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2.1 Kinematics

2.1.1 Aim of the Chapter; Active and passive transformations

The task of the robot being to move objects, it is important to precisely describe the geometry of such
movements. It is the subject of kinematics, that is to say of the science of the geometry of movements,
without considering inertia and dynamic forces. “Movement” is defined in our context as a change of
position. The study of the effect of forces on motions, described by differential equations (Newton-
Euler or Lagrange), is the field of dynamics. These are the equations of motion (Bewegungs-
Differentialgleichungen, equations of motion). The knowledge of the solutions of these equations will
allow to develop the appropriate controller of the robot.

Robot joint Variables - Operational variables

Any robot is controlled by angular or linear setpoints sent to actuators (motors). These variables are
called “robot variables” or “joint variables” in English (“joint” meaning “articulation”). These variables
define the “joint space”. The number n of these variables corresponds to the number of actuators,
and in most cases, it corresponds to the degrees of freedom? of the robot. We will use for these
variables the notations

{Q1, U200 Qiyeeee On } or { 91, 92, .ee Oi, 6,,}

The robot's task is described in other variables, independent of the robot used. For example, in the
case of an assembly, it may be Cartesian coordinates linked to a plate to be assembled, giving the
target position of a component to be assembled.

These variables therefore describe the operation to be performed by the robot, and are called
“operational variables”. We also speak of "operational space" or, sometimes also, of "world
coordinates"

To define the position and the orientation of a (rigid) object, we generally need its six coordinates
(three for the position of a point, e.g. of the center of mass, and three to define the orientation in
space).

The task of the kinematics will be, to establish the links between the robot variables and the
operational variables. For example, the expression of the operational coordinates as a function of the
robot variables is called a “Direct Geometric Model” (“Forward Kinematics” in English). It is therefore
the position of the “hand” or of the robot's tool (end-effector) according to its joint positions. The
reverse function is the “Indirect Geometric Model” (Backward Kinematics), therefore the joint
positions according to the desired operational posture. The main goal of this chapter is to establish
and study these two essential multivariate functions in robotics.

Kinematics is also necessary to establish the dynamic model (equations of motion) used for the sizing
of the mechanics, the design of the drive and finally the control of the robot.

Among all these approaches, the kinematics are often the most difficult. It will therefore occupy us a
substantial amount of time. Describing the kinematics of a multi-body system (eg of a robot) can
represent 80% of the effort in establishing the dynamic model.

LIf the robot has more actuators than the number of degrees of freedom, it is called redundant
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One of the sources of difficulty in kinematics is the fact that you often have to work with multiple
frames of reference (coordinate systems), e.g. a fixed frame references and frame references
attached to the moving body, therefore mobile. This results in the need to study changes in the frames
of reference of a fixed object or, on the contrary, changes in the position of an object with respect to
a fixed frame of reference.

The first case (change of frame of reference) is called passive transformation, the second case
(movement of the object) is called active transformation, the two types of transformations being
obviously closely linked mathematically. (Gruber p.89)

In the first three sections, we limit ourselves to active transformations. This facilitates processing
considerably, if only by omitting the multiple indexes that characterize so many books on robotics.
Once the basic understanding has been acquired, multiple references adapted to the concrete problem
will also be introduced and used.

In these same first sections we deal only with the geometry of motion, without worrying about the
time variable, therefore neither speed, nor acceleration.

2.1.2 2D translations and rotations around the origin

There are two types of change of position of a solid object (characterized by invariable distances
between the points constituting it): Translation and rotation.

The translation is defined by a single vector t displacement valid for all points of the solid.

The rotation is defined by a fixed axis (not necessarily linked to the object) as well as an angle of
rotation around this axis. (Reminder of the course "Statics and Dynamics": Where is the fixed axis of a
wheel having rolled by a distance d?)

The mathematical description of these changes of position is as follows: The points of the object are
described by position vectors in a fixed frame of reference. We most often use a Cartesian frame of
reference with the three axes x, y, z and the origin O. The change in position of a point described by a
vector v1 will have the effect of modifying the position vector. The vector giving the new position is
called v2 .

