
OPTICS LABORATORIES 
MICRO 423-424 

 
FOURIER OPTICS 

 
 

 
 

 

 

 

 

 

Room: MED 2 1117 

Supervisor: Marco Riccardi 

marco.riccardi@epfl.ch  

mailto:marco.riccardi@epfl.ch


1. Objectives and safety 
The aim of this laboratory is for you to acquire practical experience in Fourier optics by 
carrying out measurements using an optical set-up. To this end, a theoretical framework 
is first developed in order to achieve a basic understanding of the topic, so that the 
experimental work can then be carried out in a more straightforward and conscious way, 
allowing you to also compare the theoretical predictions with the experimental results. 
You will also have the chance to familiarise with simple optical instrumentation and 
basic alignment procedures. 
 
You have to carefully perform your tasks, always bearing in mind that, even when 
working with low-power lasers, possible damage to the skin and the eye might occur. 
Therefore, it is important to always remember to: 

- Never look directly into the laser beam 
- Always keep your eyes higher than the plane of the laser while working on the 

running set-up 
- Remove any shiny and reflecting object (e.g. your watch, rings, bracelets…) from 

your hands and arms 
 

2. Introduction 
Fourier optics exploits the Fourier transform (E1) to express any arbitrary signal (e.g. a 
wavefront, the intensity pattern of a digital image…), given in the spatial coordinates 
(x, y, z), into the spatial frequency domain (kx, ky, kz). This allows us to represent any 
arbitrary waveform as a linear combination of plane waves propagating in different 
directions, with weighting factors determining the importance of each spatial frequency 
k. The arbitrariness of the signal studied makes Fourier optics a very versatile tool in 
modern physical optics, with applications covering the description of interference 
phenomena, spectral analysis, holograms, the determination of diffraction patterns and 
the description of imaging systems. For example, Fourier transform infrared 
spectroscopy (FTIR) is a case where the Fourier transform has been successfully applied 
to study the transmitted infrared light through a sample of interest. This light bears the 
fingerprint of the molecules dissolved in the sample, providing a quick and non-invasive 
way to study its composition.  
As you will see in these lab notes, lenses are commonly employed as Fourier 
transformers in optical systems while, in commercial instruments, numerical methods 
such as fast Fourier transform (FFT) calculations are usually used to perform 
computational Fourier transforms.  
 



3. Theoretical aspects of Fourier optics 
Fourier transform 
 
Given a complex-valued function g of two independent variables x and y which 
 
1. Is absolutely integrable over the infinite (x, y) plane 

2. Has only a finite number of discontinuities and a finite number of maxima and 
minima in any finite rectangle 

3. has no infinite discontinuities 

its Fourier transform 𝐹𝐹[𝑔𝑔] = 𝐺𝐺(𝑘𝑘𝑋𝑋 ,𝑘𝑘𝑌𝑌) is defined as: 
 
 

𝐹𝐹[𝑔𝑔] = 𝐺𝐺(𝑘𝑘𝑋𝑋,𝑘𝑘𝑌𝑌) = ∬ 𝑔𝑔(𝑥𝑥, 𝑦𝑦)𝑒𝑒−𝑗𝑗2𝜋𝜋(𝑘𝑘𝑋𝑋𝑥𝑥+𝑘𝑘𝑌𝑌𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
−∞    (E1) 

 
G is itself a complex-valued function of two independent variables kx and ky, which are 
generally referred to as frequencies. If x and y are distance, kx and ky are referred to as 
spatial frequencies. Here, 𝑗𝑗 is of course the imaginary unit. Similarly, the inverse Fourier 
transform of a function G(kx,ky) is 𝐹𝐹−1[𝐺𝐺], defined as: 
 

𝐹𝐹−1[𝐺𝐺] = 𝑔𝑔(𝑥𝑥,𝑦𝑦) = ∬ 𝐺𝐺(𝑘𝑘𝑋𝑋,𝑘𝑘𝑌𝑌)𝑒𝑒𝑗𝑗2𝜋𝜋(𝑘𝑘𝑋𝑋𝑥𝑥+𝑘𝑘𝑌𝑌𝑦𝑦)𝑑𝑑𝑘𝑘𝑋𝑋𝑑𝑑𝑘𝑘𝑌𝑌
∞
−∞   (E2) 

