sense, the
Gaussian is conservative. Finally, as seen in the formulafor the Gaussian probability den-
sity function, the distribution depends only on two parameters:

& (x —m)20
() = ——expe- =12
sJ2p e 2s° @

(4.58)

The Gaussian’s basic shape is determined by the structure of this formula, and so the only
two parameters required to fully specify a particular Gaussian are its mean m and its stan-
dard deviation s . Figure 4.29 showsthe Gaussian functionwithm= 0 ands = 1.

Suppose that a random variable X is modeled as a Gaussian. How does one identify the
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Fig4.29 The Gaussian functionwithm = 0 ands = 1. Weshall refer tothisasthe
Reference Gaussian. The value 2s is often refereed for the signal quality.
95.44% of the values are falling within £2s .

chance that the value of X iswithin one standard deviation of m? In practice, thisrequires
integration of f(x), the Gaussian function to compute the area under a portion of the curve:

Area = § f(x)dx (4.59)
=

Unfortunately, there is no closed-form solution for the integral in Equation (4.59), and so
the common technique isto use a Gaussian cumul ative probability table. Using such atable,
one can compute the probability for various value ranges for X:

P[m-—s <X£m+s] = 0.68
0.95
P[m-3s <X£m+3s] = 0.997

For example, 95% of the values for X fall within two standard deviations of its mean. This
applies to any Gaussian distribution. As is clear from the above progression, under the
Gaussian assumption once bounds are relaxed to 3s , the overwhelming proportion of val-
ues (and, therefore, probability) is subsumed.

P[m-2s <X £ m+ 2s]

4.2.3 Error propagation: combining uncertain measurements

The probability mechanisms above may be used to describe the errors associated with asin-
gle sensor’ s attempts to measure areal-world value. But in mobile robotics, one often uses
a series of measurements, all of them uncertain, to extract a single environmental measure.
For example, a series of uncertain measurements of single points can be fused to extract the
position of aline (e.g. a hallway wall) in the environment (fig. 4.28).

Consider the system in figure 4.30, where X; are n input signals with a known probability
distribution and Y; aremoutputs. The question of interest is: what can we say about the prob-
ability distribution of the output signals Y; if they depend with known functions f; upon the
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Xi - System Y]
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Fig 4.30 Error propagation in a multiple-input multi-output systemwith n inputs and
m outputs.
Y

........................ : f(x)

m =Sy m. Mm+Sy

Fig4.31 One-dimensional case of a nonlinear error propagation problem

input signals? Figure 4.31 depicts the one-dimensional version of this error propagation
problem as an example.

The general solution can be generated using the first order Taylor expansion of f;. The out-
put covariance matrix Cy is given by the error propagation law:

-
Cy = FyCyFy (4.60)
where
Cy: covariance matrix representing the input uncertainties
Cy: covariance matrix representing the propagated uncertainties for the outputs.

Fy is the Jacobian matrix defined as:

o, M
~ S [
P = N = R0 = || g5 o] T | % oh
1 n af i
m —_may m
%, X,
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Thisis aso the transpose of the gradient of f(X) .

We will not present a detailed derivation here but will use Equation 4.60 in order to solve
an example problem in Section 4.3.1.1.
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Fig4.32 The Perceptual Pipeline: From sensor readings to knowledge models
4.3 Feature Extraction

An autonomous mobile robot must be able to determine its relationship to the environment
by making measurements with its sensors and then using those measured signals. A wide
variety of sensing technologies are available, as we saw in the previous section. But every
sensor we have presented is imperfect: measurements always have error and, therefore, un-
certainty associated with them. Therefore, sensor inputs must be used in away that enables
the robot to interact with its environment successfully in spite of measurement uncertainty.

There are two strategies for using uncertain sensor input to guide the robot’ s behavior. One
strategy is to use each sensor measurement as araw and individual value. Such raw sensor
values could for example be tied directly to robot behavior, whereby the robot’ s actions are
afunction of its sensor inputs. Or, the raw sensors values could be used to update an inter-
mediate model, with the robot’ s actions being triggered as a function of this model rather
than the individual sensor measurements.

The second strategy isto extract information from one or more sensor readings first, gener-
ating a higher-level percept that can then be used to inform the robot’ s model and perhaps
the robot’ s actions directly. We call this process feature extraction, and it is this next, op-
tional step in the perceptual interpretation pipeline (Fig. 4.32) that we will now discuss.

In practical terms, mobile robots do not necessarily use feature extraction and scene inter-
pretationfor every activity. Instead, robotswill interpret sensorsto varying degrees depend-
ing on each specific functionality. For example, in order to guarantee emergency stopsin
the face of immediate obstacles, the robot may make direct use of raw forward-facing range
readings to stop its drive motors. For local obstacle avoidance, raw ranging sensor strikes
may be combined in an occupancy grid model, enabling smooth avoidance of obstacles
meters away. For map-building and precise navigation, the range sensors values and even
Vision sensor measurements may pass through the complete perceptual pipeline, being sub-
jected to feature extraction followed by scene interpretation to minimize the impact of indi-
vidual sensor uncertainty on the robustness of the robot’ s map-making and navigation skills.
The pattern that thus emerges is that, as one moves into more sophisticated, |ong-term per-
ceptual tasks, the feature extraction and scene interpretation aspects of the perceptual pipe-
line become essential.

Classification of environment representations

« Continuos Metric ->XY,q
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« Discrete Metric -> metric grid
« Discrete Topological  -> topological grid

Classification of environment modeling

Raw sensor data, e.g. laser range data, grayscale images
- large volume of data, low distinctiveness
« makes use of all acquired information

Low level features, e.g. line other geometric features
- medium volume of data, average distinctiveness
- filters out the useful information, still ambiguities

High level features, e.g. doors, a car, the Eiffel tower
« low volume of data, high distinctiveness
- filters out the useful information, few/no ambiguities, not enough information

Feature: definition

Features are recognizable structures of elements of the environment. They usually can be
extracted from measurements and mathematically described. Good features are always per-
ceivable and easily detectable from the environment. We distinguish between low-level fea-
tures (geometric primitives) like lines, circles or polygons and high-level features (objects)
such as edges, doors, tables or atrash can. Although features must have some spatial local-
ity, their geometric extent can range widely. For example, a corner feature inhabits a spe-
cific coordinate location in the geometric world. In contract, a visual "fingerprint"
identifying aspecific room in an office building appliesto the entire room, but has alocation
that is spatially limited to the one, particular room.