The translation is trivial. The vectors of all the points of the solid body C are transformed by the same
formula:

v2=vl+t (1)

y P (avant)

P (apres)

Fig. 1 Translation of point P from position v; to position v,.
This translation is valid for all the points of the object C.

In the case of movements in the plane (2D), the axis of rotation is always in direction z. The coordinates
xc and y. of this axis define the center of rotation in the plane. We also need to define a third
parameter, the angle of rotation 6
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A rotation of an object around the origin of an angle 6 will modify the position vectors of any point
fixed to the object in the same way next:

rtu\q
r\mq (2)

rcos(g + 1)
rsinfp +10)

Fig. 2 Pure rotation

Using the polar coordinates (r, ¢) this rotation is trivial. To go directly from [x1, y1] to [x2, y2] in
Cartesian coordinates, without having to calculate (r, ¢ ) from [x1,y1], the following trigonometric
identities will be useful:

cos (a + b) = cos (a) cos (b) - sin (a) sin (b)
sin (a + b) = sin (a) cos (b) + cos (a) sin (b) (3)

By applying them to (2), we obtain the coordinates of v2 expressed in components of v1.

[x,] [rcos(p+3)] [rcospcos3 —rsingsind| [cosI —sinI [ rcose |
v, =

- LyJ \_rs1n((p+9)J {rcosgos1n9+rsmgocos9j Lsm& cos 9 JLrsmquW

We have therefore found a representation of this rotation by matrix multiplication of the vector v1
with a rotation matrix R depending only on the angle of rotation 9:

-

v, -R{;‘JI avec R~=

sint  cosv

costr - sill{)]

(5)

Exercise:

1a) R(9=0) =

1b) R(-9) =

10)R () 1=2R" (6)

1d) v3 = R(82)v2 = R(82)R(61)v1 = R(?)V1 ? (7)

le) R(62)R(61) = R(B1)R(62)?

By transforming the two vectors [l,O]T and [0,1]T, we see that the columns of R themselves form an

orthogonal coordinate system rotated by 6 with respect to the original Cartesian coordinate system.
The condition that the volume (or, in the 2D case, the area) of the transformed object remains constant
is linked to the value of the determinant ||R|| = 1, the geometrical orthogonality of the new

coordinate system is related to the orthogonality of the columns (v1' v2 = 0). These conditions imply
R"=R™* (orthogonal matrices).

The exercise illustrates the concepts of identity, inversion, orthogonality, chaining and commutativity
for the case of rotations around the origin. These concepts are necessary to introduce rotations around
arbitrary centers. For this purpose, combined movements composed of rotations and translations are
introduced.
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2.1.3 Combination of 2D rotations and translations; homogeneous representation

A general motion in the plane can be described by a combination of translations and rotations around
the origin. A sequence of translations and rotations comes up against the fact that the translation is a
vector addition while the rotation a matrix multiplication.

It would be very desirable to be able to integrate rotation and translation in a single operation in order
to be able to link them together. The homogeneous matrices allow this integration of the translation
into the transformation matrix. The price to pay is to increase the order of the matrix by one. The
translation vector tis added to the right and a line [0 0 1] at the bottom:

R €] [cos$ —sind ¢ |
LO 1J:|sin8 cos9 t

y

|
L o o 1] &)

This is the “homogeneous matrix” of transformation in a two-dimensional space (a plane), the third
line has no spatial significance (no z axis for the moment !!). This matrix acts on a homogeneous vector
in a two-dimensional space which consists of its two coordinates plus a "scale factor" equal to one:

v=[x,y, 1]T

To find the familiar vectors, just delete the last element. Matrices and homogeneous vectors for three
dimensions contain four elements.

