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9.1 Historical perspective and fiber optical fabrication!

Historical Perspective

Total internal reflection - the basic phenomenon responsible for guiding of light in optical fibers
- is known from the nineteenth century. The reader is referred to a 1999 book for the interesting
history behind the discovery of this phenomenon. Although uncladded glass fibers were fabricated
in the 1920s, the field of fiber optics was not born until the 1950s when the use of a cladding layer
led to considerable improvement in the fiber characteristics. The idea that optical fibers would
benefit from a dielectric cladding was not obvious and has a remarkable history.

Figure 9.2: Daniel Colladon first described this “light fountain” or “light pipe” in an 1842 article
entitled On the reflections of a ray of light inside a parabolic liquid stream. This particular
illustration comes from a later article by Colladon, in 1884.2

The field of fiber optics developed rapidly during the 1960s, mainly for the purpose of image
transmission through a bundle of glass fibers . These early fibers were extremely lossy (loss >1000
dB/km) from the modern standard. However, the situation changed drastically in 1970 when,
following an earlier suggestion, losses of silica fibers were reduced to below 20 dB/km . Further
progress in fabrication technology resulted by 1979 in a loss of only 0.2 dB/km in the 1.55 pum
wavelength region, a loss level limited mainly by the fundamental process of Rayleigh scattering.

The availability of low-loss silica fibers led not only to a revolution in the field of optical fiber
communications but also to the advent of the new field of nonlinear fiber optics. Stimulated
Raman- and Brillouin-scattering processes in optical fibers were studied as early as 1972. This
work stimulated the study of other nonlinear phenomena such as optically induced birefringence,
parametric four-wave mixing, and self-phase modulation. An important contribution was made
in 1973 when it was suggested that optical fibers can support soliton-like pulses as a result of an
interplay between the dispersive and nonlinear effects . Optical solitons were observed in a 1980
experiment and led to a number of advances during the 1980s in the generation and control of
ultrashort optical pulses. The decade of the 1980s also saw the development of pulse-compression
and optical-switching techniques that exploited the nonlinear effects in fibers. Pulses as short as

LChapter 1 (Page 1 - 13) - Nonlinear fiber optics - Agrawal, G. P. Govind P. - Oxford : Academic Press, 2012
2Source: http://en.wikipedia.org/wiki/Optical_fiber
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6 fs were generated by 1987. Several reviews and books cover the enormous progress made during
the 1980s.

The field of nonlinear fiber optics continued to grow during the decade of the 1990s. A new
dimension was added when optical fibers were doped with rare-earth elements and used to make
amplifiers and lasers. Although fiber amplifiers were made as early as 1964, it was only after 1987
that their development accelerated. Erbium-doped fiber amplifiers attracted the most attention
because they operate in the wavelength region near 1.55 pm and can be used for compensation
of losses in fiber-optic lightwave systems. Such amplifiers were used for commercial applications
beginning in 1995. Their use has led to a virtual revolution in the design of multichannel lightwave
systems.

The advent of fiber amplifiers also fueled research on optical solitons and led eventually to
the concept of dispersion-managed solitons. In another development, fiber gratings, first made in
1978, were developed during the 1990s to the point that they became an integral part of lightwave
technology. Nonlinear effects in fiber gratings and photonic-crystal fibers have attracted consider-
able attention since 1996. Clearly, the field of nonlinear fiber optics has grown considerably in the
1990s and is expected to do so during the twenty-first century. It has led to a number of advances
important from the fundamental as well as the technological point of view. The interest in nonlin-
ear fiber optics should continue in view of the development of the photonic-based technologies for
information management.

Fiber Characteristics
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Figure 9.3: Cross section and the refractive-index profile of a step-index, graded index and step
index single mode fiber.

In its simplest form, an optical fiber consists of a central glass core surrounded by a cladding
layer whose refractive index ng is slightly lower than the core index n;. Such fibers are generally
referred to as step-index fibers to distinguish them from graded-index fibers in which the refractive
index of the core decreases gradually from center to core boundary. Figure 1.1 shows schematically
the cross section and refractive-index profile of a step-index fiber. Two parameters that characterize
an optical fiber are the relative core-cladding index difference

ny —n2

A= (9.1.1)

ni

and the so-called V' parameter defined as
V = koa(n? — n2)/? (9.1.2)

where ko = 27/, a is the core radius, and A is the wavelength of light.

The V parameter determines the number of modes supported by the fiber. Step-index fiber
supports a single mode if V' < 2.405. Optical fibers designed to satisfy this condition are called
single-mode fibers. The main difference between the single-mode and multimode fibers is the core
size. The core radius a is typically 2530 ym for multimode fibers. However, single-mode fibers
with A = 0.003 require a to be < 5um. The numerical value of the outer radius b is less critical
as long as it is large enough to confine the fiber modes entirely. A standard value of b = 62.5um
is commonly used for both single-mode and multimode fibers. Since nonlinear effects are mostly
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RADIAL DISTANCE

Figure 9.4: Schematic illustration of the cross section and the refractive-index profile of a step-
index fiber.

studied using single-mode fibers, the term optical fiber in this text refers to single-mode fibers
unless noted otherwise.

Material and Fabrication

Figure 9.5: Cabled Fibers used in industry

The material of choice for low-loss optical fibers is pure silica glass synthesized by fusing SiOs
molecules. The refractive-index difference between the core and the cladding is realized by the
selective use of dopants during the fabrication process. Dopants such as GeOs and P2Op increase
the refractive index of pure silica and are suitable for the core, while materials such as boron and
fluorine are used for the cladding because they decrease the refractive index of silica. Additional
dopants can be used depending on specific applications. For example, to make fiber amplifiers and
lasers, the core of silica fibers is codoped with rare-earth ions using dopants such as ErCls and
Nd5Og. Similarly, AloOg3 is sometimes added to control the gain spectrum of fiber amplifiers.

The fabrication of optical fibers involves two stages. In the first stage, a vapor-deposition
method is used to make a cylindrical preform with the desired refractive-index profile and the
relative core-cladding dimensions. A typical preform is 1-m long with 2-cm diameter. In the
second stage, the preform is drawn into a fiber using a precision-feed mechanism that feeds it
into a furnace at a proper speed. During this process, the relative core-cladding dimensions are
preserved. Both stages, preform fabrication and fiber drawing, involve sophisticated technology to
ensure the uniformity of the core size and the index profile.