 
In the case of a periodic function, the Fourier transform can be simplified to the 
calculation of a discrete set of complex amplitudes, called Fourier series coefficients 
(see https://www.intmath.com/fourier-series/fourier-graph-
applet.php). This way, the Fourier series is used to represent a 
periodic function by a discrete sum of complex exponentials, while 
the Fourier transform is used to represent a general, possibly even 
non-periodic function by a continuous superposition of complex 
exponentials. The Fourier transform can thus be viewed as the limit of the Fourier series 
of a function with the period approaching infinity. Some simple examples of Fourier 
transforms are shown in Fig. 1. 

https://www.intmath.com/fourier-series/fourier-graph-applet.php
https://www.intmath.com/fourier-series/fourier-graph-applet.php


 

 
The lens as a Fourier transform 

As already mentioned, lenses are one of the most common tool to perform the Fourier 
transform of an optical signal. We can see how by considering the phase that a light 
beam accumulates as it propagates through a thin lens, which can be written as (see 
Figure 2, more details are presented in reference 4) 
 

𝜑𝜑 = 𝑘𝑘 𝑛𝑛 ∆ + 𝑘𝑘(∆0 − ∆) = 𝑘𝑘 ∆0 + 𝑘𝑘(𝑛𝑛 − 1)∆          (E3)      
 
Therefore, for an incident field 𝑈𝑈𝑙𝑙  on the lens, the outgoing field will be 
 

𝑈𝑈𝑙𝑙′(𝑥𝑥,𝑦𝑦) = 𝑈𝑈𝑙𝑙(𝑥𝑥,𝑦𝑦) 𝑒𝑒−𝑗𝑗𝑗𝑗 = 𝑈𝑈𝑙𝑙(𝑥𝑥,𝑦𝑦) 𝑒𝑒−𝑗𝑗𝑗𝑗∆0𝑒𝑒−𝑗𝑗𝑗𝑗(𝑛𝑛−1)∆                      (E4) 
 
∆ can be rewritten, under the paraxial approximation, as 
 

∆= ∆0 −
𝑥𝑥2+𝑦𝑦2

2
( 1
𝑅𝑅1
− 1

𝑅𝑅2
)                                       (E5) 

 
where 𝑅𝑅1,2 are the radii of curvature of the two sides of the lens. By knowing that the 
focal distance 𝑓𝑓 can be written as 
 

1
𝑓𝑓

= (𝑛𝑛 − 1)( 1
𝑅𝑅1
− 1

𝑅𝑅2
)                                               (E6) 

Fig. 1: Fourier transforms of different signals in the time domain. 
 



 

 
Fig. 2: Schematic of a thin lens. 

we can insert (E5) and (E6) into (E4) to obtain 
 

𝑈𝑈𝑙𝑙′(𝑥𝑥,𝑦𝑦) = 𝑈𝑈𝑙𝑙(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑗𝑗𝑗𝑗𝑛𝑛∆0𝑒𝑒𝑗𝑗
𝑘𝑘
2𝑓𝑓(𝑥𝑥2+𝑦𝑦2)                                       (E7) 

 
Here, the first exponential simply gives a constant phase retardation, while the second 
one describes the curvature of a wavefront converging towards a point on the z-axis at 
a distance f from the lens. Each point on this wavefront can be treated as a point source 
of secondary waves (Huygens principle) whose interference pattern in the near field, for 
𝑧𝑧 = 𝑓𝑓, can be calculated using Fresnel equation (with the appropriate quadratic phase 
dispersion), yielding 
 

𝑈𝑈𝑓𝑓(𝜉𝜉, 𝜂𝜂) = 𝑘𝑘𝑘𝑘−𝑗𝑗𝑗𝑗𝑗𝑗

𝑓𝑓
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑒𝑒−𝑗𝑗

𝑘𝑘
2𝑓𝑓(1−𝑑𝑑𝑓𝑓)(𝜉𝜉2+𝜂𝜂2) ∬𝑈𝑈𝑙𝑙′(𝑥𝑥,𝑦𝑦) 𝑒𝑒−𝑗𝑗

𝑘𝑘
2𝑓𝑓(𝑥𝑥2+𝑦𝑦2)𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑓𝑓𝑓𝑓(𝑥𝑥𝜉𝜉+𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑       

(E8) 
 
Here, (𝜉𝜉, 𝜂𝜂) are the spatial coordinates in the focal plane of the lens and 𝑑𝑑 is the distance 
of the object from the lens. Substituting 𝑈𝑈𝑙𝑙′ we get, after neglecting the constant phase 
factor 𝑒𝑒−𝑗𝑗𝑗𝑗𝑛𝑛∆0 