Example of use: Let us assume a movement of the point v1 in two phases composed of
1.) rotation (always around the origin O for all this section 2.1.2) by an angle 61

2.) translation of t1

togetv2=R(O1) vl +tl

Let us apply again a motion composed of two phases (R(62), t2 ) to v2 :

3.) rotation around the origin O by an angle 62

4.) translation of t2

to finally get v3 :

v3=R(62) v2 + t2 =R(62) R(O1) vl + R(62) t1 + t2 (9)

These four consecutive movements (R(61), t1, R(62), t2 ) can be expressed in a single homogeneous
matrix which is calculated simply by matrix products.

Exercise: Perform this operation with the help of two homogeneous matrices. Calculate the
homogeneous matrix of the complete operation by matrix product. This result will contain
the total translation and the total rotation equivalent to the four movements.

We find that the rotation R(62) R(61) is equivalent to R(61+62) and the translation totalis
equaltoR(62) t1 + t2 :

| R(tot)=R(61+62) and _t{tot) =R(62) t1+t2
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Exercise: Give the homogeneous matrices of the following movements:
3a) Pure translation? Pure rotation? Identity?
3b) Translation of t then rotation of &7

3c) Operation inverse of 3b), ie rotation of -8 then translation of -t?

2.1.4 2D rotations around an arbitrary point

These preparations allow us to approach the general movement in the plane, the rotation around a
point p arbitrary. This is simply done by carrying out

1) a translation from p to the origin tl=-p

2) a rotation around the origin O as before

3) a translation bringing the center of rotation back to p t2=p.
(1 0 p Jcos? -sin® Ot 0 -p,
0 1 p,|sin® cos® O0f0 1 -p |=
0 0 1 0 0 110 0 1
1 p|[R 0T -p|] [R p-Rp
o ol T

This expression shows us that a rotation around the point p is equivalent to a rotation around the
origin O followed by a translation p — Rp . Conversely, any combination of translation and rotation can
be expressed as pure rotation around a center of rotation p.

Exercise:
43) Is the previous paragraph completely correct?

4b) Find the center of rotation 1.) by a drawing, 2.) using the previous formula 3.) by
looking for an eigenvector of the homogeneous matrix.

4c) Find the homogeneous matrix which describes a rotation of 60 ° around O

4d) Find the homogeneous matrix which describes a translation of un indirection x, then
a rotation of 60 ° around O

4e) Find the homogeneous matrix which describes a 60 ° rotation around [1,1] T.

4.f) An object with two points v1, wl is moved so that these points are found at locations
v2, w2.

vi=[1.0]" wi=[11]" v2=05[1-v3.1-v3]" w2=05[2-v3.1]"

Find the homogeneous matrix, 8, p (graphical solution) which describes this
displacement.
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2.1.5 3D rotations around the origin, Axis of rotation and Quaternions

2.1.5.1 Matrices of rotation: general case

In three dimensions, it is no longer enough to indicate an angle and a center of rotation. We also need
to define the direction of the axis around which the rotation is to be performed. The step to be taken
between two and three dimensions is considerable, especially at the level of spatial vision and
geometric sense.

The number of parameters of the orientation of an object in space is three: The direction of the axis is
defined by only two parameters, for example longitude and latitude in spherical coordinates. The third
parameter is the angle of rotation around the axis. If the axis of rotation is given by a vector (three
parameters), the length of this vector is redundant. We therefore have four parameters, the vector of
the axis and the angle of rotation, and a constraint, for example limiting the length of the vector to 1.
We thus find the three free parameters of the spatial orientation.

There are several ways to choose these three parameters of spatial orientation. In general, these are
angles of rotation around three axes defined according to the application (mobile axes, pitch, roll, yaw,
Euler angles, fixed axes x, y, z, etc.). We will see several examples later.

We have already seen a (redundant) method to define rotation in the plane: the rotation matrix R(6)
has four elements, but only one free parameter, the angle 0 itself, since the axis of rotation is always
normal to the plan. The elements of the rotation matrix are called “Direction cosines”. A three-
dimensional directing cosine matrix contains 9 elements. We will now find this matrix.

To make it easier to understand, we start with simple vectors and three-dimensional matrices and then
move on (section 2.1.6) to the homogeneous representation. Homogeneous representations considers
vectors of four elements and 4 by 4 matrices. Therefore, in this section (2.1.5), no vector and no matrix
isin homogeneous representation, the three elements are now the three coordinates Cartesian spaces
X, yand z.

