


Modules of the 2024 Course EPFL

Topics covered No Lecture/Date
Introductory presentation; Basic of laser operation I: dispersion theory, atoms 1 11. 09. 2024
Basic of laser operation Il: dispersion theory, atoms 2 18. 09. 2024
Laser systems I: 3 and 4 level lasers, gas lasers, solid state lasers, applications 3 25. 09. 2024
Laser systems Il: semi-conductor lasers, external cavity lasers, applications 4 02. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (1) 5 09. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (2) 6 16. 10. 2024
Optical detection 7 30. 10. 2024
Optical fibers: light propagation in fibers, specialty fibers and dispersion (GVD) 8 06. 11. 2024
Ultrafast lasers |.: Passive mode locking and ultrafast lasers 9 13. 11. 2024
Ultrafast lasers II: mode locking, optical frequency combs / frequency metrology 10 20. 11. 2024
Ultrafast lasers Ill: pulse characterization, applications 11 27. 11. 2024
Nonlinear frequency conversion I: theory, frequency doubling, applications 12 04. 12. 2024
Nonlinear frequency conversion |lI: optical parametric amplification (OPA) 13 11. 12. 2024
Laboratory visits (lasers demo) 14 20. 12. 2024
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What is nonlinear frequency conversion?

The conversion of light to other frequencies (wavelengths), using optical nonlinearities.

Examples:
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What is nonlinear frequency conversion?

Differences:

Stimulated emission

Example: Three-level system

— Excited state
A |(radiationless

y transfer)

Intermediary state

(*)out

Ground state

Gain occurs by first absorbing the input, and then
re-emitting to the output frequency.

@ Non-parametric: The material transitions to various

quantum states.

@ Photon energy is not necessarily conserved:
hwout 7 hwin
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Non-linear frequency conversion

Example: Sum-frequency generation

“ ............... Virtual state
W)
NS> Wout
..... >
=W +
w; 1 2
N>

Ground state
Gain occurs by “instantaneous” transfer of energy
from input to output frequency.

@ Parametric: The quantum state of the material
remains unchanged.

@ Photon energy is conserved:
hwout = hwi + hws
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Extra information: The term “parametric” =PrL

Avoid confusion:

“Nonlinear frequency conversion is a parametric process,”
however, “nonlinear” and “parametric” do not always go together.

Examples of other processes:
@ Nonlinear and non-parametric: saturable absorption, 2-photon absorption

@ Linear and parametric: refraction, Rayleigh scattering

Also, “parametric” here is not synonymous for “tunable” (even if many nonlinear processes are in fact
tunablel).
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Why is nonlinear frequency conversion used?

There isn't a gain medium for every wavelength.

Pulse
energy

Nonlinear conversion allows to create wavelengths that are inaccessible with known gain media.
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Why is nonlinear frequency conversion used?

With one pump frequency, it is possible to generate a range of output frequencies:
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Why is nonlinear frequency conversion used? =PrL

Example of application: Molecular spectroscopy
(to probe molecular resonances in the infrared)

NH, aromatics
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Electron oscillator model EPFL

Model: Assume an electron subjected to:
o A force due to an external electric field: Fext = eE(1)
@ A restoring force, function the electron’s position: Fy = F'(x)

(For simplicity, here we neglect damping and the electron’s inertia.)

— The balance of the forces determines the electron’s position:

F

([%St ~ F ext
pw g
@ &8
Atom } } >
0 x(t)

— The electron’s displacement gives rise to polarization:

p(t) = —Nex(t)
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Electron oscillator model

Harmonic AV(x)
potential
X
Linear  AF, = -dV/dx
restoring force r
X
»
L
Ap
E
»
Linear [
polarization
response,

mpr-
cPrL
At small field intensities, one usually approximates

the potential energy of this electron as a parabola
(harmonic potential).

— This leads to a linear restoring force, and a linear
polarization response.

Response in time:
E

plinear
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Electron oscillator model EPFL

Real potentials are not perfectly parabolic (anharmonic
Ve potentials).

— This leads to a nonlinear restoring force, and a nonlinear
polarization response.

tial X

AF, =-dV/dx
E
X
t
Nonlinear 5
restoring force
Ap
E . - p
> Response in time: honincar
— Spectrum of p(t):
response 5 . 20)0

(New harmonics are created)
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- cpr-
Electron oscillator model =P-L
Each oscillating electron in the material radiates these new harmonics in a typical dipole pattern:

wW; + W,

In nonlinear frequency conversion, we are not interested in the radiation of only one single dipole.
The objective is to superpose all dipoles of the material coherently to create a strong directional beam:

W] + w2

TEEX
sese
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Wave equation =P-L

We will now study frequency conversion using the wave equation:
$’E  168%E 1 &P
522 2 62 goc2 Ot2

Derivation of the wave equation: see Boyd, “Nonlinear optics”, Chapter 2.

