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Solution Set (for exercise Sheet 9): Phase-locking, Short Laser Pulses

9.1 Phase-locked Oscillators

This exercise investigates the general principle that a group of phase-locked oscillators produce
a pulse train. This can be understood by considering the Fourier transform of the sum of the
frequency components into the time domain.

The electric field E(t) is given by:

E(t) =
(N−1)/2

∑
j=−(N−1)/2

E0ei(ω0+jωR)t+iΦj = E0eiω0t
N−1

∑
m=0

eiωR[m−(N−1)/2]t

Simplifying the sum:

E(t) = E0eiω0te−iωR[(N−1)/2]t
N−1

∑
m=0

eiωRmt

This leads to:

E(t) = E0eiω0te−iωR[(N−1)/2]t eiNωRt/2

eiωRt/2
sin(NωRt/2)
sin(ωRt/2)

After simplification,

E(t) = E0eiω0t sin(NωRt/2)
sin(ωRt/2)

Key Observations

The temporal distance between subsequent pulses is τrep = 1
ωR

.
The pulse duration τFWHM can be approximated using the first zero crossing of the numer-

ator:
τFWHM =

1
NωR

A detailed explanation can be found in Chapter 11.3 of the script.

Including a Linearly Varying Phase

With a linearly varying phase Φj = j∆Φ, the field becomes:

E(t) = E0eiω0t sin[N(ωRt + ∆Φ)/2]
sin[(ωRt + ∆Φ)/2]

This shows that a chirped spectrum forms a pulse train in the time domain.
The carrier-envelope offset frequency ωCEO is defined as:

ωCEO = ω0 mod ωR

For ωCEO = 0, the pulse train consists of identical envelopes, with the electric field oscillat-
ing consistently. For non-zero ωCEO, a slow modulation term changes the carrier phase relative
to the envelope.
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Assuming the carrier frequency ωC = zωR, ω0 = ωC + ∆ν and ∆Φ = 0:

E(t) = E0eiωCt+i∆νt sin(NωRt/2)
sin(ωRt/2)

=
(N−1)/2

∑
j=−(N−1)/2

E0ei(ωC+∆ν+jωR)t

Calculating ωCEO:

ωCEO = ω0 mod ωR = zωR + ∆ν mod ωR = ∆ν

9.2 Shortest Laser Pulses from Ti:Sa and He:Ne Lasers

The pulse shape depends on the source’s pulse-forming mechanism and can be modified by
technical and experimental conditions. The time-bandwidth product τP · fBW measures pulse
duration efficiency:

τP · fBW = d

For Gaussian pulses, d ≈ 0.44. Converting the Ti:Sa bandwidth to Hz:

c0

(
1

775 nm
− 1

825 nm

)
= 23.46 THz

Minimal pulse durations:

τP,He:Ne = 258.823 ps, τP,Ti:Sa = 18.75 fs

9.3 Gaussian Laser Pulses

For a Gaussian pulse:

E(t) =
∞

∑
n=−∞

Eneiωnt+iΦn

With frequencies ωn = ω0 + nωR and amplitudes:

En = E0 exp

[
−2 ln(2)

(
nωR

∆ω0

)2
]

Intensity:

I(t) ∝ |E(t)|2 = |E0eiω0t|2 ·
∣∣∣∣∣
∫ ∞

−∞
exp

[
−2 ln(2)

(
ωR

∆ω0

)2

n2

]
einωRt dn

∣∣∣∣∣
2

Using the Fourier transform property:

e−α2n2 ↔ FT
√

π

α
e−x2/(4α2)

Result:

I(t) ∝ |E0|2 ·
π∆ω0√

2 ln(2)ωR
exp

[
− ∆ω2

0
8 ln(2)

t2
]

FWHM:

τFWHM =
4 ln(2)

∆ω0
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