We should already know a special rotation matrix in 3D space: That of rotations around the axis z, R(6,
V). The z coordinate remains insensitive to such a rotation. This allows to find R(6, vz). In this notation,

the axis of rotation is given by the vectorvz=[00 1]T and the angle of rotation around this axis is 6.

|Exercise Find the basic rotation matrices around the three axes x, y, z;|

Solutions:
1 0 0 cosd 0 sind cosd —-sind O
Rx=| 0 cos$ -sind Ry= 0 1 0 R2= sind cos$ O
0 sin$ cos9 -sin3 0 cos9d 0 0 1

See slides for the calculation approach.
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Exercise : Are the following two sequences equivalent?
a) 90 ° rotation around z, then 90 ° rotation around y
b) 90 ° rotation around y, then 90 ° rotation around z
Find the solution:

1) By trial

2) By matrix multiplication. Give the rotation matrices of a) and b)

2.1.5.2 Rotation around an arbitrary axis

Exercise series Find the axes and angles of rotation of a) and b) of Exercise 3.2 using the
following drawing :

PP NGEEN

Fig 3 Isometric projection

This example illustrates that any change in spatial orientation can be seen in two equivalent ways:

1.) Composed of several rotations around several special axes (e.g. axes of the reference x, y, z
or axes defined in relation to the vehicle: pitch roll yaw, cardanic angles, Euler angles etc. In such cases,
with axes in motion, processing may become heavy)

2.) A single rotation around a single axis

It is not always easy to guess the direction of this axis. Mathematically, we can find this axis v for
example by the condition that a point on the axis does not change position: Rv = v (eigenvector).

Which of the three eigenvectors should we choose? Example of result of calculation of MATLAB:

001 The command [V, d] = eig (A) returns the eigenvectors in the matrix V and
A=100 the eigenvalues on the diagonal of the matrix d
010
-0.05-0571  -0.05+0.571  0.57 -0.50 +0.86i1 0 0
V= -047+0321 -0.47-0.32i 0.57 d = 0 -0.50 - 0.861 0
0.52 4+ 0.241 0.52 - 0.24i 0.57 0 0 1.0
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Exercise Find the matrix of directing cosines of a rotation around an axis k of an angle 6 which
is in the plane x =0 and which is inclined by an angle ¢ with respect to the axis z (Fig 4 :)

\4

/x y

Fig. 4 Find the matrix of a rotation around the axis w

An easily understood method of finding the angle of rotation once the axis is found is to 1.) construct
a vector k perpendicular to the axis

2.) transform this vector k2=Rk
3.) determine the angle between k2 and k.

The more complete formulas (10) and (11) for passing from the representation (axis / angle) to the
directing cosine matrix and vice versa are given in the literature, eg [J. J Craig, Introduction to Robotics,
Addison Wesley 1989, p 52] and derivatives eg. in [Dombre & Khalil: Modeling and control of robots,
Hermes, 1988, pp 53]. Here they are:

For a rotation of an angle 8 around the axis [x, y, z]" with || [x, y, z]"| | = 1 we get the matrix
XX Xy Xz 1 00 0 -z y (10)
(I1-cos®)|xy yy yz|+cosH0 1 Of+sindz 0 -x

Xz Yi =@ 0 0 1 -y x O

The following formula allows us the opposite, so to find the axis of rotation and the angle from a matrix
R, and this more directly than by the eigenvector:

a d g
with R=|b e h /| oneobtainsthe axis| x f —h | and the angle 8, such that
c f 1 —— |o—¢
) sin($) g
b-d

cos(3)= %(tr(R) -1)

. 1 2 Ry _ IV
51n(8)—2\/(f h) +(g—c) +(b—-d) (11)
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These expressions are non-unique: The sign of the root can be positive or negative. Worse, for 6= 0
the axis is not defined. This poses numerical problems in carrying out the control.