In mobile robotics, features play an especially important role in the creation of environmen-
tal models. They enable more compact and robust descriptions of the environment, helping
amobile robot during both map-building and localization. When designing a mobile robot,
acritical decision revolves around choosing the appropriate features for the robot to use. A
number of factors are essential to this decision:

Target environment. For geometric features to be useful, the target geometries must be
readily detected in the actual environment. For example, line features are extremely useful
in office building environments due to the abundance of straight walls segments while the
same feature is virtually useless when navigating Mars.

Available sensors. Obviously the specific sensors and sensor uncertainty of the robot im-
pactsthe appropriateness of variousfeatures. Armed with alaser rangefinder, arobot iswell
qualified to use geometrically detailed features such as corner features due to the high qual-
ity angular and depth resolution of the laser scanner. In contrast, a sonar-equipped robot
may not have the appropriate tools for corner feature extraction.
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Fig4.33 Environment representation and modeling:
a) feature based (continuos metric); b) occupancy grid (discrete metric);

Computational power. Vision-based feature extraction can effect a significant computa-
tional cost, particularly in robots where the vision sensor processing is performed by one of
the robot’ s main processors.

Environment representation. Feature extraction is an important step toward scene inter-
pretation, and by thistoken the features extracted must provide information that is consonant
with the representation used for the environment model. For example, non-geometric vi-
sion-based features are of little value in purely geometric environment models but can be of
great value in topological models of the environment. Figure 4.33 shows the application of
two different representations to the task of modeling an office building hallway. Each ap-
proach has advantages and disadvantages, but extraction of line and corner features has
much more relevance to the representation on the left.

In the following two sections, we present specific feature extraction techniques based on the
two most popular sensing modalitites of mobile robotics: range sensing and visual appear-
ance-based sensing.

4.3.1 Feature extraction based on range data (laser, ultrasonic, vi-
sion-based ranging)

Most of today’s features extracted from ranging sensors are geometric primitives such as
line segmentsor circles. The main reason for thisisthat for most other geometric primitives
the parametric description of the features becomes too complex and no closed form solution
exists. Here we will describe line extraction in detail, demonstrating how the uncertainty
models presented above can be applied to the problem of combining multiple sensor mea-
surements. Afterwards, we briefly present another very successful feature for indoor mobile
robots, the corner feature, and demonstrate how these features can be combined in asingle
representation.
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Fig4.34 Estimating a line in the least squares
sense. The model parametersr (length of
the perpendicular) and a (itsangletothe
abscissa) describe uniquely a line.

43.1.1 Line Extraction

Geometric feature extraction is usually the process of comparing and matching measured

sensor data against a predefined description or template of the expected feature. Usually, the
system is overdermined in that the number of sensor measurements exceeds the number of

feature parameters to be estimated. Since the sensor measurements all have some error,

there is no perfectly consistent solution and, instead, the problem is one of optimization.

One can, for example, extract the feature that minimizes the discrepancy with all sensor

measurements used (e.g. least square estimation).

In this section we present an optimization-based solution to the problem of extracting aline
feature from a set of uncertain sensor measurements. For greater detail than is presented be-
low, refer to [19], pp. 15 and 221.

Probabilistic line extraction from uncertain range sensor data

Our goal isto extract alinefeature based on a set of sensor measurementsas shownin Figure
4.34. Thereisuncertainty associated with each of the noisy range sensor measurements, and
so there isno single line that passes through the set. Instead, we wish to select the best pos-
sible match, given some optimization criterion.

More formally, suppose n ranging measurement points in polar coordinates x; = (r;, q;)

are produced by the robot’ s sensors. We know that there is uncertainty associated with each
measurement, and so we can model each measurement using two random variables

X, = (P;, Q). Inthisanalysis we assume that uncertainty with respect to the actual value
of P and Q are independent. Based on Equation (4.56) we can state thisformally:

E[P; xP;] = E[P,]E[P] "i,) = 1,%,n (4.62)
E[Q; xQ;] = E[QIE[Q] "0 =1%,n (4.63)
E[P; xQ;] = E[P]E[Q] "i,) = 1,%,n (4.64)

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



134 Autonomous Mobile Robots

Furthermore, we will assume that each random variable is subject to a Gaussian probability
density curve, with amean at the true value and with some variance specified:

P ~N(r; s7) (4.65)

Q ~N(g;, s5) (4.66)

Given some measurement point (r, q) , we can calcul ate the corresponding Euclidean coor-

dinatesasx = r cosq andy = r sinq. If therewere no error, wewould want to find aline
for which all measurementslie on theline:

r cosqcosa +r singsna—r = rcos(g—a)-r =0 (4.67)

Of course there is measurement error, and so this quantity will not be zero. When itisnon-
zero, thisis ameasure of the error between the measurement point (r, g) and theline, spe-
cifically in terms of the minimum orthogonal distance between the point and the line. Itis
always important to understand how the error that shall be minimized is being measured.
For example a number of line extraction techniques do not minimize this orthogonal point-
line distance, but instead the distance parallel to the y-axis between the point and the line.
A good illustration of the variety of optimization criteriais available in [18] where several
algorithms for fitting circles and ellipses are presented which minimize algebraic and geo-
metric distances.

So, for each specific (r ;, g;) , we can write the orthogonal distance d; between (r ;, g;) and
theline as:

rycos(q,—a)—r = d.. (4.68)
If we consider each measurement to be equally uncertain, we can sum the square of all error

together, for all measurement points, to quantify an overall fit between theline and all of the
measurements:

S=3 d’ = a (r.cos(q, —a)—r)° (4.69)

Our goal isto minimize Swhen selecting the line parameters (a, r) . We can do so by solv-
ing the nonlinear equation system

s IS_o. (4.70)

The above formalism is considered an unweighted least squar es solution because no distinc-
tion is made from among the measurements. In reality, each sensor measurement may have
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its own, unique uncertainty based on the geometry of the robot and environment when the
measurement was recorded. For example, we know with regards to vision-based stereo
ranging that uncertainty and, therefore, variance increases as a square of the distance be-

tween the robot and the object. To make use of the variance s ,2 that models the uncertainty

regarding distance r ; of aparticular sensor measurement, we compute an individual weight

w; for each measurement using the formula:

Then, equation (4.69) becomes

S= Jwd” = § w(rcos(q—a)-r)°.

