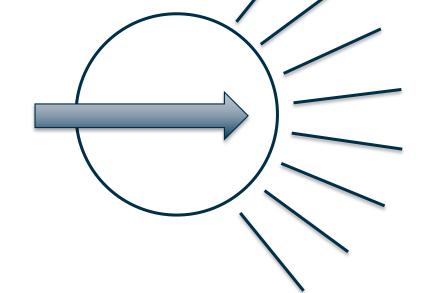
MOBILE ROBOTS Case Studies 4

Prof. Francesco Mondada

Session ID: 455406



https://student.turningtechnologies.eu/#/respond

EPFL 2024-2025 ₁

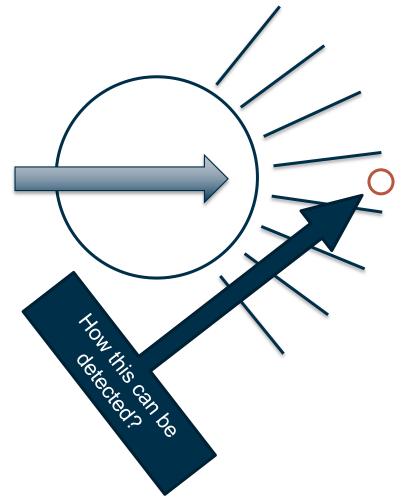
Which sensors

You have to design a cheap sensor system (sensor + computation) of a circular robot (1m Ø) that moves indoors. The look of the robot allows only detection of obstacles from 8 holes in the body. Which sensors do you place there?

A - Ultrasound

B – Laser TOF

C – Cameras

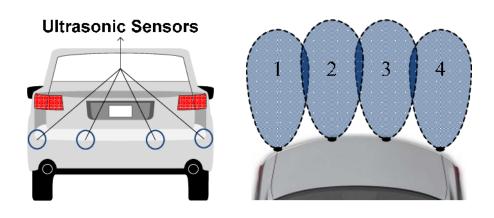

Which sensors

You have to design a cheap sensor system (sensor + computation) of a circular robot (1m Ø) that moves indoors. The look of the robot allows only detection of obstacles from 8 holes in the body. Which sensors do you place there?

A - Ultrasound

B – Laser TOF

C - Cameras (computational intensive)

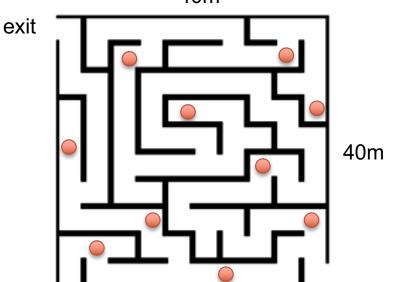

Which sensors

You have to design a cheap sensor system (sensor + computation) of a circular robot (1m Ø) that moves indoors. The look of the robot allows only detection of obstacles from 8 holes in the body. Which sensors do you place there?

A - Ultrasound

B – Laser TOF

C - Cameras (computational intensive)



Han, D., Choi, H.B., & Kim, Y.S. (2018). Design of Road Surface Lighting System for Rear Lamp using Automotive Ultrasonic Sensor. 2018 International SoC Design Conference (ISOCC), 249-250.

Labyrinth

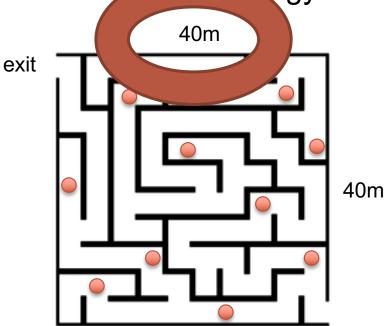
You have 10 small cylindrical robots (ø50cm) that need to escape at the same time from a labyrinth. They can perceive the direction of the exit. Which is the simplest, complete and more efficient navigation strategy you can use?

A – Left wall following
B – Left wall following + potential
field when meeting another robot
C – Potential field (repulsion of
walls and robot + attraction exit)
D – Wall following in the direction of
exit (when starting)

Labyrinth

You have 10 small cylindrical robo (ø50cm) to need to escape at the same time from a labyrinth. They constant the direction of the exit.

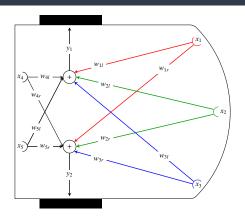
Which is the simplest, complete and more efficient navious stegy

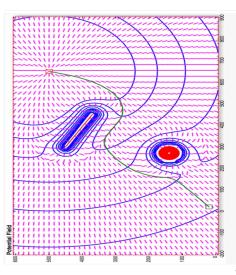

you can use?

A - Left wall following

B – Left wall following + potential field when meeting another robot

C - Potential field (repulsion of walls and robot + attraction exit)

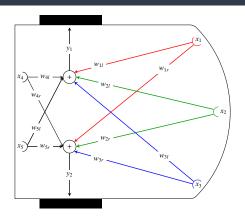

D – Wall following in the direction of exit (when starting)

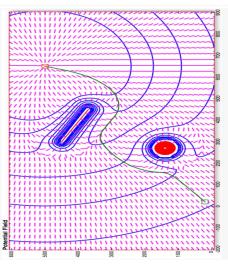


Which obstacle avoidance approach

Using a robot equipped with a set of 8 ultrasound sensors for obstacle detection, you need to choose a smooth behavior for obstacle avoidance and you hesitate between two approaches, Artificial Neural Networks (on layer ANN) and potential field (PF). Which one is easier to implement and smoother?

- A ANN, is not subject to local minima
- **B** PF has less parameters to configure
- C Both appraoches are nearly identical

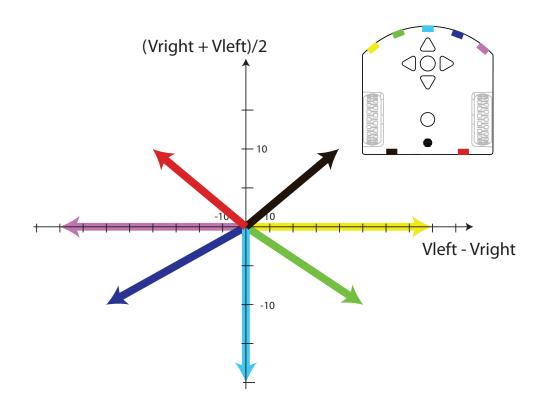


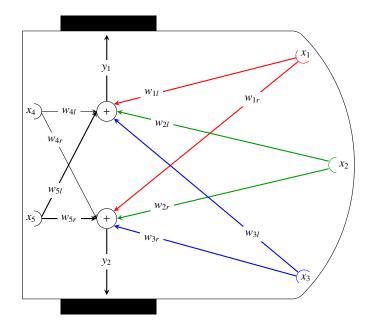


Which obstacle avoidance approach

Using a robot equipped with a set of 8 ultrasound sensors for obstacle detection, you need to choose a smooth behavior for obstacle avoidance and you hesitate between two approaches, Artificial Neural Networks (on layer ANN) and potential field (PF). Which one is easier to implement and smoother?

- A ANN, is not subject to local minima
- **B** PF has less parameters to configure
- C Both appraoches are nearly identical





Which obstacle avoidance approach

Weights of neuron

 $w_{I}[7] = [40,20,-20,-40,-40,30,-10] \# connection to I e f t motorvar <math>w_{I}[7] = [-40,-40,-20,20,40,-10,30] \# connection to right motor$