Several methods can be used for making a preform. The three commonly used methods are
modified chemical vapor deposition (MCVD), outside vapor deposition (OVD), and vapor-phase
axial deposition (VAD). Figure 9.6 shows a schematic diagram of the MCVD process. In this
process, successive layers of SiOy are deposited on the inside of a fused silica tube by mixing the
vapors of SiCly and Oy at a temperature of ~ 1800°C . To ensure uniformity, the multiburner
torch is moved back and forth across the tube length. The refractive index of the cladding layers is
controlled by adding fluorine to the tube. When a sufficient cladding thickness has been deposited
with multiple passes of the torch, the vapors of GeCly or POCl3 are added to the vapor mixture
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to form the core. When all layers have been deposited, the torch temperature is raised to collapse
the tube into a solid rod known as the preform.
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Figure 9.6: Schematic diagram of the MCVD process commonly used for fiber fabrication.

This description is extremely brief and is intended to provide a general idea. The fabrication of
optical fibers requires attention to a large number of technological details. The interested reader
is referred to the extensive literature on this subject.

Fiber Losses
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Figure 9.7: Fiber Absorption Spectrum

An important fiber parameter is a measure of power loss during transmission of optical signals
inside the fiber. If Py is the power launched at the input of a fiber of length L, the transmitted
power Pr is given by

Pp = Ppe™ oL (9.1.3)

where the attenuation constant « is a measure of total fiber losses from all sources. It is customary
to express in units of dB/km using the relation
10 Pr
=1 (—) = 4.343 9.1.4
Q4B 7 0g j2) o ( )
where Eq. (9.1.3) was used to relate agp and «.

As one may expect, fiber losses depend on the wavelength of light. Figure 9.7 shows the loss
spectrum of a silica fiber made by the MCVD process. This fiber exhibits a minimum loss of about
0.2 dB/km near 1.55 pm. Losses are considerably higher at shorter wavelengths, reaching a level
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of a few dB/km in the visible region. Note, however, that even a 10-dB/km loss corresponds to
an attenuation constant of only a ~ 2 x 107® cm ™!, an incredibly low value compared to that of
most other materials.

Several factors contribute to the loss spectrum of Fig. 9.7, with material absorption and
Rayleigh scattering contributing dominantly. Silica glass has electronic resonances in the ultraviolet
(UV) region and vibrational resonances in the far-infrared (FIR) region beyond 2 pum but absorbs
little light in the wavelength region 0.52 ym. However, even a relatively small amount of impurities
can lead to significant absorption in that wavelength window. From a practical point of view, the
most important impurity affecting fiber loss is the OH ion, which has a fundamental vibrational
absorption peak at ~ 2.73um. The overtones of this OH-absorption peak are responsible for the
dominant peak seen in Fig. 9.7 near 1.4 um and a smaller peak near 1.23 pm. Special precautions
are taken during the fiber-fabrication process to ensure an OH-ion level of less than one part in
one hundred million. In state-of-the-art fibers, the peak near 1.4 pm can be reduced to below the
0.5-dB level. It virtually disappears in especially prepared fibers. Such fibers with low losses in
the entire 1.31.6 pum spectral region are useful for fiber-optic communications and were available
commercially by the year 2000 (e.g., all-wave fiber).

Rayleigh scattering is a fundamental loss mechanism arising from density fluctuations frozen
into the fused silica during manufacture. Resulting local fluctuations in the refractive index scatter
light in all directions. The Rayleighscattering loss varies as A~* and is dominant at short wave-
lengths. As this loss is intrinsic to the fiber, it sets the ultimate limit on fiber loss. The intrinsic
loss level (shown by a dashed line in Fig. 9.7) is estimated to be (in dB/km)

ar = Cp/\* (9.1.5)

where the constant Cp is in the range 0.70.9 dB/(km-um?*) depending on the constituents of the
fiber core. As ar = 0.120.15 dB/km near A = 1.55um, losses in silica fibers are dominated by
Rayleigh scattering. In some glasses, ag can be reduced to a level ~ 0.05 dB/km. Such glasses
may be useful for fabricating ultra low-loss fibers.

Among other factors that may contribute to losses are bending of fiber and scattering of light
at the core-cladding interface. Modern fibers exhibit a loss of ~ 0.2 dB/km near 1.55 ym. Total
loss of fiber cables used in optical communication systems is slightly larger (by ~ 0.03 dB/km)
because of splice and cabling losses.

Chromatic Dispersion

When an electromagnetic wave interacts with the bound electrons of a dielectric, the medium
response, in general, depends on the optical frequency w. This property, referred to as chro-
matic dispersion, manifests through the frequency dependence of the refractive index n(w). On
a fundamental level, the origin of chromatic dispersion is related to the characteristic resonance
frequencies at which the medium absorbs the electromagnetic radiation through oscillations of
bound electrons. Far from the medium resonances, the refractive index is well approximated by
the Sellmeier equation

" Bjw?

2 773
=1 — 9.1.6
n(w) + jEZl e ( )

where w; is the resonance frequency and B; is the strength of jth resonance. The sum in Eq. (9.1.6)
extends over all material resonances that contribute to the frequency range of interest. In the case
of optical fibers, the parameters B; and w; are obtained experimentally by fitting the measured
dispersion curves to Eq. (9.1.6) with m = 3 and depend on the core constituents. For bulk-fused
silica, these parameters are found to be B; = 0.6961663, Bo = 0.4079426, B3 = 0.8974794, \; =
0.0684043um, Ay = 0.1162414pm, and A3 = 9.896161pum, where A\; = 2mc/w; and c is the speed of
light in vacuum.