It can be shown that the solution of (4.70) in the weighted least square sensé? is:

N

xro 2 . o o : o)

» gawirisn2qi——waawiwjrirjcosqismqj+

a = Zaan : :
27 1

gé Wi r i2c052qi _Qé a w,wir rcos(q; + qj);

_ a w;r cos(q;—a)
B aw

r

In practice equation (4.73) uses the four quadrant arc tangent (atan2)3.

(4.70)

(4.72)

(4.73)

(4.74)

Let us demonstrate Equations (4.73) and (4.74) with a concrete example. The 17 measure-
ments (r ;, g;) in table 4.1 have been taken with a laser range sensor installed on a mobile

robot. We assume that the uncertainties of all measurements are propotional to the square of

complex in general and beyond the scope of this text. See [20] for a careful treatment.

errors are mutually independent) and a generalized least squares problem if Cy isnon-diagonal.

The issue of determining an adequate weight when s; is given (and perhaps some additional information) is

We follow here the notation of [19] and distinguish a weighted |east squares problem if Cy isdiagonal (input

3 Atan2 computes tan(x u)/)_1 but uses the signs of both x and y to determine the quadrant in with the
resulting angles lies. For example atan2(-2, —2) = —135° , whereas atan2(2, 2) = —45°, adistinc-

tion which would be lost with a single-argument arc tangent function.
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the distance and not correlated and the robot was not moving during the measurements.

Table 4.1: Measured values

pointing angle of renger ;
sensor
[deg] m]

0 0.5197

5 0.4404
10 0.4850
15 0.4222
20 0.4132
25 0.4371
30 0.3912
35 0.3949
40 0.3919
45 0.4276
50 0.4075
55 0.3956
60 0.4053
65 0.4752
70 0.5032
75 0.5273
80 0.4879

Direct application of the above solution equationsyieldsthelinedefined by a = 37.36 and

r = 0.4. Thisline represents the best fit in a least square sense and is shown visualy in
Fig. 4.35.

Propagation of uncertainty during line extraction

Returning to the subject of Section (4.2.3), we would like understand how the uncertainties
of specific range sensor measurements propagate to govern the uncertainty of the extracted
line. In other words, how does uncertainty in r; and g; propagate in Equations (4.73) and

(4.74) to affect the uncertainty of a and r?
Thisrequires direct application of Equation 4.60 with A and R representing the random out-
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putsvariables of a andr respectively. Thegoal isto derivethe 2" 2 output covariance ma-
trix

2
Car = SA SAR, (4.75)

2
SAR SR

giventhe 2n” 2n input covariance matrix

. 2
Cy = [CP O] T (4.76)
0 Cq 0 diag(Ssi)

and the system relationships (4.73) and (4.74). Then by calculating the Jacobian:

fa fa ., Ta Ja fa ,, Ta

4 4
Foo = |12 TPz TP Q1 10, ™ 10, 477

o, T
P, P, TP, 1Q, TQ, T 1Q,

we can instantiate the uncertainty propagation equation (4.63) to yield C,g:

.
Car = FpoCxFro (4.78)

Thus we have calculated the probability C, of the extracted line (a, r) based on the prob-
abilities of the measurement points.

4.3.1.2 Segmentation for Line Extraction

The previous section has described how to extract a line feature given a set of range mea-
surements. Unfortunately, the feature extraction processis significantly more complex than
this. A mobile robot does indeed acquire a set of range measurements, but in general the
range measurements are not all part of one line. Rather, only some of the range measure-
ments should play arolein line extraction and, further, there may be more than oneline fea-
ture represented in the measurement set. This more realistic scenario is shown in Figure
4.36.

The process of dividing up a set of measurements into subsets that can be interpreted one-
by-one is termed segmentation and is an important aspect of both range-based and vision-
based perception. A diverse set of techniques exist for segmentation of sensor input in gen-
eral.
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Fig4.36 Clustering: Finding neighboring segments of a common line

For example, one segmentation technique is the merging, or bottom-up technique in which
smaller features areidentified and then merged together based on decision criteriato extract
the goal features. Suppose that the problem of Fig. (4.36) is solved through merging. First,
one may generate a large number of line segments based on adjacent groups of range mea-
surements. The second step would be to identify line segments that have a high probability
of belonging to the same extracted light feature. The most simple measure of the closeness
of two line segments® x,= [a4,r1] and x,= [a,,r5] in the model space is given by Euclidean
distance:

(X = %) (X, —Xp) = (a;—a,)"+ (r,—r,)° (4.79)

The selection of all line segments x; that contribute to the same line can now be done in a
threshold-based manner according to:

(x—x)" (x —X) £d, (4.80)

whered,,isathreshold value and x isthe representation of the referenceline (from amodel,
average of agroup of lines, etc.).

But the approach of Equation (4.80) does not take into account the fact that, for each mea-
surement and therefore for each line segment we have ameasure of uncertainty.One canim-

prove upon this equation by selecting line segments that are weighted by their covariance
matrix C;:
j

4 Note: Thelines are represented in polar coordinates.
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Fig4.37 Angle histogram (Weil3 et al 1994 [111])

(% -%)"(C,+ ©) " (x -%) £d,, (4.81)

The distance measure of Equation (4.81) discriminates the distance of uncertain pointsin
model space considerably more effectively by taking uncertainty into account explicitly.

4.3.1.3 Range histogram features

A histogram is a simple way to combine characteristics elements of an image. A angle his-

togram as presented in figure 4.37 plotsthe statistics of lines extracted by two adjacent range
measurments. First, a 360 degree scan of the room is taken with the range scanner, and the
resulting “hits’ are recorded in a map. Then the algorithm measures the relative angle be-
tween any two adjacent hits (see Figure 4.37). After compensating for noise in the readings
(caused by the inaccuracies in position between adjacent hits), the angle histogram shown
in Figure 4.37abottom can be built. The uniform direction of the main wallsare clearly vis-
ible as peaksin the angle histogram. Detection of peaks yields only two

main peaks: one for each pair of parallel walls. Thisalgorithm isvery robust with regard to
openings in the walls, such as doors and windows, or even cabinets lining the walls.