These two drawbacks elegantly disappear by using Euler parameters or quaternions or Olinde-
Rodriguez parameters. These three expressions are synonymous in our context.angles Euler are other
parameters, they will be introduced in Section 2.1.8. Euler parameters or quaternions are used in
industrial robotics:

2.1.5.3 Quaternions: Euler parameters, Olinde-Rodriguez parameters

Quaternions are a generalization of complex numbers. They were discovered by Hamilton after long
and unsuccessful attempts to extend the geometric interpretation of complex numbers in the plane
(Argand, 1768-1822, Geneva mathematician) to three spatial dimensions. Hamilton's brilliant intuition
consists of two tricks:

1.) There won't be two, but three imaginary parts, in addition to the real part.
2.) We must abandon the commutativity of multiplication.

These new "hypercomplex" numbers, henceforth called quaternions, contain a real scalar part A¢gand
three imaginary parts [A1, A2, As]" which are interpreted as vector part A .

the quaternion Q is therefore the quadruple

Q={No, A, Az, A3} ={ Ao, A} (11a)

The direction of the axis of rotation [x, y, z]" is given by the vector A =[As, A2, A3]T.

The angle of rotation ¥ is introduced in the following way in the quaternion Q:

Mo=cos(8/2)and A=sin(9/2)[x,y,z]", |Ix v, z||=1 (11b)

The rotations are therefore represented byquaternions unit:

M2+ A2+ M2+ A2=1 (11c)

The quaternion multiplication rules are a generalization of the complex number multiplication rules:

Q={No, A, Az, As}= Ao+ihi+jAr +kAs
(11d)

with i2=j2=k*>=ijk=-1 (11e)

and ij = k = —ji jk =i =—kj ki = j =ik (11f)
Note the multiplication no -commutative! (William Rowan Hamilton, Dublin, 1843)

These rules lead to the product

QmQu ={ Mo, W} {Ao, A} ={Hoho- LA, HoA+Ao + px A} (11g)

This product defines the sequence of rotations Q. and Q M.

Exercise Find the solutions of Exercise 7 with quaternions.
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Passage from quaternions to rotation matrices

The passage from quaternion to directing cosines and vice versais: (11h)and

205+425)-1 20hz-rgh3) 20z +hh2)
R=|2hhg +hph3) 20§+4%)—=1 2hphz-hohy)
20:h3-hoh) 2hhz+hohy) 205 +r5) -1

1 |_Sgn(”3z_r23)\/’"11_7”22_7”33+1—|
Nt rytrs+l L=5| sgn(ri;— 1 Y r,—h — s+l | (12)

sgn(ry, — 1)~y — 1 +1

>
[=}

Il
N | —

2.1.6 Translations and rotations 3D in homogeneous representation

This step is perfectly analogous to the 2D case. The vector in homogeneous representation is
composed simply by adding a scale factor "1" which has no meaning of "fourth dimension" in the
geometric sense. The complete transformation matrix consists of the rotation matrix R and the
translation vector t plus a line [0 0 0 1]:

rR3x3 t3><l—|
01><3 1 (]_2)

A combined transformation (rotation then translation) is calculated by multiplying a homogeneous
starting vector by this transformation matrix to obtain the transformed vector, exactly as in the 2D
case. The transformation then the rotation is found by multiplying the appropriate matrices between
them, always with the matrix of the first change of position on the right.

A rotation around an axis not passing through the origin is composed in the same way as in the 2D
case:

|_I3><3 P —"_R O—H_I _p—| _ |—R P- Rp—|
o 1Jo e 1 [Tle 1] (13

with the vector p of the origin O at any point on the axis of rotation

A difference important with the 2D case should be noted: The general movement in 3D is equivalent
to a rotation around an axis plus a translation in the direction of this axis. This combination is called
a screw (eine Schraube) for obvious reasons.

Exercise : Find the homogeneous transformation matrix leading from the form {A, B, C} to {A ',
B',C'}.