Objectives:
@ Understand the nonlinear energy transfer (coupled wave equation)
@ Derive the condition for efficient conversion (phase matching condition)
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Wave equation =P-L

’E 1 6%°E 1 §%°p

522 2 512 gpc2 o2
Expand the components of polarization:

P = 50X(1)E +50X(2)E2 + 50X(3)E3 +...
—

Pr, (linear) Pnr, (nonlinear)

PE_18E_ 1 @B | 1 8Py
622 2 6t2 c? 5t2 ggc?  6t2

Introduce the linear refractive index: n? = 1 + X(l)
(Note that n and x are wavelength-dependent. This will be important when we discuss

phase-matching.)

°E n?8°E 1 6°Pny

822 2 6t2  eoc2  ot2

Nonlinear source term

To continue, we need to define EZ more precisely.
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Sum Frequency Generation =P

Let us define the various electric fields in the case of sum frequency generation (SFG).

w0, Varying amplltude factor, used to describe nonlinear interactions
* = —_ .
@, x@ T ot O Ei(z,t) = (z) h1zg=iwit (1 complex conjugate)
> Ea(z,t) = Ag(2)e'*2? _“"Qt (+ complex conjugate)
'Lkgz —iwst
Note: For SFG, we focus on er and assume E3(z7 t) (z) (Jr complex ConJUgate)
X(S)a X(4)7 =0 Solution we expect in the linear case

These can now be plugged into the wave equation:

E = Ej + Ex + E3 (+ complex conjugates)
Py = eox\ P E?

B _p?é’E _ 1 6 (cox®2)
522 cZ t2 eoc? 6t2 0
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Sum Frequency Generation =PrL

This creates many terms. Fortunately, we see that the equation must hold for each frequency
component separately.

More explanation: An equation of the form Ae~'“at + Be Wbt 4 ... = 0 can only be valid for all values of ¢ if all the coefficients are all

zero, i.e. A =0, B=0, ...We have such an equation here: the wave equation must be valid for every t, and each field we plug into it has
P . . 1 2 . . .

an e~ “i* dependence. This dependence is preserved by the operators ;z—z and ‘;—t. Therefore, we can just consider all terms with

the same frequency, and set their sum equal to 0. The terms we are interested in here are the ones with frequency e twst

—i(wy+wo)t

or equivalently
e

We consider only the terms with a factor e~ st or ¢~ (w1 tw2)t,
By n*8°Ez _ 1 (98
522 2 522X 52

Fill in the field definitions, and calculate the derivatives.

6 A3 943 n®wi i(kgr—wgt) _ —2xPwd i (k1tko)z—wst
(52+2zk3§—k3 2 4g ei(ks 3):C—2A1A23( )
—_———
=0, because mg:ﬁ

n

(2E1E»)
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Sum Frequency Generation =PrL

52A 6A i(kaz—w —2xPw2 i (k1+ko)z—wgt
- < 5z23 2ik3 4 3) ¢ (k3 St) - Xc2 3A1A261(( ! 2)z “3 )

Group exponentials

2 o), 2
(5 As 4 %k 5(;“3) _ =2 Tws Ay Agei(F1thz—k3)=
z z

c2

. A 524 5A
Slowly-varying envelope approximation: ‘vﬁ ‘ < ’k:;T'i
Valid if Az does not vary much over a distance of the order of the wavelength.
6As3 zX( >w§

_ Ay Agel i(k1+ko—kg)z
6z k3c?

Ak = ki + ko — kg (this is called the phase mismatch)
desr = %X@) (nonlinear coefficient, used for historical reasons)

Coupled wave equation:

0A3 2id,

ffw i A
_ eff3 A A ez kz
6z kgc?'
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Sum Frequency Generation =PrL

Coupled wave equation:

(5143 _ Zideﬂfw%

5 T kg A2t

Notice that:
e Ak =0 = A3 gradually builds up,
o Ak # 0 = As just oscillates up and down.