4.3.1.4  Extracting other geometric features

Linefeaturesare of particular value for mobile robots operating in man-made environments,
wherefor example building wallsand hallway wallsare usually straight. 1n general amobile
robot makes use of multiple features simultaneously, comprising a feature set that is most
appropriate for its operating environment. For indoor mobile robots, the line featureis cer-
tainly amember of the optimal feature set.

In addition, other geometric kernels consistently appear throughout the indoor man-made
environment: corner features, defined as a point feature with an orientation; step discon-
tinuities, defined as a step change perpendicular to the direction of hallway travel, are char-
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Fig 4.38 Multiple geometric features in a single hallway, including doorways and

discontinuities in the width of the hallway.

acterized by their form (convex or concave) and step size; doorways, defined as openings of
the appropriate dimensions in walls, are characterized by their width.

Thus, the standard segmentation problem is not so simple as deciding on a mapping from
sensor readingsto line segments, but rather it isaprocessin which features of different types
are extracted based on the available sensor measurements. Figure 4.38 shows amodel of an
indoor hallway environment along with both indentation features (i.e. step discontinuities)
and doorways.

Note that different feature types can provide quantitatively different information for mobile
robot localization. Thelinefeature, for example, providestwo degrees of information, angle
and distance. But the step feature providestwo dimensional relative position information as
well asangle.

The set of useful geometric features is essentially unbounded, and as sensor performance
improves we can only expect greater success at the feature extraction level. For example,
an interesting improvement upon the line feature described above related to the advent of
successful vision-based ranging systems. Because stereo vision providesafull three dimen-
sional set of range measurements, one can extract plane features in addition to line features
from the resulting data set. Plane features are valuable in man-made environments due to
the flat walls, floors and ceilings of our indoor environments. Thusthey promiseto provide
yet another useful feature for mobile robots to extract.

4.3.2 Visual appearance-based feature extraction

Visual interpretation is, as we have mentioned before, an extremely challenging problemin
thelarge. Significant research effort has been dedicated to inventing algorithms for under-
standing a scene based on 2D images over the past several decades, and the research efforts
have slowly produced fruitful results. Covering thefield of computer vision and image pro-
cessing is of course beyond the scope of thiswork. To explore this discipline, refer to [22,
26, 107]

In Section 4.1.8 we have already seen vision-based ranging and color tracking sensors that
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Fig 4.39 Scheme and tools in computer vision. See also [26]

are commercially available for mobile robots. These specific vision applications have wit-
nessed commercial solutions primarily because the challenges are in both cases relatively
well-focused and the resulting, problem-specific algorithms are straightforward. But imag-
es contain much more than implicit depth information and color blobs. We would like to
solve the more general problem of extracting alarge array of features from images.

This section presents some appearance-based feature extraction techniques that are relevant
to mobile robotics along these lines. Two key requirements must be met for a vision-based
feature extraction technique to have mobile robotic relevance. First, the method must oper-
atein real time. Mobile robots move through their environment, and so the processing sm-
ply cannot be an off-line operation. Second, the method must be robust to the real-world
conditions outside of a laboratory. This means that carefully controlled illumination as-
sumptions and carefully painted objects are unacceptabl e requirements.

Throughout the following descriptions, keep in mind that vision-based interpretation is pri-
marily about the challenge of reducing information. A sonar unit produces perhaps 50 bits
of information per second. By contrast, a CCD camera can output 240 million bits per sec-
ond! The sonar producesatiny amount of information from which we hope to draw broader
conclusions. But the CCD chip produces too much information, and this overabundance of
information mixes together relevant and irrelevant information haphazardly. For example,
we may intend to measure the color of alandmark. The CCD camera does not simply report
its color, but reports also information regarding the general illumination of the environment,
the direction of illumination, the defocusing caused by optics, the side effects imposed by
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nearby objects with different colors, etc. Therefore the problem of visual feature extraction
islargely one of removing the majority of irrelevant information in an image so that the re-
maining information unambiguously describes specific features in the environment.

We divide vision-based feature extraction methods into two classes based on their spatial
extent. Spatially localized features are those features found in sub-regions of one or more
images, corresponding to specific locationsin the physical world. Wholeimage features are
those featuresthat are functions of the entireimage or set of images, corresponding to alarge
visually connected areain the physical world.

We go on to describe feature extraction methods of each type. First, however, it isimportant
to note that all vision-based sensors supply images with such a significant amount of noise
that afirst step usually consists of "cleaning” the image before launching any feature extrac-
tion algorithm. Therefore, wefirst describe the process of initial imagefiltering, or pre-pro-
cessing.

Image Pre-Processing

Many image processing algorithms make use of the second derivative of theimageintensity.
Indeed, the Laplacian of Gaussian method we studied in Section 4.1.8.2 for stereo ranging
is such an example. Because of the susceptibility of such high-order derivative algorithms
to changes in illumination in the basic signal, it is important to smooth the signal so that
changesin intensity are due to real changes in the luminosity of objects in the scene rather
than random variations due to noise. A standard approach is convolution with a Gaussian
distribution function, as we described earlier in Section 4.1.8.2:

| = GAI (4.82)

Of course, when approximated by a discrete kernel, such asa 3 x 3 table, theresult is essen-
tially local, weighted averaging:

(121

G == 4.83

6l242 (4.83)
121

Such alow pass filter effectively removes high-frequency noise, and thisin turn causes the
first derivative and especially the second derivative of intensity to be far more stable. Be-
cause of the important of gradients and derivatives to image processing, such Gaussian
smoothing pre-processing is a popular first step of virtually all computer vision algorithms.

4.3.2.1 Spatially localized features

In the computer vision community many algorithms assume that the object of interest occu-
pies only a sub-region of the image, and therefore the features being sought are localized
spatialy within images of the scene. Local image processing techniques find features that
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a b
Fig 4.40 (a) Photo of aceiling lamp. (b) Edges computed from (a)

arelocal to a subset of pixels, and such local features map to specific locations in the phys-
ical world. This makes them particularly applicable to geometric models of the robot’ s en-
vironment.

