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Laser: Theory and Modern Application
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.12: Nonlinear frequency conversion - I

12.1 Coherence length for phase matching

Coherence length for phase matching

Lo (1N _ 2
o = TAK]| [AK] )~ [AK|

For a SHG system, this yields into the following

Ak = 2k1 — kz = ZTw(Tl?w — n‘o")

So we get the following coherence length

Leon = |A2k’

Cc
w(ng” —ng)
A
27 (n3 — ng)

With n(w) = 1.496044 and n(2w) = 1.514928 we get the following coherence length

A

——— = 8.428
21t(n2 — n¥) w

Lcoh =

12.2 Angular sensitivity of phase matching

Taylor expansion of a function at a point (a) is:

f(x) = f(a) + f'(a)(x — a)

For extraordinary refractive index we have

1 sin?f  cos?6
nz(0) nz ng
= 1,(0) = felto
.(8) =
\/ n2 sin @ + n2 cos? §

Taylor expansion of the extraordinary refractive index near the phase matching angle 0,, is

NN,
n.(6) ~ —|—né(9m)(9—9m)

\/ng sin? 0, + n2 cos? Oy,

And

nh(0y) = — ngzno (n2 sin? 6,, + n? cos? 0,,) ~3/%(n2 — n2) sin 26,,
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(n2 — n2) sin 26,,A0
2(n2sin® @, + n2 cos? 0,

= 1,(0) = 1e(0) — 11e(0)

On the other hand for hase mismatch we have:

Ak = 22— n2(6)

Therefore, for phase matching condition we have:

”gw(gm) =ng

Simplifying the relationship for #,(6) in phase mismatch relationship, we come up with:

AkL  —wnd L 1 1
= 2 (—— — ——) sin26,,A0
2 2c ne,Zw no,Zw

12.3 Angle phase matching in non-linear crystals

Angle phase matching in nonlinear crystals The phase matching condition in BBO crystal is
2k1 = ko

From this follows then

Zamoc(w) _ an(GC, 2w)

no(w) = n(6,2w)

Calculating the extraordinary refractive index

1 ~ cos?(6) n sin?(0)

n2(0,2w)  n2(2w)  n2(2w)
1 1

L2y m(w)  n3(2w)

= sin®(f) = ————-7+

n22w)  n3(2w)
With n,(w) = 1.667, n,(2w) = 1.729 and n,(2w) = 1.592

= sin?(f) = 0.4221
0 = 40.52°

124 Coupled-mode equations for four-wave mixing

1. We need to solve the wave equation

2 32 (3) 92
2 n- o X 0% i

E-——E=%""|EPE

v c? ot? c? 8t2| ",
where the full field is the sum of pump, Stokes and anit-Stokes fields. Let’s condsider
the left hand side of this equation. Using the slowly varying approximation (9.F, , >
k(sru,p)agzp(w)), and the identity k%s,a,p) =n?/ czw(sra/p), one obtains the left hand side of the
form

2i (A;kaxfraei(kaz—wat) + Aéksxysei(ksz—wst) + A;,kp‘frpei(kf’z_wf’t)),
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where A(s,a,p) = F(s,a,p) /ZN(s,a,p)r and AI =dA /dZ

Neglecting the quadratic and cubic terms of A; and A,, one gets the relation
[EPE = | A%, 2(Ap¥,e ) 42 A elimeot) 4 24 ellkeimet))
(Ay¥,)2(A¥,)* ik —a)z— 2wy —wa)t) | ( ALY, (AY,)* (2K —ke)z— (20, ~i)t).
where * stands for complex conjugation.

2. Inroder to get the set of 1—st order ODE’s we use the orthogonality relation [ ¥;¥;dS = .

*

Multyplying the reduced equation by Yisap) and integrating it, we obtain the following
system

(®) ,
2ikpA;7 = _XCT [|AP|2AP‘U;ZJ / ¥ [4dS +2w§|Ap|2Aa / ’11}}7IZTaTzdsel((ka—kP)z_(wu—Wp)t)

+ 22| A A [ [, P s bz o) 1 (20, — @, PAZA; [ 1, P8, ¥idsel kel
+ (20p — w;)2A2AT / ¥, 2%, rdsel (k= @], (1)

2ik, Al = —ch)[mpmpwg / ¥ |2, ¥idSe! k)2 (wp=wa)t) 4 22| A2 A, / ¥, 2| ¥a|?dS

+ 22| A P A [ [, P s Bkt 4 (2, — o, PAZ AL [ W3(¥2) dsell (b= (o)
+ 2wy — wPATAL [ W3 Sl By bk o],

+2w?| Ay 2 Aa / ¥, |2, i dSe e k== (@nmw)t) 4 (00, — w, )2 AZ A / W2 (¥2)*dSe!(ky k)= (wp—en)t)

+ (2w, — ws)2A2A; / F2HLY el (ke Gy @)

3. Keeping only resonant terms (i.e. neglecting all the terms with the fast oscillating exponen-
tials), one obtains the following set of equations on varying A, and A (for constant A;)

AL = icsx®PA; + icax P PA%EH?,
(Al)* = icux(3)PA;‘ + iC4X(3)PAse_ikZ,

where P = |Ap|2 is the pump intensity, k = Ak — cs)((3)P - ca)((?’)P, Ak = 2k, — ks — ks, and
coefficients c(, 4 4) are obtaied from the previous equations.

4. Evolution of the Stokes field
As(z) = (Aed* + Be™ %) gilkz/2tesxVPz) 3)

¢ = ((eax®py — (kr27) " @

5. Maximum gain occures for k = 0, and the bandwidth of the interaction (¢ > 0) depends on
the pump power.
12.5 Nonlinearity enhancement in ENZ materials
Consider total polarization: PTOT(t) = eox.frE(t):

PTOT () = Py () + Pni(t) = eoxV Egcos(wt) + eox'® (Egcos(wt))® =

= eoxV Egcos(wt) + %x( ) E3cos (Bwt) + %X( )E3cos(wt)
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In the expression above only the first and the third terms represent the contributions to the
total polarization at the frequency w. Thus:

PTO" (1) = eo(x™ + 21 E)Eocos(cwt)

and comparing to the first equation, we have: x.¢r = ( xW + 3 x®|EJ?). Now, using n? = x, Ft+1,
and n = ng + np1 we can obtain:

3
(0 +mD)? = 1+ Y + TxOEP

21
n§ + 2momal + m312 =1+ x\ + Z%‘”;eoc
0

Neglecting the small term ~ 73 on the left-hand-side, we get for the term proportional to the
intensity I of the light:

3
4n3egc

1y X(3)

For ENZ materials n3 = ¢y — 0 suggesting a significant enhancement of 1, at certain wave-
lengths w.