 

𝑈𝑈𝑓𝑓(𝜉𝜉, 𝜂𝜂) = 𝑘𝑘
𝑓𝑓
𝑒𝑒−𝑗𝑗

𝑘𝑘
2𝑓𝑓(1−𝑑𝑑𝑓𝑓)(𝜉𝜉2+𝜂𝜂2) ∬𝑈𝑈𝑙𝑙(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑓𝑓𝑓𝑓(𝑥𝑥𝜉𝜉+𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑           (E9) 

 
This results clearly shows that the field intensity in the focal plane of a lens 𝐼𝐼𝑓𝑓 = �𝑈𝑈𝑓𝑓�

2
 

is proportional to the Fourier transform of the incident signal. The quadratic phase factor 
in front of the integral vanishes for 𝑑𝑑 = 𝑓𝑓 in such a way that, for an object placed in the 
front focal plane of the lens, the signal at the back focal plane will be its exact Fourier 
transform. 



Fourier filtering 
 
Now that we know we have access to the Fourier transform of an optical signal at the 
focal plane of a lens, we can see what happens when we modify this plane, for example 
by applying a mask or filter. In general, it is obvious that applying (E2) to a full Fourier-
transformed signal will result in the original input, as shown in Figure 3. 

Fig. 3: Double Fourier transform of an image. 
 
However, it is possible to calculate the inverse transform only on a restricted domain of 
the Fourier plane, so that the back-transformed image will contain only some of the 
frequencies of the original image. This procedure is called Fourier filtering. It is for 
example possible to retain only the low frequencies close to the DC point, while 
blocking all the higher frequencies1. On the other hand, one can also realise a high-pass 
filter that blocks only the low frequencies, as well as band pass filters, as shown in Figure 
4. 
 
 
 
 
 
 
 
 

Fig. 4: Different types of Fourier filters. 

Different filters can be used to study how different frequency components take part into 
the image formation process, as you will shortly see in one of the following exercises. 
These are meant to help you familiarise with the concept of the Fourier transform and 
help you verify and interpret the results you will obtain in the lab. 
 
Theoretical part to prepare at home ⌂ 

                                                           
1 The DC point is the bright spot at the center of the Fourier plane where all the constant and slowly 
varying (low frequency) components of the image are mapped to by the Fourier transform. 



Exercise 1:  
For a circular aperture of radius a, show that the intensity obtained at the focal plane of 
a lens placed in front of the aperture is: 
 

𝐼𝐼(𝑟𝑟, 𝜃𝜃) = 𝜋𝜋2𝑎𝑎4𝐴𝐴2 �
2𝐽𝐽1�

𝑘𝑘𝑘𝑘𝑘𝑘
𝑓𝑓 �

�𝑘𝑘𝑘𝑘𝑘𝑘𝑓𝑓 �
�
2

   (E11) 

 
You might like to use the Bessel function defined below to simplify the integral: 
 

𝐽𝐽𝑛𝑛(𝑥𝑥) = 𝑖𝑖−𝑛𝑛

2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑2𝜋𝜋
0    (E12) 

 
 
Exercise 2:  
Try also extending this result to a one-dimensional array of N identical apertures of 
width 2a and equally separated by a distance 2b to show that the measured intensity will 
be: 
 

𝐼𝐼(𝑥𝑥) = 4𝑎𝑎2𝐶𝐶2 �
𝑠𝑠𝑠𝑠𝑠𝑠2�𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁𝑓𝑓 �

𝑠𝑠𝑠𝑠𝑠𝑠2�𝑘𝑘𝑏𝑏𝑏𝑏𝑓𝑓 �
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝑘𝑘𝑎𝑎𝑎𝑎

𝑓𝑓
�   (E13) 

 
Exercise 3:  
Do the same for a rectangular aperture defined with a width of 2a and a length of 2b, 
showing that the intensity in the Fourier plane will be: 
 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 16𝑎𝑎2𝑏𝑏2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝑘𝑘𝑘𝑘𝑘𝑘
𝑓𝑓
� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 �𝑘𝑘𝑘𝑘𝑘𝑘

𝑓𝑓
�  (E14) 

 
Exercise 4: 
What do you think happens to the image in the Fourier plane when we take an object 
and its inverse, for example a square aperture and a square object? Think in terms of the 
properties of a Fourier transform. 
 
