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Exercise No.10: Pulse characterization

10.1

I(t) = E2(t) = e−( t
t0
)2

1. τ is the FWHM of I(t) i.e.

I(t) =
Imax

2
=

I(t = 0)
2

=
1
2

⇒ e−( t
t0
)2
=

1
2

⇒ ln
(

e−( t
t0
)2)

= ln(
1
2
) = −ln2

⇒ t2

t2
0
= ln2

The FWHM is then two times this value

⇒ τ = t02
√

ln2 = 1.66 · t0

2. The Fourier transform of E(t) is

F {E0(t)} =
∫ −∞

−∞
E0(t)e−iωtdt

=
∫ −∞

−∞
e
− t2

2t20 e−iωtdt

=
√

2πt0e−
t20
2 (ω−ω0)

2

For a gaussian, fourier transform limited pulse

∆ν · τ = 0.441

∆ν =
0.441

τ
=

0.441
1.66

· 1
t0

=
0.27

t0

3. The autocorrelator of the second-order, non colinear type gives an output from the photodiode
which is the background-free intensity autocorrelation, i.e.

G(τ) = detector output

= 4 ·
∫ ∞

−∞
I(t) · I(t − τ)dt

= 4 ·
∫ ∞

−∞
e−( t

t0
)2
· e−( t−τ

t0
)2

dt

= 4

(
1
2

√
π

2
t0e

− τ2

2t20 er f
(

2t − τ√
2t0

)∣∣∣∣∞
−∞

)

= 2
√

π

2
t0e

− τ2

2t20 (1 + 1) with er f (∞) = 1 and er f (−∞) = −1

= 4
√

π

2
t0e

− τ2

2t20
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4. In order to compare the original function I(t) = E2(t) = e−( t
t0
)2

and the function G(τ), we
normalize G(τ) i.e. we devide

Gnorm =
G(τ)∫ ∞

−∞ I2(t)dt

Since ∫ ∞

−∞
I2(t)dt =

√
π · t0

⇒Gnorm(τ) =
4√
2

e
− τ2

2t20

⇒Gnorm,max(τ) =
4√
2

The FWHM τauto is then given by

Gnorm(τ) =
1
2

Gnorm,max

4√
2

e
− τ2

2t20 =
2√
2

⇒− ln2 = − τ2

2t2
0

⇒∆τauto = 2∆τ = 2
√

2ln(2)t0︸ ︷︷ ︸
(see 1.1)

=
√

2 · τ
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10.2

1.

I2(τ) =
∫ ∣∣∣∣∣∣∣E0(t)ei(ωt+ϕ(t)) + E0(t − τ)ei(ω(t−τ)+ϕ(t−τ))

∣∣∣2∣∣∣∣2 dt

=
∫ ∣∣∣|E0(t)|2 + |E0(t − τ)|2 + 2E0(t)E0(t − τ) cos (ωt + ϕ(t)− [ω(t − τ) + ϕ(t − τ)])

∣∣∣2 dt

=
∫ ∣∣∣|E0(t)|2 + |E0(t − τ)|2 + 2E0(t)E0(t − τ) cos (ωτ + ϕ(t)− ϕ(t − τ))

∣∣∣2 dt

=
∫ ∣∣∣|E0(t)|2 + |E0(t − τ)|2 + 2E0(t)E0(t − τ) cos (ωτ + ϕ(t)− ϕ(t − τ))

∣∣∣2 dt

=
∫ (

|E0(t)|2 + |E0(t − τ)|2
)2

+ 4E2
0(t)E2

0(t − τ) cos2 (ωτ + ϕ(t)− ϕ(t − τ))

+ 2
(
(E2

0(t) + E2
0(t − τ))2E0(t)E0(t − τ) cos (ωτ + ϕ(t)− ϕ(t − τ))

)
dt

=
∫

E4
0(t) + E4

0(t − τ) + 2E2
0(t)E2

0(t − τ) + 4E2
0(t)E2

0(t − τ) cos2 (ωτ + ϕ(t)− ϕ(t − τ))

+ 4
(
(E2

0(t) + E2
0(t − τ))E0(t)E0(t − τ) cos (ωτ + ϕ(t)− ϕ(t − τ))

)
dt

=
∫

2E4
0(t) + 2E2

0(t)E2
0(t − τ) + 2E2

0(t)E2
0(t − τ)

+ 2E2
0(t)E2

0(t − τ) cos (2ωτ + 2ϕ(t)− 2ϕ(t − τ))

+ 4
(
(E2

0(t) + E2
0(t − τ))E0(t)E0(t − τ) cos (ωτ + ϕ(t)− ϕ(t − τ))

)
dt

=
∫

2E4
0(t) + 4E2

0(t)E2
0(t − τ)

+ 2E2
0(t)E2

0(t − τ) cos (2ωτ + 2ϕ(t)− 2ϕ(t − τ))

+ 4
(
(E2

0(t) + E2
0(t − τ))E0(t)E0(t − τ) cos (ωτ + ϕ(t)− ϕ(t − τ))

)
dt

2. If the average sweep time τ is much faster than the detector time response the cosine terms
are averaged

cos(a) → 0

From 2.1 follows then:

I2(τ) =
∫
(2E4

0(t) + 4E2
0(t)E2

0(t − τ))dt

=2
∫

I2(t)dt + 4
∫

I(t)I(t − τ)dt

3. Interferometric autocorrelation:

I2(τ → ∞) =2
∫

E4
0(t)dt

I2(τ = 0) =24
∫

E4
0(t)dt

The ratio is then

I2(τ → ∞)

I2(τ = 0)
=

2
∫

E4
0(t)dt

24
∫

E4
0(t)dt

=
1
8

Intensity autocorrelation:

I2(τ → ∞) =2
∫

E4
0(t)dt

I2(τ = 0) =6
∫

E4
0(t)dt
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The ratio is then

I2(τ → ∞)

I2(τ = 0)
=

2
∫

E4
0(t)dt

6
∫

E4
0(t)dt

=
1
3

10.3

The field correlator is defined as the convolution of two functions:

S(τ) =
∫ ∞

−∞
I(t) f (t − τ)dt. (1)

The Fourier transform of the convolution is the product of the Fourier transforms

F{S(τ)} = (F{I(t)})∗ · F{ f (t)}, (2)

f [ω] = F{ f (t)} =
F{S(τ)}
(F{I(t)})∗ . (3)

f (t) then is the inverse Fourier transform of f [ω].

