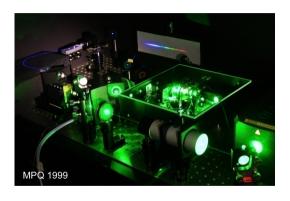
Modules of the 2024 Course

Topics covered		Lecture/Date
Introductory presentation; Basic of laser operation I: dispersion theory, atoms		11. 09. 2024
Basic of laser operation II: dispersion theory, atoms		18. 09. 2024
Laser systems I: 3 and 4 level lasers, gas lasers, solid state lasers, applications		25. 09. 2024
Laser systems II: semi-conductor lasers, external cavity lasers, applications		02. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (1)	5	09. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (2)	6	16. 10. 2024
Optical detection		30. 10. 2024
Optical fibers: light propagation in fibers, specialty fibers and dispersion (GVD)		06. 11. 2024
Ultrafast lasers I.: Passive mode locking and ultrafast lasers		13. 11. 2024
Ultrafast lasers II: mode locking, optical frequency combs / frequency metrology		20. 11. 2024
Ultrafast lasers III: pulse characterization, applications		27. 11. 2024
Nonlinear frequency conversion I: theory, frequency doubling, applications		04. 12. 2024
Nonlinear frequency conversion II: optical parametric amplification (OPA)		11. 12. 2024
Laboratory visits (lasers demo)		20. 12. 2024

Week 9 content

Content of Week 9

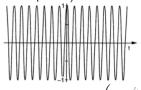
- Basics of pulsed laser sources
- Kerr Lens Mode Locking
- Carrier Envelope Frequency
- Characterizing pulses using autocorrelation technique
- Wiener Khinchine theorem
- Frequency Metrology



Basics of pulses

Source: 2.2.2 (Ruliere, "femtosecond laser pulses")

Time domain



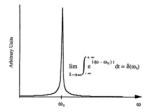
$$E_y = \operatorname{Re}\left(E_0 e^{i\omega_0 t}\right)$$

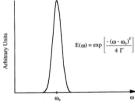
$$E_y = \operatorname{Re}\left(E_0 e^{-\Gamma t^2 + i\omega_0 t}\right)$$

Fourier Transform

A finite duration monochromatic wave has a non-zero spectral width

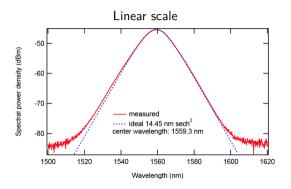
Frequency domain

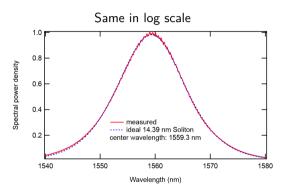




Example

Experimental spectrum of Hyperbolic secant pulse of a 200 fs ultra-fast faser at telecom wavelength





Elemental relation between time and frequency domain (time-bandwidth product):

$$\Delta\omega\cdot\tau>\frac{1}{2}$$

Minimum pulse duration of mode-locked lasers

Laser medium	Gain bandwidth $\Delta \lambda_{ m gain}$	Minimum puls duration $\Delta au pprox rac{\lambda^2}{c \cdot \Delta \lambda}$
Argon-ion	$0.7\cdot 10^{-2}$ nm	150 ps
Ruby	0.2 nm	5 ps
Nd:YAG	10 nm	350 fs
Er-glass	40 nm	150 fs
Dye	100 nm	10 fs
Ti-Sapphire	400 nm	3 fs

Chirped pulses

$$E_y = \operatorname{Re}\left(E_0 e^{\left(-\Gamma t^2 + i\omega_0 t\right)}\right)$$

$$E_y = \operatorname{Re}\left(E_0 e^{\left[-\Gamma t^2 + i(\omega_0 t - at^2)\right]}\right)$$

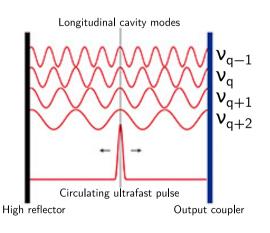
Instantaneous frequency:

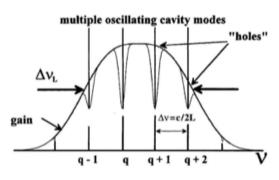
Instantaneous frequency:

The pulse is said to be "chirped"

Mode-locking

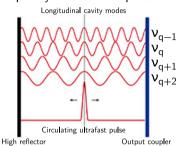
Chapter 3. (Ruliere, "femtosecond laser pulses")





