


Modules of the 2024 Course

Topics covered No Lecture/Date
Introductory presentation; Basic of laser operation I: dispersion theory, atoms 1 11. 09. 2024
Basic of laser operation II: dispersion theory, atoms 2 18. 09. 2024
Laser systems I: 3 and 4 level lasers, gas lasers, solid state lasers, applications 3 25. 09. 2024
Laser systems II: semi-conductor lasers, external cavity lasers, applications 4 02. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (1) 5 09. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (2) 6 16. 10. 2024
Optical detection 7 30. 10. 2024
Optical fibers: light propagation in fibers, specialty fibers and dispersion (GVD) 8 06. 11. 2024
Ultrafast lasers I.: Passive mode locking and ultrafast lasers 9 13. 11. 2024
Ultrafast lasers II: mode locking, optical frequency combs / frequency metrology 10 20. 11. 2024
Ultrafast lasers III: pulse characterization, applications 11 27. 11. 2024
Nonlinear frequency conversion I: theory, frequency doubling, applications 12 04. 12. 2024
Nonlinear frequency conversion II: optical parametric amplification (OPA) 13 11. 12. 2024
Laboratory visits (lasers demo) 14 20. 12. 2024

Lasers: theory and modern applications December 2, 2024 2 / 33



What is nonlinear frequency conversion?
The conversion of light to other frequencies (wavelengths), using optical nonlinearities.

Examples:
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What is nonlinear frequency conversion?
Differences:

Stimulated emission Non-linear frequency conversion

Example: Three-level system Example: Sum-frequency generation

Gain occurs by first absorbing the input, and then
re-emitting to the output frequency.

Non-parametric: The material transitions to various
quantum states.
Photon energy is not necessarily conserved:

h̄ωout ̸= h̄ωin

Gain occurs by “instantaneous” transfer of energy
from input to output frequency.

Parametric: The quantum state of the material
remains unchanged.
Photon energy is conserved:

h̄ωout = h̄ω1 + h̄ω2
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Extra information: The term “parametric”

Avoid confusion:

“Nonlinear frequency conversion is a parametric process,”
however, “nonlinear” and “parametric” do not always go together.

Examples of other processes:
Nonlinear and non-parametric: saturable absorption, 2-photon absorption
Linear and parametric: refraction, Rayleigh scattering

Also, “parametric” here is not synonymous for “tunable” (even if many nonlinear processes are in fact
tunable!).
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Why is nonlinear frequency conversion used?
There isn’t a gain medium for every wavelength.

Nonlinear conversion allows to create wavelengths that are inaccessible with known gain media.
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Why is nonlinear frequency conversion used?
With one pump frequency, it is possible to generate a range of output frequencies:
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Why is nonlinear frequency conversion used?
Example of application: Molecular spectroscopy
(to probe molecular resonances in the infrared)
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Electron oscillator model
Model: Assume an electron subjected to:

A force due to an external electric field: Fext = eE(t)

A restoring force, function the electron’s position: Fr = F (x)

(For simplicity, here we neglect damping and the electron’s inertia.)

→ The balance of the forces determines the electron’s position:

→ The electron’s displacement gives rise to polarization:

p(t) = −Nex(t)
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Electron oscillator model
At small field intensities, one usually approximates
the potential energy of this electron as a parabola
(harmonic potential).

→ This leads to a linear restoring force, and a linear
polarization response.

Response in time:
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Electron oscillator model
Real potentials are not perfectly parabolic (anharmonic
potentials).

→ This leads to a nonlinear restoring force, and a nonlinear
polarization response.

Response in time:

→ Spectrum of p(t):

(New harmonics are created)
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Electron oscillator model
Each oscillating electron in the material radiates these new harmonics in a typical dipole pattern:

In nonlinear frequency conversion, we are not interested in the radiation of only one single dipole.
The objective is to superpose all dipoles of the material coherently to create a strong directional beam:

The condition for this is called “phase matching” (see later in this lecture).
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Wave equation

We will now study frequency conversion using the wave equation:

δ2E

δz2 − 1
c2

δ2E

δt2 =
1

ε0c2
δ2P

δt2

Derivation of the wave equation: see Boyd, “Nonlinear optics”, Chapter 2.

