M. Bouri H. Bleuler

Date: 18 janvier 2018, 2 heures

MICRO-450 Bases de la robotique

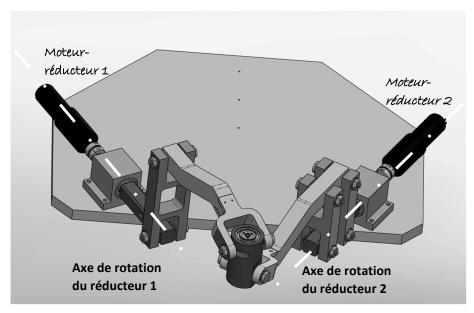
Exercise. 1 : True or false ? (15 pts)

Please note \bigcirc or \bigcirc on the prepared page.

ricasc		
1.1	A parallel robot is a structure characterized by a closed kinematic loop.	Т
1.2	In general, a parallel robot is more rigid than a serial one.	Т
1.3	The role of the derivative gain of a PD controller is to cancel the static error.	F
1.4	The proportional gain of a PD controller reduces the static error.	Т
1.5	The dynamic model of a robot relates joint positions and joint torques.	Т
1.6	The optimal reduction gear ratio (corresponding to optimal fitting of motor-reduction gear-load) allows to minimize energy losses	Т
1.7	The optimal reduction gear ratio (corresponding to optimal fitting of motor-reduction gear-load) allows maximum output acceleration	Т
1.8	Redundancy of an industrial robot allows to increase the number of degrees of freedom	F
1.9	The Jacobian of a robot relates the applied force at the tool with joint torques.	Т
1.10	The Jacobian of a robot relates joint positions with joint angles.	F
1.11	Inverse kinematics gives position & orientation of the end-effector in function of joint angles.	F
1.12	Forward kinematics of a serial link robot can have multiple mathematical solutions	F
1.13	Inverse kinematics of a parallel-link robot has only one mathematical solution.	F
1.14	The trace of the direction cosine matrix is always = 1	F
1.15	Calculation of an orientation quaternion gives { $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ } Can this be correct?	F

Exercise. 2 (21 pts)

The figure below shows a two-axis pantograph kinematics:



These two drive trains are designed as follows:

Motor ECI52X,

Moment of inertia Jm = 160 gcm²

Reduction gear GP52X,

- Gearing ratio n= 160
- Moment of inertia, J_red = 10 gcm²
 measured at the gear input.
- 2.1 The motor inertia as seen from the load is:
- (A) 0.04 kgm²
- (B) 0.4 kgm²
- (C) 4 kgm²

(D) 0.02 kgm²

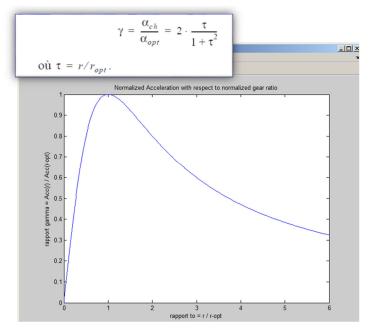
- **2.2** The reduction gear inertia as seen from the load is:
- (A) 0.025 kgm²
- (B) 0.25 kgm²
- (C) 2.5 kgm²
- (D) 0.0125kgm²

Let us consider the two extremal positions of axis two.

For each configuration, the moment of inertia of the load (arm+fore arm) at the output gear shaft side are given as follows:

- **2.3** In configuration A , the total inertia seen from the load is:
- (A) 0.165kgm²
- (B) 0.525 kgm²
- (C) 6.6 kgm²
- (D) 0.1325kgm²
- **2.4** In configuration B , the total inertia seen from the load is:
- (A) 0.465 kgm²
- (B) 0.69 kgm²
- (C) 6.54 kgm²
- (D) 0.0725kgm²
- 2.5 Choice of an optimal reduction gear ratio: What will it be for configuration A?
- (A) 40
- (B) 80
- (C) 120
- (D) 16

Here is a plot of relative output acceleration over optimal acceleration $\gamma(\tau)$ in function of the relative reduction gear ratio tau (r optimal corresponds to tau = 1, optimal acceleration corresponds to $\gamma=1$)