The single most popular local feature extractor used by the mobile robotics community is
the edge detector, and so we begin with a discussion of this classical topic in computer vi-
sion. However, mobile robots face the specific mobility challenges of obstacle avoidance
and localization. In view of obstacle avoidance, we present vision-based extraction of the
floor plane, enabling arobot to detect all areasthat can be safely traversed. Finally, in view
of the need for localization we discuss the role of vision-based feature extraction in the de-
tection of robot navigation landmarks.

Edge Detection

Figure 4.40 shows an image of a scene containing apart of aceiling lamp aswell asthe edg-
es extracted from this image. Edges define regions in the image plane where a significant
change in the image brightness takes place. As shown in this example, edge detection sig-
nificantly reduces the amount of information in animage, and is therefore a useful potential
feature during image interpretation. The hypothesis is that edge contours in an image cor-
respond to important scene contours. As the Figure 4.40(b) shows, thisis not entirely true.
Thereisadifference between the output of an edge detector and an ideal line drawing. Typ-
ically, there are missing contours, as well as noise contours that do not correspond to any-
thing of significance in the scene.

The basic challenge of edge detection isvisualized in Figure 4.40. Figure 4.40(a) showsthe
1-D section of anideal edge. But the signal produced by acamerawill look morelikefigure
4.40(b). The location of the edge is still at x=50, but a significant level of high-frequency
noise affects the signal quality.

A naive approach edge detection would be to simply differentiate, since an edge by defini-
tion islocated where there are large transitionsin intensity. Asshown in figure 4.40(c), dif-
ferentiation of the noisy camera signal results in subsidiary peaks that can make edge
detection very challenging. Asahint of the solutions below, note that in figure 4.40(d) afar
more stable derivative signal is generated simply by pre-processing the camera signal using
the Gaussian smoothing function described above. Below, we present several popular edge
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Fig4.41 (8) A Gaussian function. (b) Thefirst derivative of a Gaussian function.

detection algorithms, all of which operate on this same basic principle, that the derivative(s)
of intensity, following some form of smoothing, comprise the basic signal from which to ex-
tract edge features.

Optimal Edge Detection: Canny

The current reference edge detector throughout the vision community wasinvented by John
Canny in 1983 [16]. This edge detector was born out of aformal approach in which Canny
treated edge detection asasignal processing problem in which there are three explicit goals:

1. Maximize the signal-to-noise ratio
2. Achieve the highest precision possible on the location of edges
3. Minimize the number of edge responses associated with each edge

The Canny edge extractor smooths the image | via Gaussian convolution and then looks for
maximain the (rectified) derivative. In practice the smoothing and differentiation are com-
bined into one operation because:

(GAlY = GA | (4.84)

Thus, smoothing the image by convolving with a Gaussian G4 and then differentiating is
equivalent to convolving the image with G’ g, the first derivative of a Gaussian (Figure
4.41(b)).

We wish to detect edges in any direction. Since G' isdirectional, this requires application

of two perpendicular filters, just aswe did for the Laplacian in Equation (4.35). We define
the two filtersasfy(x,y) = G’ s(X)Gg(y) and fy(Xy) = G'5(Y)Gg(X). Theresultisabasic al-

gorithm for detecting edges at arbitrary orientations:
The algorithm for detecting edge pixels at an arbitrary orientation is:




4 Perception 145

2

L
Yetatel
et
Ny

‘ RIS

5
(R
L
o
K

KX
3
e
5
X
5
%

(i
R
0
o
(o
LK
\‘

——

X
&
X%
R
e
X
N//j’
A
—
0
i
?
o8
o
0‘0
0‘0

i
’
i
.
5
%
%
%
Kt
it
W
.
i

i
=
0
e
e
e
0‘0
)

R,
s
WS
BB
ot
o,
W
1
X

%

oo

&

i
-
e

i
%
Y

&
&
&
5
0

{x

2

;

0’0

.
S
"‘»‘ .‘Q Y

&
4
o
(X
i

Gs(x.y) = Gs(X)Gs(y) fu(xy) = G's(X)Gs(y) fr(x.y) = G's(¥)Gs(x)
Fig 4.42 (&) Two dimensional Gaussian function; (b) Vertica filter; (c) Horizontal
filter.

Fig 4.43 (a) Edge image of the Figure 1.2(b); (b) Non-maxima suppression of (a)

1. Convolve theimage I(x, y) with f(X, y) and fy(X, y) to obtain the gradient compo-
nents R(x, y) and Ry(X, y), respectively.

2. Define the square of the gradient magnitude R(X, y) = RA(X, y) + R4(X, V).

3. Mark those peaksin R(x, y) that are above some predefined threshold T.

Once edge pixels are extracted, the next step isto construct complete edges. A popular next
step in this processisnon-maximal suppression. Using edge direction information, the pro-
cess involves revisiting the gradient value and determining whether or not it is at a local
maximum. If not, then thevalueisset to zero. Thiscausesonly the maximato be preserved,
and thus minimizes the thickness of all edges to asingle pixel (Figure 4.43).

Finally, we are ready to go from edge pixelsto complete edges. First, find adjacent (or con-
nected) sets of edges and group them into ordered lists. Second, use thresholding to elimi-
nate the weakest edges.

Gradient Edge Detectors

On amobile robot, computation time must be minimized to retain the real-time behavior of
the robot. Therefore simpler, discrete kernel operators are commonly used to approximate
the behavior of the Canny edge detector. One such early operators was developed by Rob-
erts (1965) [22]. He used two 2 x 2 masks to calculate the gradient across the edge in two
diagonal directions. Letr, bethe value calculated from the first mask andr, from the second

mask. Roberts obtained the gradient magnitude |G| with the equation
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Fig 4.44 Example of vision based feature extraction with the different processing
steps:
a raw image data
b: filtered image using a sobel filter
c: thresholding, selection of edge pixels
d: non-maxima suppression

G| @ ri+r§; r, = -10, ro = 0-1 (4.85)
01 10

Prewitt (1970) [22] used two 3 x 3 masks oriented in the row and column directions. Let p;
be the value cal culated from the first mask andp, the value cal culated from the second mask.