Fiber dispersion plays a critical role in propagation of short optical pulses because different
spectral components associated with the pulse travel at different speeds given by ¢/n(w). Even
when the nonlinear effects are not important, dispersion-induced pulse broadening can be detrimen-
tal for optical communication systems. In the nonlinear regime, the combination of dispersion and
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Figure 9.8: Variation of refractive index n and group index n, with wavelength for fused silica.

nonlinearity can result in a qualitatively different behavior, as discussed in later chapters. Math-
ematically, the effects of fiber dispersion are accounted for by expanding the mode-propagation
constant 8 in a Taylor series about the frequency wy at which the pulse spectrum is centered:

Blw) = n(w)% = Bo + Bi(w —wo) + %ﬁz(w —wo)?+... (9.1.7)
where
_ (4" _
/%—<%;>_ (m=0,1,2,...) (9.1.8)

The parameters 5, and 2 are related to the refractive index n and its derivatives through the
relations

1 ng, 1 dn
= —= = = — _ ~1-
b Vg c c<n+wdw> (9.1.9)
1{ dn d*n

where n, is the group index and v, is the group velocity. Physically speaking, the envelope of an
optical pulse moves at the group velocity while the parameter 35 represents dispersion of the group
velocity and is responsible for pulse broadening. This phenomenon is known as the group-velocity
dispersion (GVD), and Sz is the GVD parameter.

Figures 9.8 and 9.9 show how n,ny, and B2 vary with wavelength X in fused silica using Egs.
(9.1.6), (9.1.9), and (9.1.10). The most notable feature is that B85 vanishes at a wavelength of
about 1.27 um and becomes negative for longer wavelengths. This wavelength is referred to as
the zero-dispersion wavelength and is denoted as A\p. However, note that dispersion does not
vanish at A = Ap. Pulse propagation near this wavelength requires inclusion of the cubic term in
Eq. (9.1.7). The coefficient 33 appearing in that term is called the third-orderdispersion (TOD)
parameter. Such higher-order dispersive effects can distort ultrashort optical pulses both in the
linear and nonlinear regimes. Their inclusion is necessary only when the wavelength A approaches
Ap to within a few nanometers.

The curves shown in Figs. 9.8 and 9.9 are for bulk-fused silica. The dispersive behavior of
actual glass fibers deviates from that shown in these figures for the following two reasons. First,
the fiber core may have small amounts of dopants such as GeOs and P2O5. Equation (9.1.6) in that
case should be used with parameters appropriate to the amount of doping levels. Second, because
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Figure 9.9: Variation of 83 and dio with wavelength for fused silica. The dispersion parameter
B2 = 0 near 1.27 um.

of dielectric waveguiding, the effective mode index is slightly lower than the material index n(w) of
the core, reduction itself being w dependent. This results in a waveguide contribution that must
be added to the material contribution to obtain the total dispersion. Generally, the waveguide
contribution to B is relatively small except near the zero-dispersion wavelength Ap where the
two become comparable. The main effect of the waveguide contribution is to shift Ap slightly
toward longer wavelengths; Ap ~ 1.31um for standard fibers. Figure 9.10 shows the measured
total dispersion of a singlemode fiber. The quantity plotted is the dispersion parameter D that is
commonly used in the fiber-optics literature in place of 35. It is related to S2 by the relation

_dB 2mc , _ Ad’n

D=-"2=-""F"fmtos 9.1.11
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Figure 9.10: Measured variation of dispersion parameter D with wavelength for a single-mode
fiber.

An interesting feature of the waveguide dispersion is that its contribution to D (or ) depends
on fiber-design parameters such as core radius a and core-cladding index difference A. This feature
can be used to shift the zero dispersion wavelength Ap in the vicinity of 1.55 ym where the fiber
loss is minimum. Such dispersion-shifted fibers have found applications in optical communication
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systems. They are available commercially and are known by names such as zero- and nonzero-
dispersion-shifted fibers, depending on whether D ~ 0 at 1.55 um or not. Those fibers in which
GVD is shifted to the wavelength region beyond 1.6 pm exhibit a large positive value of B3. They
are called dispersion-compensating fibers (DCFs). The slope of the curve in Fig. 9.10 (called
the dispersion slope) is related to the TOD parameter 3. Fibers with reduced slope have been
developed in recent years for wavelengthdivision- multiplexing (WDM) applications.

It is possible to design dispersion-flattened optical fibers having low dispersion over a relatively
large wavelength range 1.31.6 pm. This is achieved by using multiple cladding layers. For compar-
ison,dispersion of a single-clad fiber is also shown by a dashed line. The quadruply clad fiber has
low dispersion (|D| ~ 1 ps/km-nm) over a wide wavelength range extending from 1.25 to 1.65 pm.
Waveguide dispersion can also be used to make fibers for which D varies along the fiber length.
An example is provided by dispersion-decreasing fibers made by tapering the core diameter along
the fiber length.

Nonlinear effects in optical fibers can manifest qualitatively different behaviors depending on the
sign of the GVD parameter. For wavelengths such that A < Ap, the fiber is said to exhibit normal
dispersion as 2 > 0 (see Fig. 9.9). In the normal-dispersion regime, high-frequency (blue-shifted)
components of an optical pulse travel slower than low-frequency (red-shifted) components of the
same pulse. By contrast, the opposite occurs in the anomalousdispersion regime in which £; < 0.
As seen in Fig. 9.9, silica fibers exhibit anomalous dispersion when the light wavelength exceeds the
zero-dispersion wavelength (A > Ap). The anomalous-dispersion regime is of considerable interest
for the study of nonlinear effects because it is in this regime that optical fibers support solitons
through a balance between the dispersive and nonlinear effects.

An important feature of chromatic dispersion is that pulses at different wavelengths propagate
at different speeds inside a fiber because of a mismatch in their group velocities. This feature leads
to a walk-off effect that plays an important role in the description of the nonlinear phenomena
involving two or more closely spaced optical pulses. More specifically, the nonlinear interaction
between two optical pulses ceases to occur when the faster moving pulse completely walks through
the slower moving pulse. This feature is governed by the walk-off parameter dio defined as

dia = B1(M1) = Bi(X2) = v, (A1) — v, M (A2) (9.1.12)

where A\ and A\ are the center wavelengths of two pulses and 31 at these wavelengths is evaluated
using Eq. (9.1.9). For pulses of width Tp, one can define the walk-off length Ly, by the relation

Ly = Ty/|d12| (9.1.13)

Figure 9.9 shows variation of dis with Ay for fused silica using Eq. (9.1.12) with A; = 0.532um. In
the normal-dispersion regime (82 > 0), a longerwavelength pulse travels faster, while the opposite
occurs in the anomalous dispersion region. For example, if a pulse at Ao = 1.06pum copropagates
with the pulse at A\; = 0.532um, it will separate from the shorter-wavelength pulse at a rate
of about 80 ps/m. This corresponds to a walk-off length Ly, of only 25 cm for Tp = 20 ps.
The group-velocity mismatch plays an important role for nonlinear effects involving cross-phase
modulation
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9.2 Optical fiber and single mode fibers 3
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Figure 9.11: Different modes in fiber.

