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1. Objectives and safety

The aim of this laboratory is for you to acquire practical experience in Fourier optics by
carrying out measurements using an optical set-up. To this end, a theoretical framework
is first developed in order to achieve a basic understanding of the topic, so that the
experimental work can then be carried out in a more straightforward and conscious way,
allowing you to also compare the theoretical predictions with the experimental results.
You will also have the chance to familiarise with simple optical instrumentation and
basic alignment procedures.

You have to carefully perform your tasks, always bearing in mind that, even when
working with low-power lasers, possible damage to the skin and the eye might occur.
Therefore, it is important to always remember to:

- Never look directly into the laser beam

- Always keep your eyes higher than the plane of the laser while working on the
running set-up

- Remove any shiny and reflecting object (e.g. your watch, rings, bracelets...) from
your hands and arms

2. Introduction

Fourier optics exploits the Fourier transform (E1) to express any arbitrary signal (e.g. a
wavefront, the intensity pattern of a digital image...), given in the spatial coordinates
(X, y, z), into the spatial frequency domain (kx, ky, kz). This allows us to represent any
arbitrary waveform as a linear combination of plane waves propagating in different
directions, with weighting factors determining the importance of each spatial frequency
k. The arbitrariness of the signal studied makes Fourier optics a very versatile tool in
modern physical optics, with applications covering the description of interference
phenomena, spectral analysis, holograms, the determination of diffraction patterns and
the description of imaging systems. For example, Fourier transform infrared
spectroscopy (FTIR) is a case where the Fourier transform has been successfully applied
to study the transmitted infrared light through a sample of interest. This light bears the
fingerprint of the molecules dissolved in the sample, providing a quick and non-invasive
way to study its composition.

As you will see in these lab notes, lenses are commonly employed as Fourier
transformers in optical systems while, in commercial instruments, numerical methods
such as fast Fourier transform (FFT) calculations are usually used to perform
computational Fourier transforms.



3. Theoretical aspects of Fourier optics

Fourier transform

Given a complex-valued function g of two independent variables x and y which

1.1s absolutely integrable over the infinite (X, y) plane

2. Has only a finite number of discontinuities and a finite number of maxima and
minima in any finite rectangle

3. has no infinite discontinuities

its Fourier transform F[g] = G (ky, ky) is defined as:

Flgl = G(ky, ky) = [[". gCx, y)e 12mlxx+ked) dxdy (E1)

G is itself a complex-valued function of two independent variables kx and ky, which are
generally referred to as frequencies. If x and y are distance, kx and ky are referred to as
spatial frequencies. Here, j is of course the imaginary unit. Similarly, the inverse Fourier
transform of a function G(kx,ky) is F~*[G], defined as:

FG1 = g(x,y) = [I7, Glky, ky)e/? Cx+o) dey dley (E2)

In the case of a periodic function, the Fourier transform can be simplified to the
calculation of a discrete set of complex amplitudes, called Fourier series coefficients
(see https://www.intmath.com/fourier-series/fourier-graph- :
applet.php). This way, the Fourier series is used to represent a
periodic function by a discrete sum of complex exponentials, while
the Fourier transform is used to represent a general, possibly even
non-periodic function by a continuous superposition of complex -
exponentials. The Fourier transform can thus be viewed as the limit of the Fourler series
of a function with the period approaching infinity. Some simple examples of Fourier
transforms are shown in Fig. 1.
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Fig. 1: Fourier transforms of different signals in the time domain.