Prewitt obtained the gradient magnitude |G| and the gradient direction g taken in a clock-
wise angle with respect to the column axis shown in the following equation.

Gl @/p; +p5
D5 e
q@atanép—zg, PL=|0 0 0|: P2=|-101 (489
111 -101

In the same year Sobel [22] used, like Prewitt, two 3 x 3 masks oriented in the row and col-
umn direction. Let s; be the value calculated from the first mask and s, the value calcul ated

from the second mask, he obtained the same results like Prewitt for the gradient magnitude
|G| and the gradient direction q taken in a clockwise angle with respect to the column axis.
Figure 4.44 shows application of the Sobel filter to avisual scene.
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Fig 4.45 (8) Number of pixelswith aspecific gradient magnitude in theimage of Fig-
ure 1.2(b). (b) Same as (a), but with logarithmic scale
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Dynamic Thresholding

Many image processing algorithms have generally been tested in laboratory conditions or
using static image databases. Mobile robots, however, operate in dynamic real-world set-
tingswherethereis, for example, no guarantee optimal or even stableillumination. A vision
system for mobile robots has thus to adapt to the changing illumination. Therefore aconstant
threshold level for edge detection is not suitable. The same scene with different illumina
tions will results in edge images with considerable differences. To dynamically adapt the
edge detector to the ambient light, a more adaptive threshold is required, and one approach
involves calculating that threshold based on the an analysis of the image about to be pro-
cessed.

To do this, ahistogram of the gradient magnitudes of the processed image is calculated (fig-
ure 4.45). With thissimple histogram it is easy to consider only then pixelswith the highest
gradient magnitude for further calculation steps. The pixels are counted backward starting
at the highest magnitude. The gradient magnitude of the point where n is reached will be
used as the temporary threshold value.

The motivation for such atechnique is that the n pixels with the highest gradient are expect-
ed to be the most relevant ones for the processed image. Furthermore, for each image, the
same number of relevant edge pixelsis considered, independent of itsillumination. It isim-
portant to pay attention to the fact that the number of pixelsin the edge image delivered by
the edge detector isnot n. Because most detector uses non-maximal suppression, the number
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of edge pixelswill be further reduced. Figures4.43(b) and (c) show two edge images of fig-
ure 4.43(a) with a different number n of edge pixels.
Straight edge extraction: Hough transforms

In mobile robotics the straight edge is often extracted as a specific feature. Straight vertical
edges, for example, can be used as clues to the location of doorways and hallway intersec-
tions. The Hough Transform is a simple tool for extracting edges of a particular shape|[15,
26]. Herewe explain its application to the problem of extracting straight edges.

Suppose a pixel (xp, yp) inthe Image is part of an edge. Any straight line edge including
point (X, y,) must satisfy the equation: y, = myx, + b, . Thisequation can only be satis-
fied with a constrained set of possible values for m; and b, . In other words, this equation

is satisfied only by linesthrough | that pass through (x,, Yp,) -

Now consider asecond pixel, (xq, yq) inl. Any line passing through this second pixel must
setisfy the equation: y, = myXx,+b,. Whatif m; = m, and b, = b,? Then theline de-
fined by both equations is one and the same: it is the line that passes through both (x, y,,)
and (X Yq) -

More generally, for all pixelsthat are part of asingle straight line throughl, they must al lie
on aline defined by the same values for mand b. The general definition of thislineis, of
course, y=mx + b. The Hough Transform uses this basic property, creating amechanism so
that each edge pixels can "vote" for various values of the (m,b) parameters. The lines with
the most votes at the end are straight edge features:

1. Create atwo-dimensional array A with axes that tessellate the valuesof mand b
2. Initialize the array to zero: A[m, b] = 0 for all values of m,b
3. For each edge pixel (X, Yp) inl, loop over all values of mand b:

if y, = mx,+b then Alm, b] +=1

4. Search the cellsin Ato identify those with thelargest value. Each such cell’ sindices
(m,b) corresponds to an extracted straight line edgein 1.

Floor Plane Extraction

Obstacle avoidance is one of the primitive tasks required of most mobile robots. Range-
based sensors provide effective means for identifying most types of obstacles facing a mo-
bilerobot. Infact, because they directly measure range to objectsin the world, range-based
sensors such as ultrasonic and laser rangefinders are inherently well-suited for the task of
obstacle detection. However, each ranging sensor has limitations. Ultrasonics have poor
angular resolution and suffer from coherent reflection at shallow angles. Most laser
rangefinders only detect obstacles penetrating a specific sensed plane. Stereo vision and
depth from focus require the obstacles and floor plane to have texture in order to enable cor-
respondence and blurring respectively.
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In addition to each individual shortcoming, range-based obstacle detection systems will
have difficulty detecting small or flat objectsthat are on the ground. For example, avacuum
cleaner may need to avoid large, flat objects, such as paper or money let on the floor. In
addition, different types of floor surfaces cannot easily be discriminated by ranging. For ex-
ample, a sidewalk-following robot will have difficulty discriminating grass from pavement
using range sensing alone.

Floor plane extraction is a vision-based approach for identifying the traversable portions of
the ground. Because it makes use of edges and color in avariety of implementations, such
obstacl e detection systems can easily detect obstaclesin casesthat are difficult for tradition-
al ranging devices.

Asisthe case with all vision-based algorithms, floor plane extraction succeeds only in en-
vironments that satisfy several important assumptions:

1. Obstacles differ in appearance from the ground.
2. The ground isflat and its angle to the camerais known.
3. There are no overhanging obstacles.

Thefirst assumption is arequirement in order to discriminate the ground from obstacles us-
ing its appearance. The second and third assumptions allow floor plane extraction ago-
rithms to estimate the robot’ s distance to obstacles detected.

Floor plane extraction in artificial environments

In a controlled environment, the floor, walls and obstacles can be designed so that the walls
and obstacle appear significantly differently than the floor in a cameraimage. Shakey, the
first autonomous robot developed from 1966 through 1972 at SRI, used vision-based floor
plane extraction in such amanufactured environment for obstacle detection [104].
Shakey’s artificial environment used textureless, homogeneously white floor tiles.
Furthermore, the base of each wall was painted with a high-contrast strip of black paint
and the edges of all simple polygonal obstacles were also painted black.