The theory of the guided propagation of light in optical fibers is straightforward conceptually
but somewhat complicated in its algebraic details, which we will largely skip over; the interested
reader will not find it difficult to fill in at least some of the steps, or to find comprehensive
discussions and references in more specialized books.*

Optical fibers guide light by total internal reflection. Figure 9.12 is an enlarged view of a
segment of an optical fiber; the core diameter may be as small as a few microns, as explained
below. The critical angle for total internal reflection is

0, = sin! ("—2) (9.2.1)

ni

where no and ny are the refractive indices of the cladding and the core, respectively (Fig. 9.12).
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Figure 9.12: An optical fiber, viewed along a direction perpendicular to the fiber axis.

Total internal reflection occurs for angles of incidence 6 > .. This implies a maximum “acceptance
angle” for which light injected into the fiber will undergo total internal reflection. Applying Snells
law to the dielectric interface at the entrance to the fiber in Fig. 9.12, we have

nsing = ny sina = ny sin(g —#)=nicosf =n;V1—sin?0 (9.2.2)

[ 2
nsing = ny 1—%:\/71%—7135 NA (9.2.3)
1

where the number NA is called the numerical aperture of the fiber. According to these equations
the angle

For 6 =46,

brmax = sin~! (%) (9.2.4)

3Chapter 8 (Pages 355 - 364) - Laser Physics - Peter W. Milonni, Joseph H. Eberly - Hoboken, New Jersey :
John Wiley & Sons Ltd, 2010

4See, for instance, G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed., Wiley, New York, 2002, and
references therein.
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is the maximum acceptance angle at which there is total internal reflection. For a fiber in air
(n = 1) with a core refractive index n; = 1.53 and a cladding index ny = 1.50, NA = 0.3 and
the maximum acceptance angle is ¢pax = 18°. As in this example, the difference between nj
and ns is typically only a few percent, and so one conventionally introduces the small parameter
A = (n1 —n2)/n1, in terms of which

NA = \ nlA(nl + 712) = nv 2A (925)

Figure 9.13: Acceptance angle of fiber.

The numerical aperture is obviously a measure of the amount of light that can be taken in
and guided by the fiber. However, fibers with large numerical apertures have disadvantages for
communication purposes because they admit a large number of propagation modes and therefore
suffer from an effect known as intermodal dispersion. We discussed in the preceding section the
material dispersion associated with the frequency dependence of the refractive index, but in fibers
there is also a pulse-broadening effect associated with different angles of incidence 6 in Fig. 9.12.
Since different angles are associated with different modes of propagation, this dispersive effect is
called intermodal. To estimate the pulse broadening due to intermodal dispersion, consider the
propagation paths for two pulses, one propagating along the core axis and the other having an
angle of incidence u at the corecladding interface (Fig. 9.12). For a fiber length L the off-axis pulse
has a total propagation length L/ cosa, whereas the propagation length for the on-axis pulse is
simply L. These different propagation paths imply a difference AT in the propagation times for
pulses with group velocity v, to reach the end of the fiber. For the lowest-order modes of a fiber
it is found that vy = ¢/n1, the phase velocity in the core. Thus,

(1/cosa) =1 _, mia’L

AT = [
c/ny 2¢

(9.2.6)

where the angle a is assumed to be very small. For the maximum acceptance angle defined by
(9.2.4), it follows from (9.2.2) that ny sina = NA, or & = NA/n; in the small-angle approximation.
Then (9.2.6) becomes

(NA)?
2nic

AT = L (9.2.7)
for these two modes. A multimode pulse will therefore undergo a temporal broadening.
Intermodal dispersion is reduced when the fiber is of the graded-index type rather than the
step-index type illustrated in Fig. 9.12. In a graded-index fiber the refractive index does not have
a sharp, steplike decrease from n; to ms. Instead the index decreases more smoothly from the
center of the fiber. An index distribution that is frequently used in practice is described by the
formula
n? =n2(1 - a3r?) (9.2.8)

where n, is the refractive index at the center, r is the distance from the center, and a3 is a constant.
The advantage of a graded-index fiber is a consequence of the following result, which we will not
take the time to derive: The temporal spread AT for a graded-index fiber is proportional to (NA)*
rather than to (NA)? as in the step-index case. Thus, a small numerical aperture implies smaller
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intermodal dispersion in a graded-index fiber than in a step-index fiber. It is easy to understand
physically why this is so. In the graded-index case the light rays along the axis of the fiber travel
a shorter path than off-axis rays but have a smaller phase velocity because of the larger index
on-axis [Eq. (9.2.8)]. The graded index therefore reduces the difference in propagation times of
different modes.

Intermodal dispersion is completely absent in a single-mode fiber. We now consider in more
detail the propagation modes of an optical fiber.

For laser resonators we defined a mode as a field distribution that does not change in form upon
back-and-forth propagation in the resonator. In the case of an optical fiber, similarly, we define a
mode as a field distribution that retains its form during propagation in the fiber. Thus,we require
that the electric field satisfy the Helmholtz equation, with the refractive index having the spatial
distribution appropriate to the fiber under consideration. In addition to satisfying Helmholtz
equation, the field must, of course, satisfy the appropriate boundary conditions. We will consider
a step-index fiber with n = n; for r < a and n = ngy for r > o (Fig. 9.14).

Figure 9.14: Cross-sectional view of a step-index fiber.

The fiber geometry obviously suggests the use of cylindrical coordinates (r,¢,z), in terms of

which Helmholtz equation takes the form

0°E 10E 1 0°E 0O°E Qw?