Exercise 5: 
Suppose that we compare the Fourier spectra of an image taken before and after 
uniformly increasing its brightness. In what way do you think the two spectra will differ 
from each other? Think in terms of relative intensity. 
 
Exercise 6: 



Figure 5 shows sinusoidal brightness images obtained by adding higher harmonics (of 
spatial frequency 3, 5 and 7) to the fundamental one (of spatial frequency 1). The 
respective Fourier transforms are also shown. We can see that, as more harmonics are  

Fig. 5: Different types of Fourier filters. 
 
added, the central vertical band gets sharper and stronger, while the background drops 
down towards a uniform dark field. In the Fourier plane, new peaks appear that spread 
outwards from the fundamental one.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 6: Different Fourier filtering of an image. 
In the limiting case of a vertical bright band in the image, with very sharp contrast, the 
Fourier transform exhibits an "infinite" series of harmonics or higher order terms2. 
Based on this example, which filter, from the ones presented in Figure 4, would you 

                                                           

2 In this limiting case we reach the so called nyquist frequency, the highest spatial frequency that can be 
encoded in the digital image, which is limited by the resolution (size of the pixels). 



apply to the Fourier plane to obtain a blurred back-transformed image? And to obtain a 
sharper one? Notice also, in the sharper image, the loss of dark and bright regions. 
 

4. Experimental part 

Fourier 4-f setup 
 
In this part, you will have to assemble a 4-f setup to carry out the experiments. The setup 
you will find, depicted in Figure 3, consists of a light source emitting laser light which, 
after going through a diaphgram (diameter of the pinhole: 50 µm), needs to be guided 
towards the two cameras at the other end of the setup. One of these cameras will be used 
to record the image plane, while the other will probe the Fourier plane. 

Fig. 7: Scheme of the experimental set-up. 
 
 
Task 0 to prepare at home ⌂: 
Let’s have a look at the light source provided. It is a 635 nm, 1 mW continuous laser 
source. What laser class does it belong to? What colour will the light be? Recall the 
definition of maximum permissible exposure (MPE) and provide a value for this setup. 
 
Task 1: 
You will find, in the box provided, 5 plano-convex lenses, a sample holder and a few 
post holders. Of these lenses, one has a focal length of 25.4 mm, while the other four 
have a focal length of about 150 mm. With the help of a ruler, find the focal length of 
each lens (hint: you can consider the neon lamps on the ceiling as a far-field source of 
collimated light). 



 
Task 2: 
Use one lens to collimate the light beam and the others to build the 4-f setup and imaging 
system (hint: the plane side of the plano-convex lenses has to be oriented towards the 
focal point). How many lenses do you need in total? Provide a sketch of the final setup, 
clearly marking the object plane and every image and Fourier plane. Build the setup in 
in order to minimise the phase difference between the image and Fourier plane. Align 
the beam so that it is centered on the cameras.  
 
Task 3:  
Work out the magnification of the image and Fourier planes on the cameras with respect 
to the object and the Fourier plane in the 4f system. Knowing that each camera has got 
1280×1024 pixels on its CMOS chip taking up an area of 6.66×5.32 mm2, calculate the 
size of a pixel in the spatial domain (𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). How much does this correspond to in the 
Fourier domain? For this task, use Fig. 8 to figure out how to convert a spatial length in 
the object plane into frequency units in the Fourier plane and find out the size of a pixel 
in the Fourier domain  (𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , hint: this size depends, among other things, on the focal 
length of the lens and on the wavelength used). 

 
Fig. 8: Ray optics diagram showing how a lens maps each diffracted ray coming from a mask (object) 

into different positions in the Fourier plane. This results in a 1:1 correspondence between a ray’s 
incident angle on the lens and its position in the focal plane. 

Measurements 
 
The goal is now to place different objects in the object plane and study their diffraction 
patterns in the image and Fourier planes. Using the two cameras, make sure to always 
take a picture of both planes simultaneously and name the files accordingly. For some 
samples, knowing the analytical Fourier transform of the object, you will be able to 
deduce its spatial dimensions (hole diameter, slits period etc…) of the object by studying 



the Fourier spectrum and compare your values with the ones measured in the image 
plane and the ones given in Table 1. 

To analyse the images, you can use ImageJ, MATLAB or Mathematica. The Thorlabs 
software also allows you to plot intensity profiles in real time during the experiment. 
Table 1 lists the available samples, which you will find in the round plastic box. 