In Shakey’s environment, edges corresponded to non-floor objects, and so the floor plane
extraction algorithm simply consisted of the application of an edge detector to the mono-
chrome cameraimage. The lowest edges detected in an image corresponded to the closest
obstacles, and the direction of straight line edges extracted from the image provided clues
regarding not only the position but also the orientation of walls and polygonal obstacles.

Although this very simple appearance-based obstacle detection system was successful, it
should be noted that special care had to be taken at thetimein order to create indirect light-
ing in the laboratory such that shadows were not cast, as the system would falsely interpret
the edges of shadows as obstacles.

Adaptive floor plane extraction

Floor plane extraction has succeeded, not only in artificial environments, but in real-world
mobile robot demonstrations in which a mobile robot avoids both static obstacles such as
wallsand dynamic obstacles such as people by segmenting the floor plane at arate of several
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Hz. Such floor plane extraction algorithms tend to use edge detection and color detection
jointly, while making certain assumptions regarding the floor, for example the floor’ s max-
imum texture or approximate color range [98]

Each system based on fixed assumptions regarding the floor’ s appearanceis limited to only
those environments satisfying its constraints. A newer approach is that of adaptive floor
plane extraction, whereby the parameters defining the expected appearance of the floor are
allowed to vary over time. In the simplest instance, one can assume that the pixels at the
bottom of the image (i.e. closest to the robot) are part of the floor and contain no obstacles.
Then, statistics computed on these "floor sample” pixels can be used to classify the remain-
ing image pixels.

The key challenge in adaptive systemsis the choice of what statistics to compute using the
"floor sample" pixels. The most popular solution is to construct one or more histograms
based on the floor sample pixel values. In Edge Detection above, we found histograms to
be useful in determining the best cut point in edge detection thresholding algorithms. His-
tograms are al so useful as discrete representations of distributions. Unlike the Gaussian rep-
resentation, a histogram can capture multi-modal distributions. Histograms can also be
updated very quickly and use very little processor memory. An intensity histogram of the

"“floor sample" subregion I; of image | is constructed as follows:
1. As pre-processing, smooth |; using a Gaussian smoothing operator
2. Initialize a histogram array H with n intensity values: H[i] = O fori = 1,%,n
3. For every pixel (xy) in |, increment the histogram: H[I:(x, y)] += 1

The histogram array H serves as a characterization of the appearance of thefloor plane. Of-
ten, severa 1D histograms are constructed, corresponding to intensity, hue and saturation
for example. Classification of each pixel inl asfloor plane or obstacleis performed by look-
ing at the appropriate histogram counts for the qualities of the target pixel. For example, if
the target pixel has a hue that never occurred in the "floor sample,” then the corresponding
hue histogram will have a count of zero. When a pixel that references a histogram value
below a pre-defined threshold, that pixel is classified as an obstacle.

Figure 4.46 shows an appearance-based floor plane extraction algorithm operating on both
indoor and outdoor images [99]. Note that, unlike the static floor extraction algorithm, the
adaptive algorithm is able to successfully classify a human shadow due to the adaptive his-
togram representation. An interesting extension of the work has been to not use the static
floor sample assumption, but rather to record visual history and to use, as the floor sample,
only the portion of prior visual images that has successfully rolled under the robot during
mobile robot motion.

Appearance-based extraction of the floor plane have been demonstrated on both indoor and
outdoor robots for real-time obstacle avoidance with a bandwidth of up to 10 Hz. Applica-
tions include robotics lawn mowing, social indoor robots and automated electric wheel-
chairs.
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Fig 4.46 Examples of adaptive floor plane extraction. Thetrapezoidal polygon iden-
tifies the floor sample region.

Fig4.47 A set of visual landmarks enable localization in this RoboCup environment.
Roland, we should put a picture here of one of those RoboCup environments
in which there are fixed visual landmarks (the oriented color squares). This
whol e section on landmarks, you could drop it or keepit, | feel of two minds.

Landmark Extraction

Just as vision-based a gorithms have application to the spatial problem of identifying obsta-
cles and their positions, so vision can play arole in mobile robot localization. Because vi-
sual images contain many cues in contrast to range, vision-based landmark extraction is
required when landmarks must be identified by general appearance (e.g. shape, color, tex-
ture etc.).

The general problem landmark extraction in general isequal to the computer vision problem
of object recognition: can avision-based algorithm reliably identify the same object in the
environment, irrespective of perspective and partial occlusion? Thisis, of course, a subject
worthy of an entire field of study and is beyond the scope of this text.

Nevertheless, the general strategy of vision-based landmark extraction isworthy of mention,
particularly as the more sophisticated vision sensors of the future will doubtless expand the
role of vision-based sensorsin robot localization. In artificial environments or even in nat-
ural environments augmented by artificial landmarks, vision is aready able to provide suf-
ficient landmark extraction functionality to solve the robot localization problem.

Figure 4.47 presents an example of this, specifically the RoboCup environment depicted.
Each landmark has unique spatial configuration of extremely saturated color patches.
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Fig4.48 An image acquired by the OmniCam catadioptric camera system.

These landmarks are easily detected and, together with known information about their rela
tive positions, the soccer-playing robots are able to fully localize with ease.

4.3.2.2 Whole-Image Features

A single visua image provides so much information regarding a robot’s immediate sur-
roundings that an alternative to searching the image for spatially localized features is to
make use of the information captured by the entire image to extract a whole-image feature.
Whole-image features are not designed to identify specific spatial structures such as obsta-
cles or the position of specific landmarks. Rather, they serve as compact representations of
the entire image. From the perspective of robot localization, the goal is to extract one or
more features from the image that are correlated well with the robot’s position. In other
words, small changesin robot position should cause only small changesto whole-image fea-
tures, while large changes in robot position should cause correspondingly large changes to
whole-image features.

We present two techniques for whole-image feature extraction below. The first technique
is another popular application of the image histogramming approach. The resulting image
histogram comprises a single, whole-image feature derived directly from the pixel informa-
tion of an image. The second technique, tiered extraction, covers approaches in which a
whole-image feature is built by first extracting spatially localized features, then composing
these features together to form a single meta-feature.