— t -t s+ == —FE=0 9.2.9

8T2+r(9r+r28¢2+622 tn c? ( )
Since a rotation by 2w about the fiber axis cannot affect the field, a solution of (9.2.9) must not
change when 27 is added to ¢. Thus, E must vary with ¢ as e"™®, where m = 0,+1,+2,... We
seek solutions describing propagation along the z axis, and therefore write®

E(r,¢,2) = F(r)e™®et? (9.2.10)

where the propagation constant ( is at this point unspecified. Such a field retains its form except
for a phase factor [e"??], and therefore defines a mode of the fiber. Using this form in (9.2.9), we
obtain for the radial function F(r) the ordinary differential equation

d*F 1dF yw? , m?
e (e ) (9:2.11)
Thus, in the core region,
d?’F  1dF m?
14 kt_)pz < 2.12
dr2 o dr + ( r2 0 (r<a) (@ )
where
2 o w? 2 272 2
K :nlc—2—ﬂ =nik; — (9.2.13)

Equation (9.2.12) has the form of the Bessel differential equation. The solutions that remain finite
as r — 0 are the Bessel functions J,,,(kr) of the first kind, which we have already used in the

preceding chapter
F(r) = AJy(kr) (r<a) (9.2.14)

5We are employing here the method of separation of variables
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where A is a constant.
In the cladding region we write

d’F  1dF , m?
dr?2 = rdr +(/ 7"2) (r>a) ( )
where
2 2 2“2 2 272
v =B - ny—y =0~ nak (9.2.16)

We assume that 72 is positive, that is, that v is real, in order to have solutions for r > a that go
to 0 as r — oco. These solutions are of the form

F(r)= BK,,(yr) (r>a) (9.2.17)

where K, is a modified Bessel function of the second kind. Plots of J,,,(z) and K,,(z) are readily
found in various handbooks or on the Web. For our purposes at this point we need only know that
Jm (k) is finite at r = 0 and that K,,(yr) — 0 as 7 — oo, which are necessary conditions if the
solutions (9.2.15) and (9.2.17) are to be applicable in the core and cladding regions, respectively.

We have not invoked here the paraxial approximation. In fact, the solutions given by (9.2.10)
and (9.2.14) for the field in the core are of the same form as the (nonparaxial) Bessel beam modes
of free space, except that here the propagation is in a medium with refractive index n; rather than
free space, and the propagation constant § is fixed by the fact that the tangential components
of the field must be continuous at the corecladding interface. In the case of a fiber the paraxial
approximation may not be a good one because the field is guided by total internal reflection and,
depending on the difference n; — ns, the angles that rays make with respect to the fiber axis are
not necessarily small.

7
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-..

Figure 9.15: Fiber optics components (Cabled fibers and connector)

The Helmholtz equation applies to a single component of the electric field envelope E, and also
to a single component of the slowly varying magnetic field envelope H. Given E, and H,, for
instance, we can obtain F,, Ey, H;, and H, from the Maxwell equations

V x E = iwuoH (9.2.18)
V x H= —iwpgE = —iwn’¢E (9.2.19)

for a field that varies with time as e~** and with z as e?*. Consider, for example, the component
H, of H. From (9.2.18),
OF OF OF
iwpoHy = — — =2 = == _iBE 9.2.20
Zw,uo By az By ,L/B Yy ( )

; oH. OH,
B, = — (— + > (9.2.21)

and, from (9.2.19),

ox 0z
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Using (9.2.21) in (9.2.20), and eguo = 1/c¢?, we obtain for the core region (n? = n?)
iy, 0E. _OH,
Hr = —?(wnlﬂ)a—y — ﬂ%) (9222)

In the same fashion we obtain, in both the core and cladding regions, I, Iy, and H, I in terms
of E, and H,. Of course, we can express this as well in terms of cylindrical components of the
slowly varying envelope functions: We can express E,, E4, H,, and Hy in terms of F, and H,
satisfying

E.(r,¢,2) = Ay (kr)e™?ef? (9.2.23a)

H.(r,¢,2) = BJy (kr)e" e’ (9.2.23Db)
for r < a and

E.(r,¢,2) = CEp(yr)e™ e’ (9.2.24a)

H.(r,¢,z) = DK, (yr)e™? P (9.2.24b)

for r > a.

Maxwells equations require that the tangential components of E and H be continuous at the
corecladding interface at » = a. That is, E,, F4, H,, and Hy must be continuous at r = a.
Requiring this continuity leads to four homogeneous linear algebraic equations for the constants
A, B,C, and D appearing in Egs. (9.2.23), i.e., equations of the form a;;A+as; B+a3;C+aq; D = 0,
7 =1,2,3,4. In order for these equations to have non vanishing solutions for A, B,C, and D, the
determinant of the coefficient matrix (a;;),,j = 1,2, 3,4, must vanish. This requirement takes the
form of a complicated equation involving J,,(ka), J! (ka), K (ya), and K, (ya), where the primes
denote derivatives. This “characteristic equation,” which must be solved numerically, determines
the propagation constant 5 for given values of w, a,n1, and ns, that is, for a given frequency w and
for a given core radius a and core and cladding refractive indices n; and ns, respectively.

For given values of w,a, and ni,ns, the values of 5 determined by the numerical solution of
the characteristic equation will depend on the integer m. For each m there is in general more than
one solution for §; these different solutions can be denoted 3,,,7 = 1,2,3,...,and each 3,,; defines
a mode of the fiber. That is, a mode is defined by the pair of integers m and j that specify the
spatial dependence of the electric and magnetic fields. The electric and magnetic fields for each
mode are defined by Eqgs. (9.2.23) and the equations relating the other field components to E. and
H,, with x and v depending on 8,,;[Eq. (9.2.13) and (9.2.16)].

We are interested in guided modes in which the electric and magnetic fields fall off with radial
distance from the fiber. Consider the fields (9.2.23) for yr > 1. In this limit

K () ~ (%)1/2(1 - %)e—’” (9.2.25)

and the electric and magnetic fields (9.2.23) for a mode characterized by this radial dependence
decay exponentially with distance from the fiber if v is real (y? > 0). If 4 is purely imaginary
(72 < 0), however, the mode is not “guided” ; the exponential decay of (9.2.24) is replaced by
e~ "™ = cos |y|r — isin |y|r for 4 = i|y|. Therefore, ¥> = 0 defines the “cut-off” between guided
and unguided modes: 72 > 0 implies a guided mode, whereas 42 < 0 implies an unguided mode.
From (9.2.13) and (9.2.16) we see that v? = 0 implies that x = kg/n? — n2. The dimensionless

“V parameter,”
V = koay/n? —n3 = fa\/nf —n3 = 2INA, (9.2.26)
C C

determines the number of modes: fibers with large V parameters have many modes as determined
by numerical solutions of the characteristic equation. The number of modes is found to be approx-
imately V2/2 for V >> 1. But if V is made small enough, it is found that only the fundamental
mode with m = 0 is guided by the fiber. Such single-mode fibers are of special interest for com-
munication systems, and we will therefore devote the following section to them
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Figure 9.16: Typical submarine fiber system

SINGLE-MODE FIBERS

In the preceding section we noted that the requirement that F,, E, H., and Hy be con-
tinuous at the corecladding interface leads to a complicated characteristic equation involving
Im(ka), J! (ka), K, (va), and K, (ya). Numerical solutions of this equation determine the guided
modes of the fiber for real values of the parameter -y defined by (9.2.16). Analysis of the charac-
teristic equation shows that when V' < V., where V. is defined as the smallest value of V' satisfying
Jo(V)) = 0, the fiber supports only the single mode with m = 0; there are no other guided modes
for V< V..