- **2.6** In configuration A, with r optimal, the given drive train would allow which percentage of optimal acceleration?
- (A) ~ 30%
- (B) ~ 60%
- (C) ~ 80%
- (D) ~ 100%
- **2.7** In configuration B, with r optimal, the given drive train would allow which percentage of optimal acceleration?
- (A) ~ 30%
- (B) ~ 60%
- (C) ~ 80%
- (D) ~ 100%

Exercise. 3 (10 pts)

We design a linear type Delta robot. A first proposal is to use a rotational motor, a belt transmission and a ball-screw linear drive. The belt transmission consists of two pulleys with **8mm** diameter on the motor side and **20 mm** diameter on the side of the ball-screw. The lead (pitch) of the screw is **10mm**.

Motor specs: **Inertia Jm** = 150 g.cm². **Nominal speed** = 7500 rpm. **Nominal torque** = 0.2 Nm Incremental encoder with pitch of **1000 / full revolution**.

3.1 The best position resolution of the linear axis is:

(A) 1 micron (B) 5 microns (C) 10 microns (D) 2.5 microns

Linear_resolution = 10/(1000*4*2,5) = 1 micron

3.2 The controller sampling frequency is 1 kHz and the output velocity is computed from derivation over a single sampling period. The resolution for velocity is

(A) 1 mm/sec (B) 5 mm/sec (C) 10 mm/sec (D) 2.5 mm/sec

3.3 The output velocity is:

(A) 0.5 m/sec (B) 1 m/sec (C) 2.5 m/sec (D) 10 m/sec

Velocity_screw = (7500/2,5) rpm = 3000 rpm

Velocity_lin = 3000 . 10 mm/60 s = 500mm/sec

3.4. The transmission belt and the ball screw have losses of 10% each. What is the nominal force available at the linear output?

(A) 240 N (B) 300 N (C) 375 (D) 400 N

Hint: Think of power transmission, about 2 stages of transmission!

Pow_out = F_out . Vel_out = Pow_in . efficiency = torque . Vel_actuator . 90% . 90%

There are two transmission, of efficiency of 0.9 each

 $F_{out} = (0.2 \cdot (7500 \cdot 2.PI / 60) \cdot 0.81) / 0.5 = 254 N$

PI was simplified to 3... during the exam (to not use calculators)

3.5 What power should be specified for an equivalent direct drive linear actuator? (in place of the motor, belt-drive and ball-screw)?

(A) 120 Watt

(B) 150 Watt

(C) 190 Watt

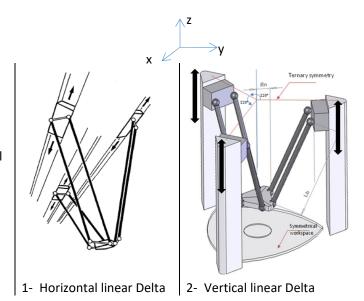
(D) 210 Watt

Exercise 4 (25 pts)

There are several versions of linear Delta robots.

We will consider two versions:

- 1) with all linear drives horizontal
- 2) with all linear drives in vertical arrangement



4.1 What is the number of degrees of freedom of the horizontal version?

- (A) 2
- (B) 3
- (C)4
- (D) 1

4.2 What is the number of degrees of freedom of the vertical version?

- (A) 2
- (B) 3
- (C)4
- (D) 1

For the control of these linear axes, we make the following assumptions:

- m_h is the equivalent mass seen at each horizontal linear actuation axis. For simplification, we will
 consider it as independent of the robot position. Neglect moments of inertia.
- m_v is the equivalent mass seen at each vertical linear actuation axis. For simplification, we will consider it as independent of the robot position. Neglect moments of inertia.
- Neglect dry friction in both cases. The damping coefficient for each linear axis is k_v .
- 4.3 Concerning the Jacobian matrix, Which one of the following statements is correct?
- (A) The Jacobian of the horizontal version does not depend on the robot position

- (B) The Jacobian of the vertical version does not depend on the robot position
- (C) The Jacobian of both versions is function of the robot position (since the direct geometric model is non linear and function of the robot position)
- (D) The Jacobian of the vertical version corresponds to Matrix "Identity"

- **4.4** Consider the dynamic model of both robot versions, with the simplifying assumption of constant equivalent masses m_h and m_v . Which one of the following statements is correct?
- (A) The dynamic models of both versions are decoupled

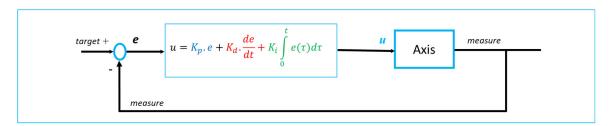
Assuming that all the masses in movement are simplified as stated, using m_h and m_v . constant masses respectively for the horizontal and the vertical versions.