Objectives:
Understand the nonlinear energy transfer (coupled wave equation)
Derive the condition for efficient conversion (phase matching condition)
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Wave equation

δ2E

δz2 − 1
c2

δ2E

δt2 =
1

ε0c2
δ2P

δt2

Expand the components of polarization:

P = ε0χ(1)E︸ ︷︷ ︸
PL (linear)

+ ε0χ(2)E2 + ε0χ(3)E3 + . . .︸ ︷︷ ︸
PNL (nonlinear)

δ2E

δz2 − 1
c2

δ2E

δt2 =
1
c2 χ(1) δ2E

δt2 +
1

ε0c2
δ2PNL

δt2

Introduce the linear refractive index: n2 = 1 + χ(1)
(Note that n and χ are wavelength-dependent. This will be important when we discuss
phase-matching.)

δ2E

δz2 −
n2

c2
δ2E

δt2 =
1

ε0c2
δ2PNL

δt2︸ ︷︷ ︸
Nonlinear source term

To continue, we need to define E more precisely.
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Sum Frequency Generation

Let us define the various electric fields in the case of sum frequency generation (SFG).

Note: For SFG, we focus on χ(2), and assume
χ(3), χ(4), · · · = 0


E1(z, t) =

Varying amplitude factor, used to describe nonlinear interactions︷ ︸︸ ︷
A1(z) eik1ze−iω1t (+ complex conjugate)

E2(z, t) = A2(z)e
ik2ze−iω2t (+ complex conjugate)

E3(z, t) = A3(z) eik3ze−iω3t︸ ︷︷ ︸
Solution we expect in the linear case

(+ complex conjugate)

These can now be plugged into the wave equation:y E = E1 + E2 + E3 (+ complex conjugates)

PNL = ε0χ(2)E2

δ2E

δz2 − n2

c2
δ2E

δt2 =
1

ε0c2
δ2

δt2

(
ε0χ(2)E2

)
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Sum Frequency Generation

This creates many terms. Fortunately, we see that the equation must hold for each frequency
component separately.

More explanation: An equation of the form Ae−iωat + Be−iωbt + · · · = 0 can only be valid for all values of t if all the coefficients are all
zero, i.e. A = 0, B = 0, . . . We have such an equation here: the wave equation must be valid for every t, and each field we plug into it has
an e−iωit dependence. This dependence is preserved by the operators δ1

δz2 and δ2
δt . Therefore, we can just consider all terms with

the same frequency, and set their sum equal to 0. The terms we are interested in here are the ones with frequency e−iω3t or equivalently
e−i(ω1+ω2)t.

We consider only the terms with a factor e−iω3t or e−i(ω1+ω2)t:
δ2E3
δz2 − n2

c2
δ2E3
δt2 =

1
c2 χ(2) δ2

δt2 (2E1E2)

Fill in the field definitions, and calculate the derivatives.(
δ2A3

δz2 + 2ik3
δA3

δz
− k

2
3A3 −

n2ω2
3

c2 A3︸ ︷︷ ︸
=0, because ω3=

ck3
n

)
e

i(k3z−ω3t) =
−2χ(2)ω2

3
c2 A1A2e

i

(
(k1+k2)z−ω3t

)
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Sum Frequency Generation

−→

(
δ2A3

δz2 + 2ik3
δA3

δz

)
e

i(k3z−ω3t) =
−2χ(2)ω2

3
c2 A1A2e

i

(
(k1+k2)z−ω3t

)
Group exponentials(

δ2A3

δz2 + 2ik3
δA3

δz

)
=

−2χ(2)ω2
3

c2 A1A2e
i(k1+k2−k3)z

Slowly-varying envelope approximation:
∣∣∣ δ2A3

δz2

∣∣∣≪
∣∣k3

δA3
δz

∣∣
Valid if A3 does not vary much over a distance of the order of the wavelength.

δA3

δz
=

iχ(2)ω2
3

k3c2 A1A2e
i(k1+k2−k3)z

∆k = k1 + k2 − k3 (this is called the phase mismatch)
deff = 1

2 χ(2) (nonlinear coefficient, used for historical reasons)

Coupled wave equation:
δA3

δz
=

2ideffω2
3

k3c2 A1A2e
i∆kz
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Sum Frequency Generation
Coupled wave equation:

δA3
δz

=
2ideffω2

3
k3c2 A1A2ei∆kz

Notice that:
∆k = 0 ⇒ A3 gradually builds up,
∆k ̸= 0 ⇒ A3 just oscillates up and down.
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Sum Frequency Generation
We can also see this by integrating the coupled wave equation:

