Modules of the 2024 Course EPFL

Topics covered No Lecture/Date
Introductory presentation; Basic of laser operation I: dispersion theory, atoms 1 11. 09. 2024
Basic of laser operation Il: dispersion theory, atoms 2 18. 09. 2024
Laser systems I: 3 and 4 level lasers, gas lasers, solid state lasers, applications 3 25. 09. 2024
Laser systems Il: semi-conductor lasers, external cavity lasers, applications 4 02. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (1) 5 09. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (2) 6 16. 10. 2024
Optical detection 7 30. 10. 2024
Optical fibers: light propagation in fibers, specialty fibers and dispersion (GVD) 8 06. 11. 2024
Ultrafast lasers |.: Passive mode locking and ultrafast lasers 9 13. 11. 2024
Ultrafast lasers II: mode locking, optical frequency combs / frequency metrology 10 20. 11. 2024
Ultrafast lasers Ill: pulse characterization, applications 11 27. 11. 2024
Nonlinear frequency conversion |: theory, frequency doubling, applications 12 04. 12. 2024
Nonlinear frequency conversion |lI: optical parametric amplification (OPA) 13 11. 12. 2024
Laboratory visits (lasers demo) 14 20. 12. 2024
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Week 9 content =PrL

Content of Week 9
@ Basics of pulsed laser sources
o Kerr Lens Mode Locking
@ Carrier Envelope Frequency
°

Characterizing pulses using
autocorrelation technique

Wiener Khinchine theorem

Frequency Metrology
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Basics of pulses

Source: 2.2.2 (Ruliere, “femtosecond laser pulses”)

Eoelwot y = Re E()e I't? +zw0t

Fourler Transform
\L A finite duration monochromatic wave has \L
a non-zero spectral width

.
E(w) = exp Iﬂ|
4r

Arbitrary Units
Arbitrary Units

Frequency domain
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Example
Experimental spectrum of Hyperbolic
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Minimum pulse duration of mode-locked lasers =PrL

Laser medium | Gain bandwidth A)\g,i, | Minimum puls duration A7 ~ %
Argon-ion 0.7 - 102 nm 150 ps

Ruby 0.2 nm 5 ps

Nd:YAG 10 nm 350 fs

Er-glass 40 nm 150 fs

Dye 100 nm 10 fs

Ti-Sapphire 400 nm 3fs
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Chirped pulses =P-L

. |nStantaneOUS requenCy:
T 2
Ey — Re ( Oe< ¢ Y Ot)>

1

-1

E, - Re (Eoe[_rt2+i(w0t_at2)]) Instantaneous frequency:

The pulse is said to be “chirped”
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Mode-locking

Chapter 3. (Ruliere, “femtosecond laser pulses™)

Longitudinal cavity modes

multiple oscillating cavity modes

Circulating ultrafast pulse
High reflector Output coupler
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Fresnel representation =PrL

Frequency domain interpretation ol @ Single Mode
Longitudinal cavity modes ag
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Mode-locking =PrL
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Nonlinear oscillator EPFL

Synchronization of two pendulum: Huygens, 17t century

In 1657, Christiaan Huygens revolutionized
the measurement of time by creating the first

working pendulum clock. In early 1665, hupgens’ L clocks
Huygens discovered “...an odd kind ) o 1665.
i 22 febr. 1665

of sympathy perceived by him in these watches
[two pendulum clocks] suspended by the side
of each other.” The pendulum clocks swung
with exactly the same frequency and

180 degrees out of phase; when the pendulums
were disturbed, the antiphase state was
restored within a half-hour and persisted
indefinitely.

Diebus 4 aut 5 herologiorum duorum
novorum in quibus carenule [Fig. 73], mi-
ram concordiam obfervaveram, ita ut ne
minimo quidem exceflu alcerum ab altero
’ 3
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. cationes utriusque perpendiculi. unde cum
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teroaficeretur fupicari ceepi. uc exper
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https://www.youtube.com/watch?v=W1TMZASCR-I

Active Mode locking: AM modulation =PrL

Active mode locking requires external loss modulation

Sinusodial modulation of the loss
Time domain interpretation leads to coupling of different
longitudinal modes

Laser resonator
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From: U. Keller, Nature
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Active Mode locking: AM modulation =PrL

Frequency domain interpretation

Scalar electric field:

En(z,t) = € - sin k2 - sin (wt + ¢p)
Amplitude: &,, = go(1 + € cos Q)
Em (2,t) = e0(1 4 € cos Q) sin (wt + ¢p,) sinkyy, - 2 =

= go [sin (wpt + ¢m) + § sin ((wm + Q) t + o)
= g |sin (wnt + @) + 5 sin ((wm - )t+ ¢m)
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Active mode-locking: AM modulation =PrL

@, —Q Oy Wy +Q

Strong coupling to the
nearest neighbor

AM sidebands of mode m
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Passive: Kerr Lens Mode locking =PrL