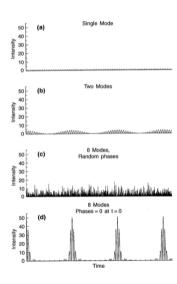
Fresnel representation

Frequency domain interpretation



$$\sum_{n} x_{o} \sin \left(2\pi \left(\nu_{o} + n\Delta \nu_{\text{cavity}} \right) \cdot t + \phi_{o} \right)$$

Constant phase for all modes, i.e. "mode locking"



Mode-locking

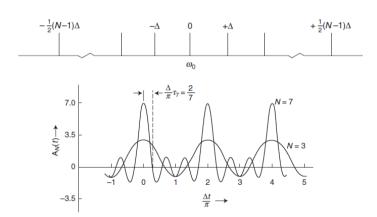
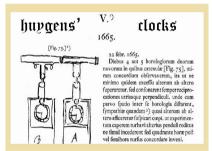


Figure 11.19: The function $A_N(t)=\sin(\frac{1}{2}N\Delta t)/\sin(\frac{1}{2}\Delta t)$ vs. $\Delta t/\pi$

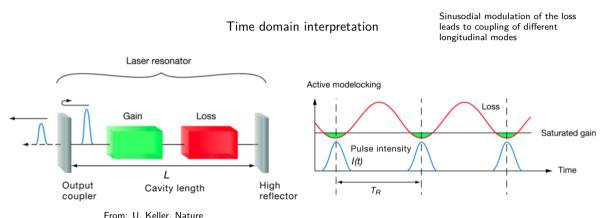
Nonlinear oscillator

Synchronization of two pendulum: Huygens, 17th century

In 1657, Christiaan Huygens revolutionized the measurement of time by creating the first working pendulum clock. In early 1665, Huvgens discovered "...an odd kind of sympathy perceived by him in these watches [two pendulum clocks] suspended by the side of each other." The pendulum clocks swung with exactly the same frequency and 180 degrees out of phase: when the pendulums were disturbed, the antiphase state was restored within a half-hour and persisted indefinitely.



Active mode locking requires external loss modulation



Frequency domain interpretation

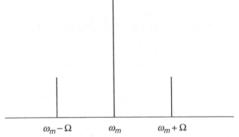
Scalar electric field:

$$E_m(z,t) = \varepsilon_m \cdot \sin k_m z \cdot \sin (\omega t + \phi_n)$$

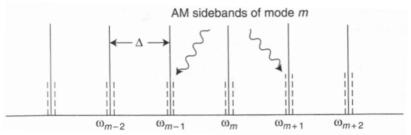
Amplitude:
$$\varepsilon_m = \varepsilon_0 (1 + \varepsilon \cos \Omega t)$$

$$E_m(z,t) = \varepsilon_0(1 + \varepsilon \cos \Omega t) \sin (\omega t + \phi_m) \sin k_m \cdot z =$$

$$\begin{cases} = \varepsilon_0 \left[\sin \left(w_n t + \phi_m \right) + \frac{\varepsilon}{2} \sin \left(\left(\omega_m + \Omega \right) t + \phi_m \right) \right] \\ = \varepsilon_0 \left[\sin \left(w_n t + \phi_m \right) + \frac{\varepsilon}{2} \sin \left(\left(\omega_m - \Omega \right) t + \phi_m \right) \right] \end{cases}$$



Strong coupling to the nearest neighbor

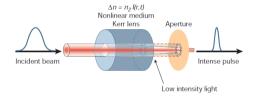


Passive: Kerr Lens Mode locking

EPFL

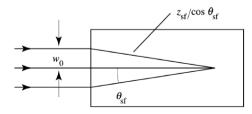
Derivation of critical self focusing: The Kerr nonlinearity

Intensity dependent refractive index

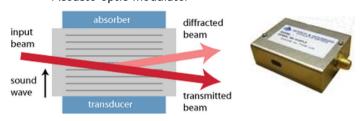


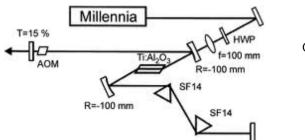
Power for critical self focusing

$$P_{cr} = \frac{\pi (0.61)^2 \lambda_0^2}{8 n_0 n_2} \approx \frac{\lambda_0^2}{8 n_0 n_2} \quad \theta_{dif} = \theta_{sf}$$