# Type Dimensions Remarks 

1 Single hole ∅ = 225 µm Broken 
2 Double hole ∅ = 175 µm 

d = 750 µm 
 

3 Slit array w = 385 µm 
p = 850 µm 
1 x 6 

Vertical 

4 Single slit w = 500 µm 
 

 

7 Grid of slits w = 150 µm 
p = 1000 µm 
8 x 8 

Inverse structure to #15 

9 Single disk ∅ = 225 µm Inverse structure to #1 
Filter 

10 Line array w = 360 µm 
p = 850 µm 
6 x 1 

Structure #11 horizontal 

11 Line array w = 360 µm 
p = 850 µm 
1 x 6 

Structure #10 vertical 

12 Line array w = 280 µm 
p = 500 µm 
1 x 6 

Vertical 

13 Line array w = 280 µm 
p = 500 µm 
1 x 11 

Vertical 

15 Grid of lines w = 150 µm 
p = 1000 µm 
8 x 8 

Inverse structure to #7 
Broken 

16 Single line  Horizontal 
 Three holes   
 Fourier House   
    
 Two disks  Do not use 
 Single slit  Do not use 

Broken 
 

Table 1: List of the objects and filters provided. w and p mean the width and period of the slits and 
lines, respectively. All slits and lines have a length l of 1 cm. 



Task 4:  
Place a pinhole (sample 1) in the sample holder and record its image and Fourier plane. 
Use the theoretical Fourier spectrum (obtained in Exercise 1) of a pinhole to fit the 
Fourier image obtained in the experiment and calculate the diameter of the pinhole (hint: 
rather than intensity, think about the position of the minima). Does it match with the 
theoretical value in Table 1? Measure the diameter of the hole in the image plane and 
compare it with the value obtained from the Fourier spectrum and the one in Table 1. 
Explain and discuss any discrepancy between these values. 
Is the dynamic of the camera sufficient to see more than one secondary maxima without 
saturating the central one? Adjust the acquisition settings so as to take one image of the 
Fourier plane without saturating the central maxima and another one where it is 
saturated, so that you can observe as many secondary maxima as possible. 
 
Task 5:  
Place a filter (sample 9) in the Fourier plane and record the image and Fourier plane. 
What changes do you see in the images? Comment. 
 
Task 6: 
Work out the diameter of the three larger holes (sample without number, with 3 holes 
on the same substrate) in the same way as you did for sample 1. 
 
Task 7:  
Place an object with 2 pinholes (sample 2) in the object plane. What Fourier pattern do 
you expect? Explain the differences when compared to the single hole case. Derive the 
distance between the holes and their diameter from the experimental Fourier image and 
from the image plane, then compare these values with the actual ones mentioned in 
Table 2. 
 
Task 8: 
Place sample 4 in the object plane. Record the experimental Fourier image of the single 
slit and compare it with the calculated Fourier image plotted from (E14). Evaluate the 
width of the slit from the experimental Fourier image and compare it with the actual 
value mentioned in Table 2, as well as with the value extrapolated from the image plane.  
 
Exercise 9: 
Place sample 3 in the object plane, measure and compare the experimental curve with 
the determined function. Characterize the size and pitch of the objects. 
 
Task 10: 



Place sample 7 and its inversion (sample 15) in the object plane. Compare the different 
Fourier spectra and explain your observations with the results of Exercise 4.  
 
Task 11: 
Place the “Fourier house” sample in the object plane. Observe the Fourier plane and 
explain the origin of the different diffraction patterns. As in Task 5, apply a filter in the 
Fourier plane to suppress the DC component and record the new Fourier spectrum. After 
removing the filter, use a piece of paper to cover each of the four parts of the object and 
record the resulting image and Fourier planes. Comment on your findings. 
 
Content of the report 
 
For all measured samples, you must include: 

a) An image of both the image and Fourier plane, with their intensity profile (line-
cut) through the center of the pattern 

b) For the Fourier plane, measure the distance between the central maximum and 
the adjacent zeros (or maxima). Using this value and the analytical formulas 
derived in the exercises at home, calculate the dimensions of the object and 
compare them to the measured values from the image plane. Comment on the 
matching between the two, especially concerning the position of the zeros and 
the relative amplitude of the maxima. 
Can you find an easier (but less elegant!) way of calculating the object’s size 
from its Fourier plane data? 

c) When asked, the computed spatial dimensions with an error analysis of the 
object from both the image and Fourier plane images. 

d) For samples 1 and the Fourier house, images of the filtered Fourier plane and the 
resulting image in the image plane. 
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