- (B) The dynamic model of each robot depends on the end effector position
- (C) The dynamic model of both versions are identical
- (D) Only the dynamic model of the horizontal version is decoupled
- **4.a** The motors are controlled in torque! Which type of minimal controller for position control of a linear axis of the horizontal version would be feasible: **P**, **PI**, **PD** or **PID**? **Explain** (2 pts).
- **4.b** The motors are controlled in torque. Which type of minimal controller for position control of a linear axis of the vertical version would be feasible: **P**, **PI**, **PD** or **PID**? **Explain** (2 pts)

For the Horizontal version, if we do not consider the gravity, the PD will suffice to control each axis. For the vertical axis, we require to use a PID to control the robot.

The derivative action is required to add damping and accordingly stabilize the position control.

4.c Give the controller equation for the case 4b. Give a controller block diagram showing the closing of the control loop and explicit the variables involved. (3pts)



u (or u_{PID}) is the applied torque

e is the position error

$$u_{PID} = K_p. e + K_d. \frac{de}{dt} + K_i \int_0^t e \ dt$$

Kp is the proportional gain control coefficient

Kd is the derivative gain control coefficient

Ki is the integral gain control coefficient

e is the position error, e = position_desired - position_measured

4.d Give the expression for the inverse dynamics of one of the horizontal axes (1pt)

$$F_h = m_h . \ddot{q}$$

q is the translation joint coordinate of the linear axis.

4.e Give the expression for the inverse dynamics of one of the vertical axes (2pts)

$$F_v = m_v \cdot \ddot{q} - m_v \cdot g$$

q is the translation joint coordinate of the linear axis.

g is the gravity acceleration.

4.f What are the expressions of the a priori generalized torques for a horizontal axis and for a vertical axis ? (3 pts)

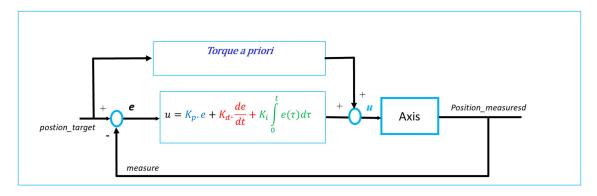
$$F_{h_{an}} = m_h \cdot \ddot{q}_d$$

$$F_{v ap} = m_v \cdot \ddot{q}_d - m_v \cdot g$$

q_d is the desired translation joint position of the linear axis.

g is the gravity acceleration.

4.g Give a block-diagram of answer **(4.c)** with the generalized a-priori torque. What is the complete expression for the generalized control torque ? (3pts)



$$u = u_{PID} + u_{ap} = K_p \cdot e + K_d \cdot \frac{de}{dt} + K_i \int_{0}^{t} e(\tau) d\tau + m_v \cdot \ddot{q}_d - m_v \cdot g$$

q is position_measured

q_d is position_desired

4.h In case of using an a priori control path (as in the previous question), what would be the minimal controller **P, PI, PD ou PID?** Justify your choice! (1 pt)

In case of using an a priori control, the integrator may no more be required for gravity compensation, the **PD controller will suffice**.

In presence of unknown dry friction, that can not be included in the a priori, the integral action will be required to compensate for that friction and thus cancel the steady state error.

Exercise 5 (14 pts)

Given the robot shown to the right **(Figure 5.1)**, with base coordinates

 θx , θy et θz are rotation angles with respect to these coordinate axes.

All joints are simple pivots, shown as introduced in the lecture.