The smallest “zero” of Jo(z), that is, the smallest & such that Jy(x) = 0, is approximately
2.405. Thus, a step-index fiber will support only a single mode when V. < 2.405, or in other words

when 5
%amﬁ —ng= %aNA < 2.405 (9.2.27)

For A = 2mc/w = 1.3pum, ny = 1.450, and ny = 1.443, this single-mode condition is satisfied if the
core radius a < 3.5um. These values are in the range characteristic of the single-mode fibers used
in communication systems. Obviously, the single-mode condition can be satisfied if the wavelength
is large enough or if the core diameter and the numerical aperture are small enough.

In order to realize the single-mode condition (9.2.27) for wavelengths of interest and for core
diameters that are not unreasonably small, the numerical aperture NA = \/n? —n3 be small.
Fibers typically have values of A = (ny — ns)/n; ~ 0.01 and, as noted in the preceding section,
the guided modes in this case are approximately paraxial, with z components of the field small
compared to the transverse (z and y) components. That is, the guided modes are approximately
transverse, and a linearly polarized mode has an electric field component of the form

Jo (HT) iz

Em(r,gb,z) :Em(r,z) :Eome (7‘ Sa)
= Eo—ﬁ’gz e (r>a) (9.2.28)

where Fjy is a constant specifying the amplitude of the field at » = a. The function Jy(x) peaks at
x =0 (Jo(0) = 1) and its falloff to 0 at z = 2.405. .. follows roughly a bell shaped curve, while the
variation of Ky(x) for large values of = is given by (9.2.24). The field (9.2.28) for a single-mode
fiber is therefore often approximated by a Gaussian function:

Ey(r,z) ~ Ege™" /%" ¢ih2 (9.2.29)

~

where the spot size w depends on the V parameter of the fiber and is & a for V' = 2. Thus,
the single guided modes of fibers of interest for optical communication systems are approrimately
parazxial, transverse, and Gaussian, with a spot size on the order of the core diameter.
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e  The calculation and characterization of the modes of an optical fiber are obviously rather
complicated, and it is beyond our scope to delve much further into the subject. A few more general
remarks, however, are appropriate.

The astute reader will have noticed that we have in effect assumed an infinite cladding region.
The justification for this assumption is the exponential decay of the electric and magnetic fields
of the guided modes outside the core [Eq. (9.2.24)]. Optical fibers are in fact designed so that
the fields are negligibly small at the outer surface of the cladding. If this were not the case, light
would be lost due to scattering from surface irregularities on the outer surface of the fiber.

As already noted, the core and cladding refractive indices in optical fibers typically differ by only
a few percent. The critical angle for total internal reflection is therefore relatively large, making the
guided modes approximately paraxial and the z components of the electric and magnetic fields small
in magnitude compared to the transverse components. Each (m,j ) mode is then approximately
transverse and we can associate with it two “degenerate” orthogonal linear polarizations having
the same (r, ¢, z) dependence. If the fiber cross section were perfectly circular, a linearly polarized
field would maintain its polarization, but in reality there are always slight imperfections in the
core diameter, for instance, that cause the fiber to be birefringent in the sense that the mode index
B/ko is different for the two orthogonally polarized modes. A “single-mode” fiber will have two
mode indices, i, and n,, and this causes the two orthogonal polarizations to exchange power. In
practice, the injection of a linearly polarized field into the fiber results in an output field whose
polarization is unpredictable as a consequence of random fluctuations of the birefringence. In
polarization preserving fibers a relatively large and deterministic birefringence is introduced to
overcome the random birefringence °

The major breakthroughs that led to the widespread use of optical fibers in communication
systems were the development of fibers with low attenuation and of compact (diode) lasers for
efficiently coupling light into fibers. In the early 1970s fibers were developed at Corning Glass
Works with attenuations A ~ 20dB/km at wavelengths around 1 pm, compared to attenuations
~ 1000dB/km characteristic of the fibers manufactured earlier. The fused silica currently used
to make optical fibers absorbs in the ultraviolet as a consequence of electronic resonances of the
SiO5 molecules and in the infrared as a consequence of molecular vibrations. The ultraviolet
and infrared absorption together produce a broad absorption spectrum with A < 0.03 dB/km in
the wavelength range 1.3 - 1.6 pum used in fiber-optic communications, and with an absorption
minimum at 1.55 ym. Water vapor and, to a lesser extent, metallic impurities, are the dominant
sources of absorption losses in silica fibers, and these losses, together with the loss due to Rayleigh
scattering from local density fluctuations, exceed the intrinsic absorption loss of pure silica. All
the sources of power loss in currently manufactured telecommunication fibers combine to produce
an attenuation minimum of about 0.2 dB/km at 1.55 pm.

e In fiber optics the attenuation is commonly expressed in decibels per kilometer (dB/km).
If (Pwr);, and (Pwr),y: are the input and output powers, the attenuation in decibels is defined by

(Pwr)p,

A=10 loglo W

(9.2.30)

A 3-dB attenuation means that the output power is half the input power. In terms of an attenuation
coefficient ag per unit length, (Pwr), /(Pwr)ou: = €%, where L is the length of the fiber. ay and
A are related by A(dB) = 10log;, e®L, or

a0l — (100434ya0L — 1A(dB)/10 (9.2.31)

and therefore ag = (0.23/L)A (dB) and

ap(em™) = 2.3 x 107%A(dB/km) (9.2.32)

Decibel units are sometimes convenient simply because of the fact that the logarithm of a product

of two numbers is equal to the sum of the two logarithms. For example, when a fiber with an
attenuation (gain) of 10 dB is followed by a fiber with an attenuation (gain) of 20 dB, the overall
attenuation (gain) is 30 dB.
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The remarkable transmission capabilities of glass telecom fibers can be appreciated by a com-
parison with ordinary window glass, which has an optical attenuation coefficient ag ~ 0.05 cm™1,
about 100,000 times that of a fiber with A = 0.2 dB/km. The small attenuation of transatlantic
fiber cable allows repeaters (amplifiers) to be placed ~ 70 km apart.