A3 =
2ideffω2

3
k3c2 A1A2

∫ L

0
ei∆kzdz

=
2ideffω2

3
k3c2 A1A2ei ∆kL

2 L sinc ∆kL

2

Note: We assume here that A1 and A2 are constant, for simplicity.
In reality they decrease as A3 builds up.

y
Take the magnitude square, and convert amplitudes to intensities:

Ii =
1
2

niε0c |Ai|2

(we write ni because the refractive index depends on the frequency)

I3 =
8d2

effω2
3I1I2L2

n1n2n3ε0c2 sinc2
(

∆kL

2

)
The term sinc2

(
∆kL

2

)
is large (> 70%) over a distance

of the order of Lcoh = 2
∆k .

The conversion efficiency is maximum when
∆k = 0.
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Phase matching
Efficient frequency conversion occurs only near ∆k = 0 (phase matching condition).

Microscopically, this corresponds to the case where all dipoles are in phase
and add up coherently.

In case of phase mismatch, some dipole emissions counteract others,
and power fluctuates instead of building up.
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Normal dispersion
Taking phase matching into account, we need to satisfy two equations at the same time:

ω1 + ω2 = ω3

n1ω1 + n2ω2 = n3ω3

(energy conservation)
(phase matching; we used ki = niωi/c and ni denotes
the refractive index at ωi)

This is not possible in the usual case of normal dispersion (i.e. when n(ω) increases with ω):

n1ω1 + n2ω2 = n3ω3 −−−−−−−→
ω1+ω2=ω3

n1ω1 + n2 (ω3 − ω1) = n3ω3

−−−−−→
rearrange

(n1 − n2)︸ ︷︷ ︸
<0

ω1 = (n3 − n2)︸ ︷︷ ︸
>0

ω3

With ω1 < ω2 < ω3 and n1 < n2 < n3

The problem is even more evident for second harmonic generation:

2n1ω1 = n3ω3 −−−−−→
ω3=1ω1

n1 = n3 We need the refractive indices
to be equal at ω1 and ω3!
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Birefringent crystals
In practice, one way to obtain phase matching is by using birefringent crystals.
Crystals having different refractive indices depending on their orientation.

To show how, we will study the case of frequency doubling in a BBO crystal.
BBO = “β-barium borate”

For this particular case of birefringent phase matching, we assume:
Second harmonic generation (i.e. we need n3 = n1)

Negative uniaxial crystal
Negative: ne < no

unaxial : One crystal axis has an “extraordinary” refractive index ne, and all perpendicular directions have an “ordinary” index no.

Type I phase matching
Type I: both input photons have the same polarization
Type II: input photons have orthogonal polarizations

Note: You can find more explanation about other cases of‘birefringent phase matching in the book chapter on Moodle.
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Birefringent crystals
If we propagate at an angle θ of the optical axis of a uniaxial crystal, one polarization experiences no

while the other experiences a mixture of no and ne:

So, the “effective” extraordinary index ne(θ) depends on the angle:
1

ne(θ)
2︸ ︷︷ ︸

Extraordinary index at angle θ

=
cos2 θ

n2
o

+
sin2 θ

n2
e︸︷︷︸

Principal extraordinary index
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Birefringent crystals
By varying the angle θ, we can now satisfy ne (θ, 2ω1) = no (ω1):

Example: BBO crystal, second harmonic generation with input
λ1 = 1 µm. → θm ≈ 24◦

Note that birefringent phase matching is not always possible:
Not all crystals are birefringent
Certain nonlinear effects require identical input & output polarizations
Birefringence may be too small for compensation
→ This is especially the case at shorter wavelengths: while the refractive index changes rapidly, the difference between no and ne

stays approximately the same.
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Quasi phase matching

Quasi phase matching relies on a crystal where one of the crystalline axes is periodically inverted (=
periodic poling):

Homogeneous crystal Periodically poled crystal

First, remember that in case of phase mismatch, the field amplitude oscillates sinusoidally with distance:

A3 ∼ deffL sinc L

∆k/2y Set Lcoh = 2
∆k

Assume ∆k is constant

A3 ∼ deff sin L

Lcoh
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Quasi phase matching
Periodic poling allows us to invert the sign of deff each time the oscillation is about to go down.
Therefore, even if ∆k ̸= 0, the amplitude keeps building up:

Note that the amplitude builds up more slowly than
with perfect phase matching. More precisely:

Equasi =
2
π

Eperfect

The optimal poling period is Λ = πLcoh = 2π
∆k .