10.4

The tilt angle α can be given as

tan(α) =
EA′

D′ =
AA′ − AE

D′ =
AA′ − AE

D
cos(γ)
cos(γ′)

. (4)

Snell’s law gives

sin(γ) = n · sin(γ′), (5)

cos(γ′) =
1
n

√
n2 − sin(γ)2. (6)

AA′ − AE can be expressed in terms of phase and group velocity

AA′ − AE = Tphase · vp − Tphase · vg =
( c

n
− vg

) D
c

tan(γ), (7)

express the group velocity using material dispersion

k = n(ω)
ω

c
, (8)

vg =

(
dk
dω

∣∣∣∣
ωl

)−1

=
c

n(ω) + ωn′(ω)
. (9)

With this

tan(α) =
ωln′(ωl)

n(ωl) + ωln′(ωl)

sin(γ) · n√
n2 − sin(γ)2

. (10)

10.5

The simple idea of any clock is based on a stable source of periodic signal and some means to
count, accumulate and display the ”ticks” of such source. Appearing in 1949, atomic clocks added
the third component to these two parts of a standard clock – a narrow-linewidth resonance of a
certain atomic transition which is used to control the source (oscillator) frequency. It is known,
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Figure 1: Schematic of the self-referenced all-optical atomic clock. Solid lines represent optical
beams, and dashed lines represent electrical paths. Photodiodes are designated by PD.

.

that for an oscillator locked to an atomic transition of frequency ν, the Allan deviation (a conve-
nient measure of the clock instability) is inversely proportional to ν. For this reason having an
atomic transition with frequency in the optical domain (optical standard) is much more preferable
as it provides more stable clocks. The problem, however, with optical frequencies is that there
is no electronic device which would be able to measure such fast oscillations. This problem was
very difficult to solve until the invention of the optical frequency comb (OFC) – an optical source
representing a set of equidistant frequencies fm in the optical domain which satisfies the relation
fm = fr · m + f0, where fr is the repetition frequency, f0 is the carrier offset frequency, and m is an
integer number. OFC is able to provide a phase-coherent link between the microwave ( fr) and op-
tical frequencies ( fm) and transfer the stability of the latter to the microwave domain. In order to
employ an optical frequency comb for building an optical clocks, one can follow the route showed
in the paper [1] (see Fig.1), where authors use two phase lock loops (PLL) to lock the carrier off-
set frequency f0, obtained through the self-referencing of the comb and the beatnote frequency
fb = fHg − fm (where fHg is the frequency of 199Hg+ optical standard frequency and fm - is the
comb line closest to it), to the integer ratios of the repetition rate fr: f0 = α fr and fb = β fr. Fixing
α, β, m guarantees the phase-coherent link between the highly-stable optical standard fHg and the
clock output fr, which can be also be seen using the above mentioned equations for the PLLs and
comb frequencies together: fHg = (α + β + m) · fr. In summary, the main idea of the optical clock
is to lock the optical frequency comb to the optical standard and eliminate one of its two ”degrees
of freedom” - f0 - by referencing it to the comb’s repetition rate, such that the repetition rate has a
phase coherent link to the optical standard.

[1]. Diddams, Scott A., et al. ”An optical clock based on a single trapped 199Hg+ ion.” Science
293.5531 (2001): 825-828.
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10.6

1. Solve the given equation in the Fourier domain by taking the Fourier transform of both parts:

i
∂Ẽ(z, ω)

∂z
=

β2

2
ω2Ẽ(z, ω)

Solving this partial differential equation one obtains:

Ẽ(ω, z) = Ẽ(ω, 0) exp
(

i
2

β2ω2z
)

2. Using the definition of the Fourier transform: Ẽ(ω, 0) =
∫ ∞
−∞ E(t, 0) exp(iωt)dt, we can

calculate Ẽ(ω, 0) for the Gaussian pulse:

Ẽ(ω, 0) = t0 exp
(
−ω2t2

0
2

)
Then using the inverse Fourier transform: E(t, 0) = 1

2π

∫ ∞
−∞ Ẽ(ω, 0) exp(−iωt)dω, we can com-

pute the pulse propagation in time the domain:

E(t, z) =
1

2π

∫ ∞

−∞
t0 exp

(
−ω2t2

0
2

)
exp

(
i
2

β2ω2z
)

dω =
t0√

(t2
0 − iβ2z)

exp
(

t2
0

2(t2
0 − iβ2z)

)

3. From the last equation the duration of the pulse during the propagation changes as:

t′0(z) = t0

√√√√(1 +
(

z
LD

)2
)

where LD = t2
0/|β2|. Recalling the link between D(λ) and β2: D(λ) = − 2πc

λ2 β2, we obtain
pulse durations after 1m of SMF28: 920 fs for the 25-fs Gaussian pulse, and 250 fs for the 100-fs
Gaussian pulse.
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