A Ak=0

Ak#0
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Sum Frequency Generation

We can also see thl% by integrating the coupled wave equation:

% frw
A3 = == M4y | €z
kgc 0 Note: We assume here that A; and As are constant, for simplicity.
In reality they decrease as A3 builds up.
| 2idegw? AkL i s P

sc —5A AgeZ 5t L sinc

Take the magnitude square, and convert amplitudes to intensities:

1 2
Ii:—niscAi
Snicoc Al

(we write n; because the refractive index depends on the frequency)

High conversion
efficiency

8d%wil oL 5 (AKL
132—251nc —_— T S ——
n1N2N3EQNC 2
g = 2/8k

The term sinc? (%) is large (> 70%) over a distance 3
of the order of Leon = 2. 4 Low gonversion
The conversion efficiency is maximum when opTY"Y L N
3n 0 3n

Ak = 0.
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Phase matching =P-L

Efficient frequency conversion occurs only near Ak = 0 (phase matching condition).

Microscopically, this corresponds to the case where all dipoles are in phase
and add up coherently.

BN F
T EEE — ¢

Number of dipoles

In case of phase mismatch, some dipole emissions counteract others,
and power fluctuates instead of building up.

N
=ligid
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Normal dispersion =PrL

Taking phase matching into account, we need to satisfy two equations at the same time:

w1+ we = ws (energy conservation)
(phase matching; we used k; = n;w;/c and n; denotes
niwi + Nows = nN3ws the refractive index at w;)

This is not possible in the usual case of normal dispersion (i.e. when n(w) increases with w):

niwi + nowy = n3w3z ——————  njwi +n2 (w3 — wi) = N3ws3
w1 tw2=ws3

(n1 —n2) wr = (n3 —n2)ws
rearrange | S — N, e’
<0 >0

With w1 < w2 < wsg and n; < na < ng

The problem is even more evident for second harmonic generation:

— — We need the refractive indices
2n1w1 = n3w3 wz=1lw1 ny=mn3 to be equal at wy and ws3!
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Birefringent crystals =PrL

In practice, one way to obtain phase matching is by using birefringent crystals.
Crystals having different refractive indices depending on their orientation.

To show how, we will study the case of frequency doubling in a BBO crystal.
BBO = “B-barium borate”

For this particular case of birefringent phase matching, we assume:
@ Second harmonic generation (i.e. we need ng = n1)

o Negative uniaxial crystal

Negative: ne < ng,

unaxial: One crystal axis has an “extraordinary” refractive index n., and all perpendicular directions have an “ordinary” index n,
@ Type | phase matching

Type I: both input photons have the same polarization

Type II: input photons have orthogonal polarizations

Note: You can find more explanation about other cases of ‘birefringent phase matching in the book chapter on Moodle.
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Birefringent crystals =PrL

If we propagate at an angle 6 of the optical axis of a uniaxial crystal, one polarization experiences n,
while the other experiences a mixture of n, and n.:

Light with this polarization
experiences a refractive index n,.

\ |
Ny
\@\ Optical axis n,
K of the crystal
| e

[~ Direction of
\l/ propagation

Light with this polarization experiences an
index n,(0) that is between n, and n,.

So, the “effective” extraordinary index n.(#) depends on the angle:

1 cos2  sin?6
2 2 2
ne(e) 1o Ne
Extraordinary index at angle &  Principal extraordinary index
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Birefringent crystals =P-L
By varying the angle 6, we can now satisfy n (0, 2w1) = n, (w1):
n

1.8
Solution at 2w, Index at w,
Ne (O, 200,) ny (@)

17 ,L an

Angle

tuning

16 range
—— e e n,

18 0.5 um 1pm A

Example: BBO crystal, second harmonic generation with input
AL =1 pm. — 0, ~ 24°

Note that birefringent phase matching is not always possible:
@ Not all crystals are birefringent
@ Certain nonlinear effects require identical input & output polarizations
@ Birefringence may be too small for compensation

— This is especially the case at shorter wavelengths: while the refractive index changes rapidly, the difference between n, and n.
stays approximately the same.
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Quasi phase matching =PrL

Quasi phase matching relies on a crystal where one of the crystalline axes is periodically inverted (=
periodic poling):

t (NEAREE

Homogeneous crystal

Periodically poled crystal

First, remember that in case of phase mismatch, the field amplitude oscillates sinusoidally with distance:

) L l"‘ .J
As ~ dggL sinc m e 2:(/)u[pul Facet

i

Set Leonh = &
Assume Ak is constant q ]

———

. L
A3 ~ deff sl ——
coh
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Quasi phase matching =PrL