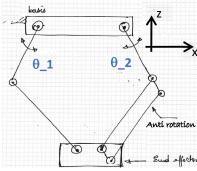


Figure 1

5.a Give vector [X] of the operational (world) coordinates of this robot. Not necessarily all place holders need to be filled (1 pt).

$$X = [x, y]$$

The parallel bar mechanism is used to compensate for the rotation around the axis y

5.b Give vector [q] of the generalized coordinates of this robot and explain what they represent (or show it in the figure 5.1 above). *Not necessarily all place holders need to be filled* (2 pts)

 $q = [\theta_1, \theta_2]$

θ _1 is the rotation of	θ _2 is the rotation of the		
the arm 1 around the	arm 2 around the basis		
basis horizontal axis x	horizontal axis x.		
Ref figure.	Ref figure		

5.c We aim to add a tool rotation axis around z without adding a motor on the end effector. **Propose a possible kinematic design** to realize such a motion. (3pts)

Multiple choice questions (refer to Figure 5.1)

- **5.1** The funcion $X = \phi(q)$ is :
 - (A) Forward Kinematics (Modèle géométrique direct)
 - (B) Inverse Kinematics (Modèle géométrique inverse)
 - (C) Inverse Jacobian
 - (D) None of the above
- **5.2** How many degrees of freedom for the structure of Figure 5.1?
- (A) 2
- (B) 3
- (C) 4
- (D) 6

5.3 The Robot of Figure 5.1 has the following number of mobilities:

- (A) 2
- (B) -2
- (C) -4
- (D) 4

Mo = 8 - 6.2 = -4 (8 pivots, 2 loops)

- **5.4** This structure
- (A) is over constrained (because there is less Mobilities than DOFs)
- (B) has internal mobilities
- (C) is redundant
- (D) none of the above

Exercise 6 (8 pts)

- **6.1** A 4 degrees-of-freedom SCARA robot has a number p of postures.
 - (A) p = 1
- (B) p = 2
- (C) p = 4
- (D) p = 8
- **6.2** The quaternion $\{ \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \}$ stands for a rotation of
 - (A) 60°

(B) 120° or -120°, depending on axis direction

 $(C) -60^{\circ}$

- (D) is not a unit quaternion
- **6.3** What is the main reason to use signals in quadrature for incremental encoders?
 - (A) To increase resolution

- (B) To have an absolute value
- (C) To determine the direction of increments
- (D) To increase precision
- 6.4 An optical absolute position encoder with a resolution of 1/4000 of its full range will need at least
 - (A) 8 tracks
- (B) 10 tracks
- (C) 12 tracks
- (D) 16 tracks

Exercise 7 (15 pts)

Some easy calculations. No, you do no need a calculator! Give results simply in terms of square roots and fractions, without computing decimals!

7.a Give the quaternion corresponding to a rotation of 90° around z-axis

$$\lambda_0 = \cos(9/2)$$
 and $\underline{\lambda} = \sin(9/2) [x, y, z]^T$, $||x, y, z|| = I$ (11b')

Reminder,

If we consider V=(Vx,Vy,Vz), then the associated unity vector is : $V_u = [\frac{v_x}{\|v\|}, \frac{v_z}{\|v\|}, \frac{v_z}{\|v\|}]^T = \frac{1}{\|v\|}(V_x, V_y, V_z)$

$$V_u = \left[\frac{Vx}{\|V\|}, \frac{Vz}{\|V\|}, \frac{Vz}{\|V\|}\right]^T = \frac{1}{\|V\|} (V_x, V_y, V_z)$$

Qa =
$$\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} (0, 0, 1)\right]^T = \left[\frac{\sqrt{2}}{2}, \mathbf{0}, \mathbf{0}, \frac{\sqrt{2}}{2}\right]^T$$

7.b Give the quaternion corresponding to a rotation of 90° around axis $[1,1,0]^T$

Qb =
$$\left[\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{1}{\sqrt{2}} (1,1,0)\right]^T = \left[\frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2}, 0\right]^T$$

7.c Give the quaternion corresponding to the combined rotation consisting of **rotation 7a**) **followed by rotation 7b**)

$$\begin{aligned} & \mathbf{Q} = \mathbf{Qb} \cdot \mathbf{Qa} = \left(\frac{\sqrt{2}}{2} + \frac{1}{2}i + \frac{1}{2}j\right) \cdot \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}k\right) \\ & = \left(\frac{1}{2} + \frac{1}{2}k + \frac{\sqrt{2}}{4}i + \frac{\sqrt{2}}{4}ik + \frac{\sqrt{2}}{4}j + \frac{\sqrt{2}}{4}jk\right) = \left(\frac{1}{2} + \frac{1}{2}k + \frac{\sqrt{2}}{4}i - \frac{\sqrt{2}}{4}j + \frac{\sqrt{2}}{4}j + \frac{\sqrt{2}}{4}i\right) \\ & = \left(\frac{1}{2} + \frac{\sqrt{2}}{2}i + \frac{1}{2}k\right) \end{aligned}$$