The bending flexibility of fibers compared to the brittleness of bulk glass is mainly a consequence
of their small surface areas. Fracture in glass and many other materials arises from voids that act
to concentrate the effect of an applied stress. In glass, the voids are associated with tiny surface
cracks that can grow under an applied stress and lead to fracture. The theory suggesting that
the brittleness of glass is a surface effect, and therefore should be reduced when the surface area
is decreased, was developed in the early 1920s by A. A. Griffith, who showed that “hot-drawing”
glass into fibers dramatically increased its strength.

Fibers for guiding light had been proposed and tested in the 1920s and 1930s, but the fibers
at the time were unclad and inefficient transmitters of light. The development of fiber bundles for
“fiberscopes,” the precursors of modern endoscopes, spurred renewed interest in optical fibers in
the 1950s; these are also of interest for generating high powers (albeit with generally poor beam
quality) by combining the outputs of single-fiber lasers. Their invention was spurred by the need
in many applications to guide light around obstacles without the usual methods based on lenses
and mirrors. In the first publication on fiber bundles [Nature 173, 39 (1954)], and on the use of a
lower-index sheath around a single fiber, A. C. S. van Heel wrote that:

Consideration of the construction of the eye of some insects suggested another approach.
If a bundle or sheaf of thin transparent fibers is cut off perpendicularly at both ends
and an optical image is formed on one end, it will be seen at the other end, as the light
entering one fibre can only leave this at the other end, provided leakage of light from
one fibre to another of the bundle is prevented. Moreover, the cylindrical wall of each
fibre must reflect the light as nearly completely as possible, because of the numerous
reflexions occurring when the fibers are thin compared to their length. Preliminary
experiments ... have shown that coating the fibers with silver or any other metal
yields an unsatisfactory transmission. A much better result was obtained when the
fibers were coated with a layer of lower refractive index, which ensured total reflexion.
This coating was isolated from the neighboring fibers by a thin coat of black paint. In
this way, flexible image rods have been obtained with satisfactory transmission, a very
good contrast in the end image, and with the possibility of using forms bent in any
direction (up to at least 360°). .

Light can escape a bent fiber: Rays incident on the corecladding interface with an angle of
incidence greater than the critical angle for total internal reflection can have an angle of incidence
smaller than the critical angle when they encounter a bend. Bending loss in a fiber is characterized
by an attenuation coefficient ag such that after a propagation distance [ the light inside the fiber
diminishes in power by the factor e~ ®5!; the fraction 1 — e~*B! of the power at [ = 0 is radiated
out of the fiber. Approximate calculations yield the result that ap for a fiber mode depends on
the radius of curvature R of a bend primarily through an exponential factor e=27"£/38* = ¢—R/Rc
where f is the propagation constant for the mode and g is defined by (9.2.16). Bending radii much
smaller than R, will result in significant loss of power in the fiber due to radiation from the fiber.
Small values of Rc make the fiber less susceptible to bending loss; R, is a function of the core and
cladding radii and refractive indices that is not in general amenable to a simple analytical form. It
increases with decreasing numerical aperture and with mode order, that is, higher-order modes have
greater loss for a given bending radius than the lowest-order mode. Experiments generally support
the predictions of the theory, although data analyses must also account for losses associated with
the tensile strength and other characteristics of a particular fiber. Rough rules of thumb are that
bending radii greater than about 10 times the fiber diameter result in acceptably small radiation
loss and that fibers with numerical apertures smaller than 0.06 are too sensitive to bending to be
practical. In addition to “macrobending” loss, there can also be significant “microbending” loss
due to small, random bending radii along the fiber.

We have already mentioned intermodal dispersion, which can cause different pulses in a fiber
to overlap and thereby limit the rate at which information in the form of “0” and “1” pulses
can be transmitted. While single-mode fibers do not suffer from intermodal dispersion, there are
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nevertheless other types of dispersion that can limit their information transmission rate. One
of these, of course, is group velocity dispersion. Another is polarization-mode dispersion arising
from the fact that two orthogonal polarization components can have different group velocities as
a consequence of the random birefringence effect described above.

9.3 Fiber amplifier and Amplifier Spontaneous emission Noise
(ASE) ¢

In this section we will derive the effect of spontaneous emission noise on a laser amplifier in which
the gain medium, with no mirrors, is used to amplify a weak input field. The basic engineering
problem is to find the degradation of the signal-to-noise power that is caused by the (inevitable)
addition of some spontaneous emission (noise) power to the amplified signal. A typical experimental
situation is shown in Figure 9.17.
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Figure 9.17: A laser amplifier consisting of an inverted atomic medium contained between two
screens. The signal beam is injected so that its waist coincides with the front screen.

An inverted atomic medium with population densities Ny and N in the upper and lower
transition levels occupies the space between z = 0 and z = L. An optical beam with power P is
focused through an aperture with an area A; into the gain medium and exits through an aperture
As. The coherent amplification of the input beam power P due to stimulated emission is given by

dP =~Pdz (9.3.1)

where v, the exponential gain constant, is:

2
g(v)
v(v) = (Ny — N1)———F"— 9.3.2
) = (V2 = Nl (9.3.2)
Let us consider next the details of how spontaneous radiation (noise) is emitted, amplified, and
mixes with the signal beam to degrade its signal-to-noise ratio.
An element dz at z with area A emits spontaneously

~ NohvAdz

7(;sp ont

Py (9.3.3)
watts of power. Since this power is emitted isotropically over the 47 solid angle, only a fraction
dQ/4m of the total is fed into the solid angle d§? subtended by the laser beam and ultimately
intercepted by the detector. Similarly, it follows from the definition in Section 5.1 of the line-shape
function g(v) that only a fraction g(v)Av of the total spectrum of the spontaneous radiation falls
within the transmission bandpass Av of the filter. The total noise power emitted by the elemental
volume A dz within the optical spectral region Av and solid angle d) allowed into the detector is

thus 1 Nohwg(v)AvA dS
(dpy = L Nehvg)AvA d2 (9.3.4)