Periodic poling allows us to invert the sign of des each time the oscillation is about to go down.
Therefore, even if Ak # 0, the amplitude keeps building up:

T T T T T

(a) with perfect phase-matching ~—
(b) with quasi-phase-matching

(¢) with a wavevector

mismatch
Note that the amplitude builds up more slowly than

with perfect phase matching. More precisely:

field amplitude

2
Equasi = 7Eperfect
™

z/Lcoh

. . . . o o
The optimal poling period is A = mLcoh = 3%-
Example: Periodically Poled Lithium Niobate (PPLN), second harmonic generation with input Ay = 1.06 pm.
— Leoh = 3.4 pm
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Second harmonic generation

Let us define the electric fields in the case of second harmonic generation (SHG).

—ip

W) X

—>

Note: SHG is also an X(z)—effect, SO we assume
X3, xW ... =0

@) w3 = 20)1

We plug this into the wave equation, and collect the terms by frequency:
’E  n?’E 1 4?
: (2n2?)

522 2 52 goc? 52

52 B _n? 8°E1 1 52 (2) *
522 ez 52 T socgm X 2E1 Es

E=E1+E3
. 0
+ complex conjugates,
(¢ complex conjugates) 28y n202B3 _ 132 (. (). 2
522 c? 5t2 eoc? §t2 1
| M

XL
Py
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E1(z,t) = A1(2)eF17e ™1 (4 complex conjugate)
E3(z,t) = As(z)etf27e st (1 complex conjugate)

Terms with

etw1t or e

i(wg—wy)t

Terms with

eiwat
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. . mrpr
Second harmonic generation =P-L
From this, we can calculate the coupled wave equations (as before):

Qideprw? ;
%% = T;‘;—IATA;?,GZAICZ (coupled wave equation for the source)
8Ag _ el 22 iAkz
3z kgc2 16

where the phase mismatch is:

(coupled wave equation for the output)

Ak = 2k — ks.

It is possible to derive explicit formulas for both source and output intensities.
We highlight here only the main points of this calculation.
If you're interested, the full derivation can be found in Boyd, Nonlinear Optics, Chapter 2. Beware that in the book they use Gaussian units

(this changes some formulas slightly).

First, one can prove there is conservation of energy at every location z:

I1(z) —l—[g(z) =7

(or u1(z) + u2(z) = 1 if we use normalized intensities)
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. . rpre
Second harmonic generation =P-L
Second, the conversion happens over a characteristic length scale ¢

2600371%713 1

e =
I 2w1 deff

(Note the dependencies on I and defr)

The intensities are then as follows for perfect phase matching (Ak = 0):
T T T 1

1 —
]
£
=
g / u (fundamental ) .
= L . u1(z) = tanh %
b u3(z) = sech %
]
= (These are the normalized intensities,
E ™ u, (second harmonic) so I = Tu; and Iy = Tug.)
= - -

0 1 L 1 1

0 1 2 3

normalized propagation distance, { =z/¢
Lasers: theory and modern applications December 2, 2024 29/33



Second harmonic generation =PrL

In case of phase mismatch (Ak # 0), the intensity does not build up but oscillates:

T T T
| -
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Second harmonic generation =PrL

To illustrate the use of these formulas, we calculate the conversion efficiency for a Gaussian beam
with waist wq focused in a crystal of length L:
2wy

/A'V

Assume:

a crystal length of L =1 cm,

a source wavelength Ay = 1064 nm,
an input power P =1 W,

a nonlinear coefficient deg = 12.5 %,
perfect phase matching,

we focus the Gaussian beam so that the depth of focus b (which is twice the Rayleigh range zg) is
equal to the crystal length L.
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Second-order Autocorrelation

therefore the beam intensity at the waist:

2
2rwg

L=b=2z — L= —  wp~29 um
R )\1/77»1 0 %

I=—5 — I~376 MW/m?

7Tw0

We can now calculate the characteristic length ¢ and the efficiency 7:

2e0c3n? 1
! = USRI — {=T72cm
I 2w defr

= — ~ 2%
w3 (z=0) I e
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The condition on the depth of focus of the Gaussian beam allows us to calculate the waist, and
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Second-order Autocorrelation

Third-order (Kerr) nonlinear contribution to the nonlinear

polarization:
(a)

w] >
(1)2 _
6()3 —_—

()

3)

3)

P} = eoxVB(1)?

Intensity dependent refractive index:

n =ng+ nal
Kerr nonlinearity and
intensity-dependent refractive index

__3 ®
2n(2)500

n2
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