Active mode-locking: AM modulation Acousto-optic modulator





Condition for mode-locking

Scalar electric field:

$$E_m(z,t) = \varepsilon_m \cdot \sin k_m z \sin (\omega_m t + \phi_0 + \delta \cos \Omega t)$$

Suppose amplitude is constant but phase varying in time

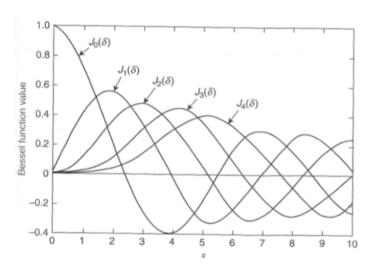
$$\sin(\omega_m t + \phi_m + \delta \cos \Omega t) = J_0(\delta) \cdot \sin(\omega_m t + \phi_m)$$

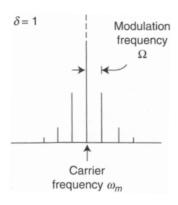
$$+ J_1(\delta) \left[\sin((\omega_m + \Omega)t + \phi_m) + \sin((\omega_m - \Omega)t) \right]$$

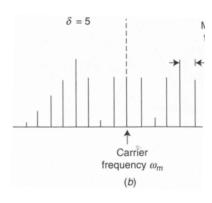
$$- J_2(\delta) \left[\sin((\omega_m + 2\Omega)t + \phi_m) + \sin((\omega_m - 2\Omega)t) \right]$$

$$- J_3(\delta) \left[\sin((\omega_m + 3\Omega)t + \phi_m) + \sin((\omega_m - 3\Omega)t) \right]$$

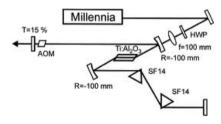
$$\vdots$$







Electro-optic modulator



Passive mode-locking: saturable absorber

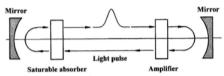
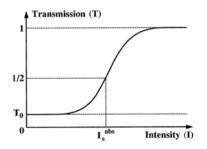
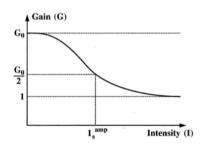


Fig. 3.12. Round-trip pulse in a laser cavity including saturable absorber and amplifying medium





Passive mode-locking: saturable absorber

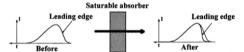


Fig. 3.15. Illustration of pulse shape modification after crossing a saturable absorber

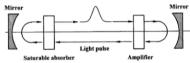


Fig. 3.12. Round-trip pulse in a laser cavity including saturable absorber and amplifying medium

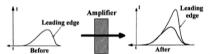
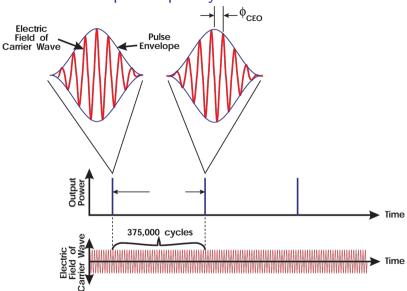


Fig. 3.16. Illustration of pulse shape modification after crossing an amplifying medium

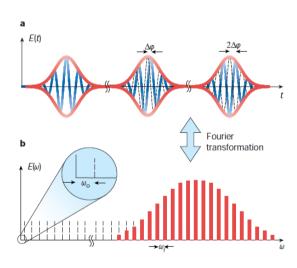
Carrier Envelope Frequency



$$u_{\text{CEO}} = \frac{d\Phi}{dt} = \frac{\Delta\Phi}{2\pi T}$$

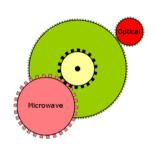
$$\nu_m = m f_{\rm rep} + \nu_{\rm CEO}$$

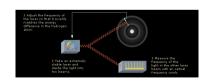
Carrier Envelope Frequency



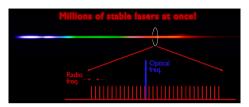
Applications of ultra-short pulses: Optical Clocks

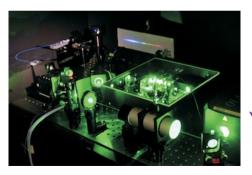
Optical atomic clocks (NIST, Boulder, Colorado)