Example: Periodically Poled Lithium Niobate (PPLN), second harmonic generation with input λ1 = 1.06 µm.
→ Lcoh = 3.4 µm
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Second harmonic generation
Let us define the electric fields in the case of second harmonic generation (SHG).

Note: SHG is also an χ(2)-effect, so we assume
χ(3), χ(4), · · · = 0

{
E1(z, t) = A1(z)e

ik1ze−iω1t (+ complex conjugate)
E3(z, t) = A3(z)e

ik3ze−iω3t (+ complex conjugate)

We plug this into the wave equation, and collect the terms by frequency:

δ2E

δz2 − n2

c2
δ2E

δt2 =
1

ε0c2
δ2

δt2

(
ε0χ(2)E2

)

E=E1+E3−−−−−−−−−−−−−−→
(+ complex conjugates)

{
δ2E1
δz2 − n2

c2
δ2E1
δt2 = 1

ε0c2
δ2

δt2

P NL
1︷ ︸︸ ︷(∑

0

χ(2) · 2E∗
1 E3

)
δ2E3
δz2 − n2

c2
δ2E3
δt2 = 1

ε0c2
δ2

δt2

(
ε0χ(2) · E2

1

)
︸ ︷︷ ︸

P NL
3

Terms with
eiω1t or ei(ω3−ω1)t

Terms with
eiω3t or ei2ω1t
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Second harmonic generation
From this, we can calculate the coupled wave equations (as before):

δA1
δz =

2ideffω2
1

k1c2 A∗
1A3ei∆kz (coupled wave equation for the source)

δA3
δz =

ideffω2
3

k3c2 A2
1ei∆kz (coupled wave equation for the output)

where the phase mismatch is:
∆k = 2k1 − k3.

It is possible to derive explicit formulas for both source and output intensities.
We highlight here only the main points of this calculation.
If you’re interested, the full derivation can be found in Boyd, Nonlinear Optics, Chapter 2. Beware that in the book they use Gaussian units
(this changes some formulas slightly).

First, one can prove there is conservation of energy at every location z:

I1(z) + I3(z) = I

(or u1(z) + u2(z) = 1 if we use normalized intensities)
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Second harmonic generation
Second, the conversion happens over a characteristic length scale ℓ:

ℓ =

√
2ε0c3n2

1n3
I

1
2ω1deff

(Note the dependencies on I and deff)

The intensities are then as follows for perfect phase matching (∆k = 0):

{
u1(z) = tanh z

ℓ
u3(z) = sech z

ℓ

(These are the normalized intensities,
so I1 = Iu1 and I3 = Iu3.)
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Second harmonic generation
In case of phase mismatch (∆k ̸= 0), the intensity does not build up but oscillates:
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Second harmonic generation
To illustrate the use of these formulas, we calculate the conversion efficiency for a Gaussian beam
with waist w0 focused in a crystal of length L:

Assume:
a crystal length of L = 1 cm,
a source wavelength λ1 = 1064 nm,
an input power P = 1 W,
a nonlinear coefficient deff = 12.5 pm

V ,
perfect phase matching,
we focus the Gaussian beam so that the depth of focus b (which is twice the Rayleigh range zR) is
equal to the crystal length L.
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Second-order Autocorrelation
The condition on the depth of focus of the Gaussian beam allows us to calculate the waist, and
therefore the beam intensity at the waist:

L = b = 2zR −→ L =
2πw2

0
λ1/n1

−→ w0 ≈ 29 µm

I =
P

πw2
0

−→ I ≈ 376 MW/m2

We can now calculate the characteristic length ℓ and the efficiency η:

ℓ =

√
2ε0c3n2

1n3
I

1
2ω1deff

−→ ℓ ≈ 7.2 cm

η =
u2

3(z = L)

u2
1(z = 0)

=
tanh2 L

ℓ

1 −→ η ≈ 2%
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Second-order Autocorrelation
Third-order (Kerr) nonlinear contribution to the nonlinear
polarization:

P
(3)
NL = ε0χ(3)E(t)3

Intensity dependent refractive index:

n = n0 + n2I

Kerr nonlinearity and
intensity-dependent refractive index

n2 =
3

2n2
0ε0c

χ(3)
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