2 tsp ont 47

6 Appendix C (Page 730 - 732) - Optical Electronics in Modern Communications- Fifth Edition - Amnon Yariv
- Oxford University Press, 1997
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where the factor % in front accounts for the polarizer that can remove half of the (isotropically

polarized) noise without affecting the (linearly polarized) signal power. The smallest solid angle

dS) that we can use without sacrificing signal power is that subtended by the beam
2 A2

oy (9.3.5)

where A = 7w? and 6, = \/mwn is the far-field diffraction angle of the signal beam as shown in
Figure 9.17. The value A\?/n?A is often referred to as the solid angle per mode.
Using (9.3.1) and (9.3.5), we rewrite (9.3.4) as

1 Noyhw

dp) = - 21"
WPy =58 -

(9.3.6)
The total evolution of beam power including the induced and spontaneous transitions is thus

given by the sum of the emitted powers. (If the two contributions were coherent we would add
their fields.)

dpP Ny
E = /P+ m’thAl/ (937)

The solution of (9.3.7) subject to the boundary condition P(0) = P, is

P(z) = Pye* + phvAv(e?® —1) (9.3.8)
Ne—— N———
amplified signal amplified noise
where N
2
= 9.3.9
F=N,— N (9.3.9)

is the population inversion factor. The signal-to-noise power ratio at the output of the amplifier is

output o /J,hVAV G-1

N

(S) R _G (9.3.10)

G = el is the one-pass gain. From the point of view of power bookkeeping, the effect of sponta-
neous emission is seen to be equivalent to a noise input power

1
Nog = ,uhudu(l - 5) (9.3.11)
which for an ideal four-level gain medium (= 1) and high gain (G > 1) becomes
NeghvAv (9.3.12)
If the laser amplifier were to be employed as a preamplifier in an optical receiver, then the minimum
detectable power is given by
(Ps)min ~ hvAv (9.3.13)
9.4 Noise figure of an Fiber Amplifier *

The degradation of the SNR after passage through an optical amplifier is quantified in terms of
the noise figure, F', defined as

~ SNRy,
~ SNRyw

(9.4.1)

In the discussions that follow, the noise figure in decibels is determined according to: F' = 10log(F).
The SNRs are referred to the output of an ideal photodetector which is capable of converting each
photon of incident light into electrical current (in other words, 100% quantum efficiency). The

"Chapter 13 (Page 542 - 546 ) - Fiber optic test and measurement - Derickson, Dennis- New Jersey : Prentice
Hall, 1998



132 CHAPTER 9. OPTICAL FIBERS AND OPTICAL AMPLIFIERS

input SNR is defined to be that from a shot-noise-limited source. The shot-noise-limited input
reference is critical to the definition. If an optical source with a large amount of intensity noise
were used to measure the noise figure of an amplifier. the amplified source noise would dominate
over the amplifiers own noise contribution and lead to an erroneous noise figure of 0 dB, in other
words, no observed SNR degradation caused by the amplifier.

The noise figure concept is illustrated in Figure 9.18. The input SNR is determined with the
amplifier bypassed using an idealized source and receiver. The amplifier is inserted and the output
SNR is determined. Equation (9.4.1) is next used to calculate the amplifier noise figure. The ideal-
ized source is shot-noise-limited and set to the appropriate power, wavelength, and Iinewidth. The

jumper input and
output connections

ideal electronic
spectrum analysis

Elf B, \Av ¥ lossless SNR;,
—_—> ideal detection

ideal source -

amplifier input and
output connections

ideal electronic
| spectrum analysis

SNRout
ideal detection
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Figure 9.18: Noise figure concept in terms of idealized source and receiver.

idealized receiver has a calibrated frequency response and contributes no excess noise of its own.
Obviously the real world is not yet ideal and much of the work involving noise figure measurements
is in dealing with the source and the receiver non-idealities.

The 3 dB Noise-Figure Myth

A minimum 3 dB (actually, log;,(2) = 3.01 dB) amplifier noise figure is sometimes attributed to
the EDF A. If taken out of context this can result in a considerable misunderstanding of the EDFA
noise performance. To better understand where the 3 dB limit originates, let us examine the noise
figure under moderate signal conditions as the amplifier gain varies. Moderate signal conditions
imply that the signal power is much greater than the ASE power in the optical bandwidth of
interest. This ensures that the sig-sp beat noise dominates over that of the sp-sp beat noise as
indicated by Figure 13.17. Consider the case of a fiber amplifier where initially there are no
erbium ions in the “active” optical fiber. Discounting any loss in the optical fiber, the noise figure
is unity, in other words, no SNR degradation since the signal passes from amplifier input to output
unchanged. As the erbium-ion-doping increases, so does the optical gain, the ASE level, and the
signal level. The noise figure increases from 0 dB to 3 dB, or beyond, if other noise sources or optical
losses are present. This can be seen from the equation for sig-sp beat noise and shot-noise-limited
noise figure derived by

F = 2ns,,(G—C_;1) + é (9.4.2)

which for large gains yields: F' = 2ng, where the SE factor, ns, < 1. A fully inverted amplifier
can be achieved with 980 nm pumping resulting in an effective SE factor of unity which leads to a
noise figure of 3 dB. Equation (9.4.2) is plotted versus gain in Figure 9.19. From the figure, a fully
inverted amplifier (in other words, ns, = 1) with 4 dB of gain and zero input coupling loss has a
noise figure near 2 dB. The 3 dB value is the limit for a high-gain amplifier with zero input coupling
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loss and a fully inverted amplifying fiber. Any loss near the amplifier input, or departure from
complete inversion will cause the noise figure to exceed 3 dB. gain amplifiers such as the EDFA.
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Figure 9.19: Noise figure dependence on optical amplifier gain with and without the shot-noise
contribution.

In calculations with concatenations of amplifiers, it is convenient to suppress the shot noise until
the signals are analyzed at the detector. In the calculation of noise. figure for a single amplifier,
failure to include the shot noise will result in significant error in the gain regime below 15 dB.





