MOBILE ROBOTS Case Studies 3

Prof. Francesco Mondada

Session ID: 365643

https://student.turningtechnologies.eu/#/respond

EPFL 2024-2025 ₁

Face recognition

There are software using computer vision to recognize gender in picture of people. An analysis* of the performances of the Microsoft version shows that this software works poorly on darker-skinned females, why?

Classifier	Metric	All	F	\mathbf{M}	Darker	Lighter	DF	DM	LF	$\overline{\mathbf{L}\mathbf{M}}$
MSFT	$\mathrm{PPV}(\%)$	93.7	89.3	97.4	87.1	99.3	79.2	94.0	98.3	100
	Error Rate(%)	6.3	10.7	2.6	12.9	0.7	20.8	6.0	1.7	0.0
	TPR (%)	93.7	96.5	91.7	87.1	99.3	92.1	83.7	100	98.7
	FPR (%)	6.3	8.3	3.5	12.9	0.7	16.3	7.9	1.3	0.0

- A There is a problem in the way the software is coded
- B Darker color levels are harder to distinguish
- C It's not a vision or coding problem

Session ID: 365643

^{*} Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In *Conference on fairness, accountability and transparency* (pp. 77-91).

Face recognition

There are several software that use computer vision to recognize the gender in picture of people. An analysis* of their performances shows that these software works poorly on darker-skinned females, why?

It's not a coding problem, and cannot be a vision problem, it's a problem of learning data.

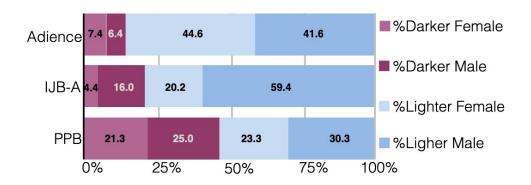


Figure 3: The percentage of darker female, lighter female, darker male, and lighter male subjects in PPB, IJB-A and Adience. Only 4.4% of subjects in Adience are darker-skinned and female in comparison to 21.3% in PPB.

^{*} Buolamwini, J., & Gebru, T. (2018, January). Gender shades: Intersectional accuracy disparities in commercial gender classification. In *Conference on fairness, accountability and transparency* (pp. 77-91).

You need to design a robot for dense swarm operations (robots of about 1dm³ of volume, 20 robot / m², hundreds of robots in the same area). You need to choose a sensor for distance measurements of obstacles in front of the robot, what do you choose:

- A Time-of-flight camera
- B Triangulation camera, with projection of pattern
- C Stereo camera

You need to design a robot for dense swarm operations (robots of about 1dm³ of volume, 20 robot / m², hundreds of robots in the same area). You need to choose a sensor for distance measurements of obstacles in front of the robot, what do you choose:

- A Time-of-flight camera
- B Triangulation camera, with projection of pattern
- C Stereo camera

Consider a camera system taking static images at several random angles when rotating around its focal point in a forest. What is the cheapest hardware device (do not consider cost of processing) one can use to retrieve a 3D reconstruction of the surrounding?

- A Time-of-flight camera
- B Triangulation system based on camera
- C Stereo camera
- D Monocular camera

eekwi.ora

llen Anywhere

Consider a camera system taking static images at several random angles when rotating around its focal point in a forest. What is the cheapest hardware device (do not consider cost of processing) one can use to retrieve a 3D reconstruction of the surrounding?

- A Time-of-flight camera
- B Triangulation system based on camera
- C Stereo camera
- D Monocular camera

eekwi.ora

Allen Anywhere