The lens as a Fourier transform

As already mentioned, lenses are one of the most common tool to perform the Fourier
transform of an optical signal. We can see how by considering the phase that a light
beam accumulates as it propagates through a thin lens, which can be written as (see
Figure 2, more details are presented in reference 4)

p=knA+k(Ay—A) =k, +k(n—1)A (E3)
Therefore, for an incident field U, on the lens, the outgoing field will be
Uy (x,y) = U(x,y) e/ = Uj(x,y) e Tihoe Tkn—1A (E4)
A can be rewritten, under the paraxial approximation, as
e ) (E5)
where R, , are the radii of curvature of the two sides of the lens. By knowing that the

focal distance f can be written as

F= =D -0 (E6)
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Fig. 2: Schematic of a thin lens.

we can insert (E5) and (E6) into (E4) to obtain

, ko202
Ul,(x, y) = U, (x, y)e—]knAoejzf(x +y%) (E7)

Here, the first exponential simply gives a constant phase retardation, while the second
one describes the curvature of a wavefront converging towards a point on the z-axis at
a distance f from the lens. Each point on this wavefront can be treated as a point source
of secondary waves (Huygens principle) whose interference pattern in the near field, for
z = f, can be calculated using Fresnel equation (with the appropriate quadratic phase
dispersion), yielding

—jkf . ik g2y ik 202y 20
(E8)

Here, (&,n) are the spatial coordinates in the focal plane of the lens and d is the distance
of the object from the lens. Substituting U;, we get, after neglecting the constant phase
factor e ~/knbo

k —iX_%Ezin2 _j2E
Uf(f; 7]) = ;e sz(l f)(f +n )ff Ul(x,y)e ]f’l(xf-l-yn)dXdy (Eg)

This results clearly shows that the field intensity in the focal plane of a lens I, = |Uf|2
is proportional to the Fourier transform of the incident signal. The quadratic phase factor
in front of the integral vanishes for d = f in such a way that, for an object placed in the
front focal plane of the lens, the signal at the back focal plane will be its exact Fourier
transform.



Fourier filtering

Now that we know we have access to the Fourier transform of an optical signal at the
focal plane of a lens, we can see what happens when we modify this plane, for example
by applying a mask or filter. In general, it is obvious that applying (E2) to a full Fourier-
transformed signal will result in the original input, as shown in Figure 3.

Brightness Image Fourier Transform Inverse Transformed

Fig. 3: Double Fourier transform of an image.

However, it is possible to calculate the inverse transform only on a restricted domain of
the Fourier plane, so that the back-transformed image will contain only some of the
frequencies of the original image. This procedure is called Fourier filtering. It is for
example possible to retain only the low frequencies close to the DC point, while
blocking all the higher frequencies. On the other hand, one can also realise a high-pass
filter that blocks only the low frequencies, as well as band pass filters, as shown in Figure
4.
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Fig. 4: Different types of Fourier filters.

Different filters can be used to study how different frequency components take part into
the image formation process, as you will shortly see in one of the following exercises.
These are meant to help you familiarise with the concept of the Fourier transform and
help you verify and interpret the results you will obtain in the lab.

Theoretical part to prepare at home o

! The DC point is the bright spot at the center of the Fourier plane where all the constant and slowly
varying (low frequency) components of the image are mapped to by the Fourier transform.



Exercise 1:
For a circular aperture of radius a, show that the intensity obtained at the focal plane of
a lens placed in front of the aperture is:

()

(5)

I(r,0) = m2a*A? (E11)

You might like to use the Bessel function defined below to simplify the integral:

T _

Jn) = 5 ) e e dy (E12)

Exercise 2:

Try also extending this result to a one-dimensional array of N identical apertures of
width 2a and equally separated by a distance 2b to show that the measured intensity will
be:

. 2 (kox)
sin

1(x) = 4a?C? [@] sinc? (k}ﬂ) (E13)

Exercise 3:
Do the same for a rectangular aperture defined with a width of 2a and a length of 2b,
showing that the intensity in the Fourier plane will be:

I(x,y) = 16a?b?*sinc? (k}ﬂ) sinc? (k;—y) (E14)

Exercise 4:

What do you think happens to the image in the Fourier plane when we take an object
and its inverse, for example a square aperture and a square object? Think in terms of the
properties of a Fourier transform.

Exercise 5:

Suppose that we compare the Fourier spectra of an image taken before and after
uniformly increasing its brightness. In what way do you think the two spectra will differ
from each other? Think in terms of relative intensity.