A=[100]",B=[000]' andC=[010] toA'=[101]",B'=[1-11] andC=[0-11]"

What are the axis, the angle of rotation, the translation in the direction of the axis? The
solution is easily found with a small drawing. Imagine the three points linked to a solid.
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2.1.7 Robot variables, direct geometric model (DGM)

Finally, we can move on to the application of these transformations. Concretely, it is about describing
the position and orientation of an object manipulated by a robot. The robot is controlled by joint
variables, ie by sending it angular/linear movement instructions for its motors. For these important
variables we will use (as in several robotics books) the symbol “g”; the symbol © (uppercase theta) is
also often used in this context.

The direct geometric model (DGM) is none other than the formulas giving the position and orientation
of the object being manipulated as a function of these variables ©. The number of variables @
corresponds to the number of degrees of freedom of the robot. Some of these variables can be linear
variables (translational), depending on the construction of the robot.

As an example, we will derive the direct geometric model (DGM) of an extremely popular industrial
robot, the SCARA (Selective Compliance Assembly Robot Arm) presented in Chapter 1. The geometric
model of this robot is particularly simple for two reasons:

e  First, it only comprises four degrees of freedom. Carefully chosen, these degrees of freedom allow
to cover a very large segment of assembly tasks.

e  Second, the three angular degrees of freedom are all around a vertical axis, movements out of
the xy plane are limited to vertical translation only.

These conditions make it possible to treat the difficult part, the rotations, of the DGM of the SCARA in
the xy plane only.

The first step in establishing any DGM consists in defining
- the joint variables (robot variables) §; ,

- of their reference positions 9; = 0 as well as

- the geometric parameters of the robots.

For the SCARA, we define 1 as the angle at the base of the robot, ¥, as the angle between the first
and the second member, J; as the linear displacement in the direction of the vertical axis z and &, as
the angle at the wrist. Note that the joint variables are defined between the segments and not relatve
to the fixed frame of reference <xoy>. This is very important for the practical use of these variables, as
angular setpoints of the motors.

) Fig. 8 Definition of the robot variables §; for the
TCP%,, SCARA.

03 is the vertical displacement between the arm L

and the gripper. Robot parameters: L1 and L

Reference positions: 3;=0

TCP = Tool Center Point,

L4 length of the tool

This way of proceeding from the base (which would therefore be zero member) is also standard, at
least in most theoretical works on robotics, although one is in principle free to define these variables
differently.
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The DGM describes the position and orientation of the object being manipulated, thus making it
possible to find the position of any arbitrary point p of this object as a function of §i . It therefore
consists of the transformation matrix Kpem(8i) giving the position of this point as a function of the
articular variables i . The point P on the object (the tool or the gripper) is itself defined in the reference
position §i =0.

P(9i) = Koem (8i) P(8i = 0) (14)

There are two possibilities to define KDGM(Ji): (using c1= cos81, s12=ssin (61+62) etc.) (15)

Exercise (on slides):

a.) Kogm(9i ) = (rot ¥1 around [0, O]T) then (rot &, around [Lic1, Llsl]T) then (rot 94 around
[Lica+ LzC12,]T)

b.) Koem(Bi) = (rot ¥4 around [ ?]T) then (rot & around [ ?]T)

then (rot 91 around [ ?]T)

c.) Calculate Kpem(9i ) of the SCARA. Which method will be simpler? Where does the rotation
matrix come from around B4, left or right in the chain of multiplications?

Exercise (on slides): A working point of the wrist is at a horizontal distance L4 from the axis

of 94 with P(%i =0)=[L1+L2+1L4,0,0, l]T'Give the position of this point as a function of
the robot variables P(Ji ).

The matrix thus found contains a complete description of the geometry of the SCARA. The equations
defined by this matrix are the direct geometric model. They are sometimes called "kinematic
equations" of the robot. In the case of the SCARA, they can immediately be obtained by simple
trigonometric equations. But the method applied here allows us to find these equations in the same
systematic way in less obvious cases such as for the following example.

We now apply this method to find the DGM of a very widespread and classic industrial robot, the
PUMA (Programmable Universal Manipulator Arm, Staubli RX) presented in chapter 1.