Thus:
$$Q = \left[\frac{1}{2}, \frac{\sqrt{3}}{2} \left(\sqrt{\frac{2}{3}}, 0, \frac{1}{\sqrt{3}}\right)\right]^T = \left[\frac{1}{2}, \frac{\sqrt{2}}{2}, 0, \frac{1}{2}\right]^T$$

7.d What is the axis of this combined rotation?

Axis is
$$\left(\sqrt{\frac{2}{3}}, 0, \frac{1}{\sqrt{3}}\right)$$

7.e What is the rotation angle of this combination?

$$Cos(\theta/2) = \frac{1}{2}$$
 and $sin(\theta/2) = \frac{\sqrt{3}}{2}$

Angle is 120°.

7.f What are axis and angle if the combination is done in reversed order, i.e. first 7b then 7a?

$$\begin{aligned} \mathsf{Q} &= \mathsf{Qa} \cdot \mathsf{Qb} = \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \, k \right) \left(\frac{\sqrt{2}}{2} + \frac{1}{2} \, i + \frac{1}{2} j \right) \\ &= \left(\frac{1}{2} + \frac{\sqrt{2}}{4} \, i + \frac{\sqrt{2}}{4} \, j + \frac{1}{2} \, k + \frac{\sqrt{2}}{4} \, k i + \frac{\sqrt{2}}{4} \, k j \right) = \left(\frac{1}{2} + \frac{\sqrt{2}}{4} \, i + \frac{\sqrt{2}}{4} \, j + \frac{1}{2} \, k + \frac{\sqrt{2}}{4} \, j - \frac{\sqrt{2}}{4} \, i \right) \\ &= \left(\frac{1}{2} + \frac{\sqrt{2}}{2} \, j + \frac{1}{2} \, k \right) \end{aligned}$$

Thus:
$$Q = \left[\frac{1}{2}, \frac{\sqrt{3}}{2} \left(0, \sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)\right]^T = \left[\frac{1}{2}, 0, \frac{\sqrt{2}}{2}, \frac{1}{2}\right]^T$$

Axis is $\left(0, \sqrt{\frac{2}{3}}, \frac{1}{\sqrt{3}}\right)$

Angle is 120°

Exercise 8 (10 pnts)

8.a Give the matrix of direction cosines for the composed operation of a first rotation around z-axis followed by a second rotation of 90° around axis $[1, 1, 0]^{\mathsf{T}}$

The corresponding unity vector of $[1, 1, 0]^T$ is $\frac{1}{\sqrt{2}} [1, 1, 0]^T$, thus $[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0]^T$

Formula of Rodriguez is (where $[x,y,z]^T$ is the rotation unity vector

$$\mathbf{R} = (1 - \cos \theta) \begin{bmatrix} xx & xy & xz \\ xy & yy & yz \\ xz & yz & zz \end{bmatrix} + \cos \theta \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \sin \theta \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

The rotation around the $[1, 1, 0]^T$, same as around the unity vector $[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0]^T$ is

$$R_{v} = (1 - \cos(90)) \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 0 \end{bmatrix} + \cos(90) \begin{bmatrix} 0 & 0 & \frac{1}{\sqrt{2}}\\ 0 & 0 & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & \frac{1}{\sqrt{2}} \\ 0 & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$\mathbf{R}_{z} = \begin{vmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

The resulting rotation is

$$\mathbf{R} = R_{v}. R_{z} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \mathbf{0} \end{bmatrix}. \begin{bmatrix} c & -s & \mathbf{0} \\ s & c & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}(c+s) & \frac{1}{2}(c-s) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(c+s) & \frac{1}{2}(c-s) & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}(c-s) & \frac{1}{\sqrt{2}}(c+s) & \mathbf{0} \end{bmatrix}$$