Derivation of critical self focusing: The Kerr nonlinearity

. . . An = n, l(r,)
Intensity dependent refractive index Nonlinear medium

/\ Kerr lens Aperture

Incident beam

Intense pulse

Low intensity light

zsf/CDs Bsf

Power for critical self focusing i’

~ w(0.61)223 A3

er 8ngno 8nona dif sf - ? M

esf
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Active mode—locking: AM modulation
Acousto-optic modulator

difracted

input beam
beam

sound T

wave transmitted

transducer beam

Millennia

Condition for mode-locking

R=-100 mm
BF14

Lasers: theory and modern applications



Active mode-locking: FM modulation =PrL

Scalar electric field:
En(z,t) = em - sinkpz sin (wpmt + ¢o + § cos Q)

Suppose amplitude is constant but phase varying in time

sin (wmt + ¢m + 0 cos Q) = Jo(0) - sin (Wt + dm)
+ J1(9) [sm Wi + Q)t + ¢) + sin ((wim — Q) t)]

(
((

— J2(6) [sm ( wm +20) t+ (bm) 4+ sin ((wm -20) t)]
((

— J3(0) [sm wm +3Q) t + ¢m) + sin ((wm — 3Q2) t)]
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Active mode-locking: FM modulation =PrL
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Active mode-locking: FM modulation =PrL
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Active mode-locking: FM modulation =PrL

Electro-optic modulator ) )
Linear electro-optic effect (Pockels effect)

R=-100 mm
SF14
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Passive mode-locking: saturable absorber =PrL
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Fig. 3.12. Round-trip pulse in a laser cavity including saturable absorber and
amplifying medium
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Passive mode-locking: saturable absorber

Saturable absorber
| Leading edge l&lding edge
' Before r
Fig. 3.15. Il of pulse shape ifi after crossing a saturable ab-

sorber
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Fig. 3.12. Round-trip pulse in a laser cavity including saturable absorber and

amplifying medium
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Carrier Envelope Frequency
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Carrier Envelope Frequency =PrL
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Applications of ultra-short pulses: Optical Clocks =PrL

Optical atomic clocks (NIST, Boulder, Colorado)

\
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Applications of frequency combs
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Measuring the carrier envelope frequency =PFL
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Measuring the carrier envelope frequency

7 mm KTP

fa=nfy+2fceo
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40 dB in 300 kHz

Ti:Sapphire
laser
25 fs, 625 MHz

photonic
fr crystal
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University of Bath

,Rainbow Fiber* “Photonic Crystal Fiber”

(Lucent Technologies, 1999) J.C. Knight, W.J. Wadsworth, P. St. Russel
University of Bath, UK
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Principle of an atomic clock =PrL

lock comb mode
to standard

i) ¥
|:> highly stable
microway e frequency
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Lasers: theory and modern applications November 12, 2024

Optical atomic clock: state of the art =PrL

Fractional frequency instability:

An Optical Clock Based on a
Single Trapped '*’Hg™ lon oy(7) ~ <AVrms>

S. A. Diddams,™ Th. Udem,"t J. C. Bergquist,” E. A. Curtis,™?
R. E. Drullinger,” L. Hollberg,” W. M. Itano,” W. D. Lee,’
C. W. Oates,” K. R. Vogel," D. ]. Wineland PLL 1

] )
A clockwork based on a mode-locked femtosecond | Femtosecond Laser + .
laser provides output pulses at a 1-gigahertz rate Microstructure Fiber e
that are phase-coherently locked to the optical f

. i Clock Output
frequency. By comparison to a laser-cooled Opical Standard (f,,,) |-~ > B =ty + (m+ s B)
? :

calcium optical standard, an upper limit for i

the fractional frequency instability of 7 - 1071 is PLL2
measured in 1 second of averaging — a value
substantially better than that of the world’s best

K . -f,+1on
microwave atomic clocks.
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Best clocks to date =P-L
Optical Clocks and Relativity

C. W. Chou,* D. B. Hume, T. Rosenband, D. ). Wineland

Observers in relative motion or at different gravitational potentials measure disparate clock

rates. These predictions of relativity have previously been observed with atomic clocks at high 1 T
velocities and with large changes in elevation. We observed time dilation from relative speeds of B
less than 10 meters per second by comparing two optical atomic clocks connected by a 75-meter
length of optical fiber. We can now also detect time dilation due to a change in height near
Earth’s surface of less than 1 meter. This technique may be extended to the field of geodesy, with 051 b i 1
applications in geophysics and hydrology as well as in space-based tests of fundamental physics. .
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Gravitational time dilation at the scale of daily life.

(A) As one of the clocks is raised, its rate increases
when compared to the clock rate at deeper gravitational

potential
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Atomic clocks

1999 — NIST-F1 begins operation with
an uncertainty of 1.7 - 10715, or accuracy

to about one second in 20 million years,
making it one of the most accurate clocks ever
made (a distinction shared with similar

standards in France and Germany).
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Three spheres are
necessary to find position
in two dimensions, four
are needed in three
dimensions.
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