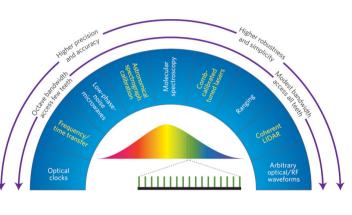




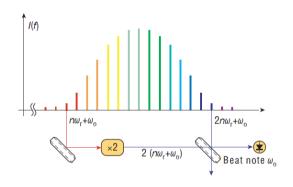
Applications of frequency combs







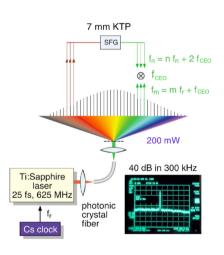
Measuring the carrier envelope frequency

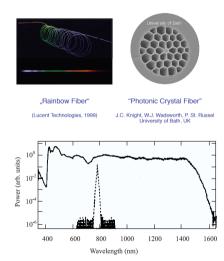


$$f_n = n f_{\rm rep} + f_0$$

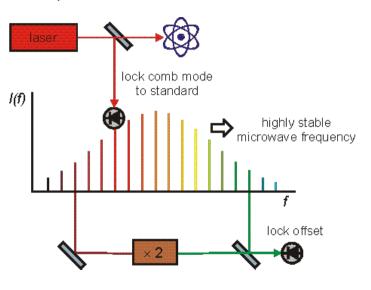
$$2f_n - f_{2n} = 2(nf_{rep} + f_0) - (2nf_{rep} + f_0) = f_0$$

Measuring the carrier envelope frequency





Principle of an atomic clock



Optical atomic clock: state of the art

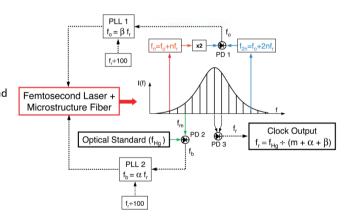
An Optical Clock Based on a Single Trapped ¹⁹⁹Hg⁺ Ion

S. A. Diddams, 1* Th. Udem, 1† J. C. Bergquist, 1 E. A. Curtis, 1,2
R. E. Drullinger, 1 L. Hollberg, 1 W. M. Itano, 1 W. D. Lee, 1
C. W. Oates, 1 K. R. Vogel, 1 D. J. Wineland 1

A clockwork based on a mode-locked femtosecond laser provides output pulses at a 1-gigahertz rate that are phase-coherently locked to the optical frequency. By comparison to a laser-cooled calcium optical standard, an upper limit for the fractional frequency instability of $7 \cdot 10^{-15}$ is measured in 1 second of averaging – a value substantially better than that of the world's best microwave atomic clocks

Fractional frequency instability:

$$\sigma_y(au) pprox \left\langle rac{\Delta
u_{
m rms}}{
u_0}
ight
angle_{ au}$$

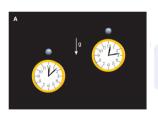


Best clocks to date

Optical Clocks and Relativity

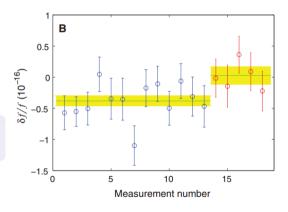
C. W. Chou,* D. B. Hume, T. Rosenband, D. 1. Wineland

Observers in relative motion or at different gravitational potentials measure disparate clock rates. These predictions of relativity have previously been observed with atomic clocks at high velocities and with large changes in elevation. We observed time dilation from relative speeds of less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter length of optical fiber. We can now also detect time dilation due to a change in height near Earth's surface of less than 1 meter. This technique may be extended to the field of geodesy, with applications in geophysics and hydrology as well as in space-based tests of fundamental physics.

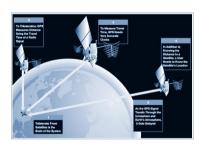


$$\sigma_y(au) pprox \left\langle rac{\Delta v_{
m rms}}{v_0}
ight
angle_{ au}$$

Gravitational time dilation at the scale of daily life. (A) As one of the clocks is raised, its rate increases when compared to the clock rate at deeper gravitational potential



Atomic clocks



1999 – NIST-F1 begins operation with an uncertainty of $1.7 \cdot 10^{-15}$, or accuracy to about one second in 20 million years, making it one of the most accurate clocks ever made (a distinction shared with similar standards in France and Germany).

Three spheres are necessary to find position in two dimensions, four are needed in three dimensions.