The first step therefore consists in defining the joint variables, (6, or g;), then the reference position
and the robot parameters.
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This should be done on drawings. We directly consider the PUMA
with a full 3R wrist, with three degrees of freedom. These three
DOFs are added to the three basic DOFs of the PUMA which is
therefore a "complete" 6 DOF robot. The joint (or robot) variables
1-3 are found in figure 9, the variables 4-6 are those of the wrist
which are found in figure 10 to better see the details.

Fig. 9 The PUMA robot and its reference position

Fig. 10 Wrist with three competing axes

The parameters of the robot are the length L; between the axis 2 and the axis 3 as well as the distances

D3 and D4. The use of different symbols (L or D in this case) indicates a fundamental difference between
these parameters: While the parameters Li denote a distance between two axes consecutive, the
parameters Di indicate a distance on the axes themselves. The first are called "Link Length" in English
and the second "Joint Offset".

The "Joint Offsets" are each linked to a particular joint while the "Link Lengths" make the transition
from one joint to the next.

The parameters “Link Length" and "Joint Offset" as well as the angle ai between two consecutive axes
("twist angle") fully define the geometry of a robot. These parameters are called "parameters of
Denavit Hartenberg" , after a publication which introduced them. They are covered in great detail in
many robotics books.

In the case of linear movements (as for example the vertical movement of the SCARA), the offset joint
can become one of the robot variables while an articulation angle (joint angle) can become a fixed
parameter in certain special cases. The definition of the twist angle (always fixed) for non-competing
axes is done around the shortest line perpendicular to the two axes.
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Fig. 11 The four Denavit-Hartenberg parameters (Link
length L, Joint angle © , Joint offset D, Twist angle a ) in the
general case. An arrow marked 6 indicates an articulation
of the robot. The variable is either the angle of rotation 6
around the axis J is the linear displacement D along the axis.

Back to the PUMA DGM. The drawing shows us the transformation matrices that come into play. As
we saw in Exercise 9, it is advisable to start with the rotation 96 and to continue the operations to end
with the rotation ¢1. Consequently, the matrices are inscribed in the reverse order in the chain of
multiplications. The great advantage of this approach is that the axes of rotation are those of the
reference position. We therefore have from left to right:

1.) rotation of 1 around the z axis.
2.) rotation of & around the x axis
3.) rotation of ¥3 around the x axis shifted by L; in the direction of z.
4.) rotation of ¥4 around the z axis shifted by D3 in the direction of x.

5.) rotation of Js5 around the x axis shifted by (Lo+ D4) in the direction of z.

6.) rotation of Jg around the z axis shifted by D3 in the direction of x.

Using the abbreviations s1= sind1 , ¢;= cost1 and v; = versine (§1) = 1 — cos®1 we find the following

matrices:

¢ -S¢ 0 Dy
[ R P—RP]_ s¢ Co 0 =Ds, _K
000 1 0 0 1 0 °
0 0 0 1
[1 0 0 0
[ R P—RP]= 0 ¢ =55 Lyss K
000 1 0 55 ¢ Lyvs 5
0 0 0 1

... etc.
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These expressions can be calculated analytically, to be programmed into the robot controller
processor. They are generally too complicated to help a concrete understanding of the robot's
behavior. Analyzing a certain part of PUMA's DGM will give us an idea of this complexity while
providing us with the mathematical description of an important robotic subsystem: It is the wrist.

2.1.8 Robot Wrist, Euler Angles, Pitch, Roll, Yaw

Figure 10 shows a typical robot wrist (spherical wrist). It is characterized by three competing axes
(which have acommon intersection). The particularity of this wrist lies in the definition of the reference
positions of the angles 949596 . These positions are such that the axes of rotation of 94 and 96
coincide for 95 = 0 (reference position).