Direct Extraction: Image Histograms

Recall that we wish to design whole-image features that are insensitive to small amount of
robot motion while registering significant changes for large-scale robot motion. A logical
first step in designing a vision-based sensor for this purpose isto maximize thefield of view
of the camera. Asthefield of view increases, small-scale structure in the robot’s environ-
ment occupies asmaller proportion of theimage, thereby mitigating theimpact of individual
scene objects on image characteristics. The catadioptric camera system, now extremely
popular in mobile robotics, offers an extremely widefield of view [100]. Thisimaging sys-
tem consists of a high-quality CCD camera mounted, together with customized optics, to-
wards a parabolic mirror. The image provides a 360° view of the robot’s environment, as
shown in Figure 4.48.
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The catadioptric image is a 360° image warped onto atwo-dimensional image surface. Be-
cause of this, it offers another critical advantage in terms of sensitivity to small-scale robot
motion. If the camera is mounted vertically on the robot so that the image represents the
environment surrounding the robot (i.e. its horizon), then rotation of the camera and robot
simply resultsinimagerotation. In short, the catadioptric camera can berotationally invari-
ant to field of view.

Of course, mobile robot rotation will still change the image; that is, pixel positions will
change, although the new image will simply be arotation of the original image. But wein-
tend to extract image features via histogramming. Because histogramming is a function of
the set of pixel values and not the position of each pixel, the processis pixel position-invari-
ant. When combined with the Catadioptric camera sfield of view invariance, we can create
asystem that isinvariant to robot rotation and insensitive to small-scale robot trandlation.

A color camera s output image generally contains useful information along multiple bands:
r, g and b values as well as hue, saturation and luminance values. The simplest histogram-
based extraction strategy is to build separate 1D histograms characterizing each band. Giv-
en acolor cameraimage, G, thefirst step isto create mappings from G to each of then avail-

able bands. We use G; to refer to an array storing the values in band i for al pixelsin G.
Each band-specific histogram H, is calculated as before:

1. As pre-processing, smooth G; using a Gaussian smoothing operator
2. Initidize H; withnlevels: H[j] = 0 forj = 1,%,n
3. For every pixel (xy) in G; increment the histogram: H,[G;[x, y]] += 1

Given the image shown in Figure 4.48, the image histogram technique extracts six histo-
grams (for each of r, g, b, hue, saturation and luminance) as shown in Figure 4.491n order to
make use of such histograms as whole-image features, we need ways to compare to histo-
grams, in order to quantify the likelihood that the histograms map to nearby robot positions.
The problem of defining useful histogram distance metrics is itself an important subfield
within the image retrieval field, and for an overview refer to [101]. One of the most suc-
cessful distance metrics encountered in mobile robot localization is the Jeffrey Divergence.

Given two histograms H and K, with h, and k; denoting the histogram entries, the Jeffrey
divergence d(H,K) is defined as:

h, +k; h; + k2

d(H,K) = 4 Slog 2h k.log 2 o (4.88)
i |

Using measures such as the Jeffrey divergence, mobile robots have used whole-image his-

togram features to identify their position in real time against a database of previously

snapped images of locations in their environment. Using this whole-image extraction ap-

proach, arobot can easily recover the particular hallway or particular roominwhichitislo-

cated [102].

R. Siegwart, EPFL, lllah Nourbakhsh, CMU



154 Autonomous Mobile Robots

Fig4.49 Sx 1D histograms of the image above. A 5 x 5 smoothing filter was con-
volved with each band before histogramming.

Tiered Extraction: Image Fingerprint Extraction

An adternative to extracting a whole-image feature directly from pixel values isto use a
tiered approach: first identify spatially localized features in the image, then translate from
this set of local featuresto asingle meta-feature for the wholeimage. We describe one par-
ticular implementation of this approach, in which the resulting whole-image featureis called
the imagefingerprint [103]. Aswith other whole-image extraction techniques, because low
sensitivity to small robot motionsis desired, the system makes use of a 360° panoramic im-
age, here constructed as a mosaic of images captured with a standard CMOS-chip camera.

Thefirst extraction tier searches the panoramic image for spatially localized features: verti-
cal edges and 16 discrete hues of color. The vertical edge detector isastraightforward gra-
dient approach implementing a horizontal difference operator. Vertical edges are "voted
upon” by each edge pixel just asin avertical edge Hough transform. Asdescribed in Section
(4.3.2.1), an adaptive threshold is used to reduce the number of edges. Suppose the Hough
table' s tallies for each candidate vertical line have a mean m and a standard deviation s .
The chosen threshold issimply m+ s .

Vertical color bandsareidentified in largely the same way, identifying statistics over the oc-
currence of each color, then filtering out all candidate color patches except those with tallies
greater than m+ s . Figure 4.50 shows two sample panoramic images and their associated
fingerprints. Note that each fingerprint is converted into an ASCII string.

Just aswith histogram distance metricsin the case of image histogramming, we need aquan-
tifiable measure of the distance between two fingerprints strings. String matching algo-
rithms are yet another large field of study, with particularly interesting applicationstoday in
the areas of genetics[96]. Note that we may have strings that differ not just in asingle ele-
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Fig 4.50 Two panoramic images and their associated fingerprint sequences [103].
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Fig4.51 Three actual string sequences. The top two are strings extracted by the ro-
bot at the same position [ 103].

ment value, but even in their overall length. For example, Figure 4.51 depicts three actual
sequences generated using the above algorithm. The top string should match Place 1, but
note that there are deletions and insertions between the two strings.

The technique used in thefinger printing approach for string differencing isknown asaMin-
imum Energy Algorithm. Taken from the stereo vision community, this optimization-based
algorithm will find the minimum energy required to "transform” one sequence into another
sequence. Theresult isadistance metric that isrelatively insensitive to the addition or sub-
traction of individual local featureswhile still able to robustly identify the correct matching
string in avariety of circumstances.

It should be clear from the previous two subsections that whole-image feature extraction is
straightforward with vision-based perception and can be useful for mobile robot localiza-
tion. But it is spatially localized features that continue to play a dominant role because of
their immediate application to their more urgent role in real-time obstacle avoidance.
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