Exercise 6:



Figure 5 shows sinusoidal brightness images obtained by adding higher harmonics (of
spatial frequency 3, 5 and 7) to the fundamental one (of spatial frequency 1). The
respective Fourier transforms are also shown. We can see that, as more harmonics are
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Fig. 5: Different types of Fourier filters.

added, the central vertical band gets sharper and stronger, while the background drops
down towards a uniform dark field. In the Fourier plane, new peaks appear that spread
outwards from the fundamental one.
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Fig 6: Different Fourier filtering of an image.
In the limiting case of a vertical bright band in the image, with very sharp contrast, the
Fourier transform exhibits an "infinite" series of harmonics or higher order terms?.
Based on this example, which filter, from the ones presented in Figure 4, would you

2 In this limiting case we reach the so called nyquist frequency, the highest spatial frequency that can be
encoded in the digital image, which is limited by the resolution (size of the pixels).



apply to the Fourier plane to obtain a blurred back-transformed image? And to obtain a
sharper one? Notice also, in the sharper image, the loss of dark and bright regions.

4. Experimental part

Fourier 4-f setup

In this part, you will have to assemble a 4-f setup to carry out the experiments. The setup
you will find, depicted in Figure 3, consists of a light source emitting laser light which,
after going through a diaphgram (diameter of the pinhole: 50 um), needs to be guided
towards the two cameras at the other end of the setup. One of these cameras will be used
to record the image plane, while the other will probe the Fourier plane.
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Fig. 7: Scheme of the experimental set-up.

Task O to prepare at home N:

Let’s have a look at the light source provided. It is a 635 nm, 1 mW continuous laser
source. What laser class does it belong to? What colour will the light be? Recall the
definition of maximum permissible exposure (MPE) and provide a value for this setup.

Task 1:

You will find, in the box provided, 5 plano-convex lenses, a sample holder and a few
post holders. Of these lenses, one has a focal length of 25.4 mm, while the other four
have a focal length of about 150 mm. With the help of a ruler, find the focal length of
each lens (hint: you can consider the neon lamps on the ceiling as a far-field source of
collimated light).



Task 2:

Use one lens to collimate the light beam and the others to build the 4-f setup and imaging
system (hint: the plane side of the plano-convex lenses has to be oriented towards the
focal point). How many lenses do you need in total? Provide a sketch of the final setup,
clearly marking the object plane and every image and Fourier plane. Build the setup in
in order to minimise the phase difference between the image and Fourier plane. Align
the beam so that it is centered on the cameras.

Task 3:

Work out the magnification of the image and Fourier planes on the cameras with respect
to the object and the Fourier plane in the 4f system. Knowing that each camera has got
1280x1024 pixels on its CMOS chip taking up an area of 6.66x5.32 mm?, calculate the
size of a pixel in the spatial domain (7;;,.;). How much does this correspond to in the
Fourier domain? For this task, use Fig. 8 to figure out how to convert a spatial length in
the object plane into frequency units in the Fourier plane and find out the size of a pixel
in the Fourier domain (k,;.; , hint: this size depends, among other things, on the focal
length of the lens and on the wavelength used).

Lens, Focal plane

Mask

Fig. 8: Ray optics diagram showing how a lens maps each diffracted ray coming from a mask (object)
into different positions in the Fourier plane. This results in a 1:1 correspondence between a ray’s
incident angle on the lens and its position in the focal plane.

Measurements

The goal is now to place different objects in the object plane and study their diffraction
patterns in the image and Fourier planes. Using the two cameras, make sure to always
take a picture of both planes simultaneously and name the files accordingly. For some
samples, knowing the analytical Fourier transform of the object, you will be able to
deduce its spatial dimensions (hole diameter, slits period etc...) of the object by studying



the Fourier spectrum and compare your values with the ones measured in the image
plane and the ones given in Table 1.

To analyse the images, you can use ImageJ, MATLAB or Mathematica. The Thorlabs
software also allows you to plot intensity profiles in real time during the experiment.
Table 1 lists the available samples, which you will find in the round plastic box.