In this section, we only discuss rotations without worrying about translations. We therefore move the
origin of the frame of reference to the point of intersection of the axes of the wrist. These axes form a
mobile frame of reference. The two equivalent ways of describing the orientation defined by the wrist
are:

a) Rotation ¥4 around the z axis, then rotation s around the x 'axis (forming an angle of 94 with the x

axis ) then rotation Jg around the new z 'axis (which forms an angle of Js5 with the fixed z axis).

b) Rotation ¥ around the z axis, then rotation 95 around the x axis then rotation J4 around the z axis
(always fixed).

As before, way b) is much simpler, in method a) we would first
have to calculate the rotations around the axes with formula
(10). We therefore obtain:

R(wrist)=R4 . R5. Rg (15)

These angles are called Euler's angle (z, x, z). They are
characterized by the coincidence of the axis of the first and the
last rotation in the reference position. By choosing a reference
position other than 1t / 2 for the second angle of rotation, we
obtain the angles of a cardanic wrist which is characterized by
three mutually perpendicular axes in the reference position.

Fig. 12 Euler angles (zxz) These angles are also called roll pitch yaw depending on the
context.
65 Pitch: ©4
Roll (roll) ©¢
Yaw (yaw)Os

64

Fig. 13
Spherical wrist in so-called “cardanic” configuration
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2.1.9 Inverse geometric model, postures

The DGM gives the position and orientation as a function of the robot variables. In practice, we are
more often confronted with the opposite problem, ie finding the robot variables necessary to reach a
given position and orientation. These equations are called "inverse geometric model" (IGM, inverse
kinematics).

As a first example, we treat the simple two-
membered planar manipulator. It is therefore
a question of finding the angles 61 and 62
from a given position x, y . The DGM is

x=11c0sB;+Lycos (01 +86,)

y=L1sinB; + L2 sin (6; + 6,)

To find the solution, we must first apply the trigonometric equations (2). Using the symbols c1 = cos 61
and s;=sin 01, etc., we get

x=L1ci+L2ci1c-L2s;s; (a)
y=L1s;+L2s1c;+L2c s (b)
C12+ 512 =1 (c)
c22+ 522 =1 (d)

As these are four quadratic equations, we can expect multiple solutions. The sum of the squares of (a)
and (b) gives us the well-known relation of the cosine of a triangle:

(x2 + y2) = L12 + L22 +2L1L2c; ,which gives us ¢z, and, with (d), two solutions for s;. The unknowns

s1 and c; are found with weighted sums of expressions (a) and (b):
XCci+ys: and-xsi+yc.

In the case of the puma robot, the IGM of the first three DOF consists of two chains identical to the
previous example, with two solutions for each pair (61, 82) and (82 , 63). In combination, this therefore
gives four distinct solutions. In practical terms, this means that the first three arms of the kinematic
chain from the base to the wrist can reach a given point in four different ways (with different
orientations each time). Such solutions are called the “postures” of the robot. (Fig. 14)

Fig. 14 The four postures of the first three dof of the PUMA
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To this, we must add the postures of the wrist. (Which ones? How many PUMA IGM solutions?) The
number of postures of a general robot is unknown.

Postures du poignet . [
: < W—/ﬁ 6
65

| o

s 4

2.1.10 Summary, parallel robots:

Fig. 15 Postures of a spherical wrist

As we have seen with the previous examples (Puma, SCARA), the DGM for serial robots has only one
solution: For given joint variables, the position of the robot is well defined. While the IGM may have
several solutions (eg Fig. 14, 15).

In the case of parallel robots, we find just the opposite! The DGM has several solutions (called robot
"contortions"), the IGM has only one.

The following simple parallel robot with 2 DOF in the plane |Robots paralléles?
highlights this claim:

The IGM of the parallel robot, has only one solution, as we can
see with the same parallel structure planar: If the position and
the orientation of the mole plae (end effector) are given, the
lengths of the actuated cylinders are well determined, without
any ambiguity).

MED: Donnés ¢q,, 45, q;,
Quels sont (x,y,¢) ?

Fig. 16: Planar parallel robot

AN

(I -))]
I

% 7 ~
Fig. 17: Different solutions of

7 o, DGM, called contortions. The
same joint variables g, give
different robot configurations
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