# Type Dimensions Remarks
1 Single hole @ =225 um__ Broken
2 Doublehole @& =175pum
d =750 um
3 Slitarray w=385um Vertical
p =850 um
1x6
4 Single slit w =500 pm
7 Gridofslits ~ w =150 um Inverse structure to #15
p =1000 um
8x8
9 Single disk @ =225 um Inverse structure to #1
Filter
10 Line array w =360 um  Structure #11 horizontal
p =850 um
6x1
11 Line array w =360 um  Structure #10 vertical
p =850 um
1x6
12 Line array w =280 um Vertical
p =500 um
1x6
13 Line array w =280 um Vertical
p =500 um
1x11
15 Gridof lines  w =150 um Inverse structure to #7
p =1000 um Broken
8Xx38
16 Single line Horizontal
Three holes
Fourier House
Two disks Do not use
Single slit Do not use
Broken

Table 1: List of the objects and filters provided. w and p mean the width and period of the slits and
lines, respectively. All slits and lines have a length | of 1 cm.



Task 4:

Place a pinhole (sample 1) in the sample holder and record its image and Fourier plane.
Use the theoretical Fourier spectrum (obtained in Exercise 1) of a pinhole to fit the
Fourier image obtained in the experiment and calculate the diameter of the pinhole (hint:
rather than intensity, think about the position of the minima). Does it match with the
theoretical value in Table 1? Measure the diameter of the hole in the image plane and
compare it with the value obtained from the Fourier spectrum and the one in Table 1.
Explain and discuss any discrepancy between these values.

Is the dynamic of the camera sufficient to see more than one secondary maxima without
saturating the central one? Adjust the acquisition settings so as to take one image of the
Fourier plane without saturating the central maxima and another one where it is
saturated, so that you can observe as many secondary maxima as possible.

Task 5:
Place a filter (sample 9) in the Fourier plane and record the image and Fourier plane.
What changes do you see in the images? Comment.

Task 6:
Work out the diameter of the three larger holes (sample without number, with 3 holes
on the same substrate) in the same way as you did for sample 1.

Task 7:
Place an object with 2 pinholes (sample 2) in the object plane. What Fourier pattern do
you expect? Explain the differences when compared to the single hole case. Derive the
distance between the holes and their diameter from the experimental Fourier image and
from the image plane, then compare these values with the actual ones mentioned in
Table 2.

Task 8:

Place sample 4 in the object plane. Record the experimental Fourier image of the single
slit and compare it with the calculated Fourier image plotted from (E14). Evaluate the
width of the slit from the experimental Fourier image and compare it with the actual
value mentioned in Table 2, as well as with the value extrapolated from the image plane.

Exercise 9:
Place sample 3 in the object plane, measure and compare the experimental curve with

the determined function. Characterize the size and pitch of the objects.

Task 10:



Place sample 7 and its inversion (sample 15) in the object plane. Compare the different
Fourier spectra and explain your observations with the results of Exercise 4.

Task 11:

Place the “Fourier house” sample in the object plane. Observe the Fourier plane and
explain the origin of the different diffraction patterns. As in Task 5, apply a filter in the
Fourier plane to suppress the DC component and record the new Fourier spectrum. After
removing the filter, use a piece of paper to cover each of the four parts of the object and
record the resulting image and Fourier planes. Comment on your findings.

Content of the report

For all measured samples, you must include:

a)

b)

d)

An image of both the image and Fourier plane, with their intensity profile (line-
cut) through the center of the pattern

For the Fourier plane, measure the distance between the central maximum and
the adjacent zeros (or maxima). Using this value and the analytical formulas
derived in the exercises at home, calculate the dimensions of the object and
compare them to the measured values from the image plane. Comment on the
matching between the two, especially concerning the position of the zeros and
the relative amplitude of the maxima.

Can you find an easier (but less elegant!) way of calculating the object’s size
from its Fourier plane data?

When asked, the computed spatial dimensions with an error analysis of the
object from both the image and Fourier plane images.

For samples 1 and the Fourier house, images of the filtered Fourier plane and the
resulting image in the image plane.
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