14 SOME APPLICATIONS OF LASERS

In the early years of their development, lasers were regarded by skeptics as “a solution
looking for a problem.” More and more “problems” were found, and lasers have become
an important part of the science and technology of our time, with applications ranging
from medical to military. Lasers have been used in distance and velocity measurements,
holography, printers, bar coding, CD players, surgery, and many other areas for many
years now, and such “everyday” applications will not be touched upon here. We will
instead consider, in addition to some aspects of the medical applications of lasers,
just a few examples of the importance of lasers in research and emerging technology.
The special role of diode and fiber lasers in telecommunications is the main subject
of the next chapter.

14.1 LIDAR

Light detection and ranging (lidar) dates back to the 1930s, but because of lasers it
has become one of the primary tools in atmospheric and environmental research.
There are several types of lidar, all involving a transmitter of laser radiation and a recei-
ver for the detection and analysis of backscattered light (Fig. 14.1). Before describing
some lidar techniques and the information they provide, we will derive an equation
for the number of photons counted at the receiver. Our analysis will apply directly to
the most common type of lidar system, that in which the transmitter and receiver are
located at essentially the same place; the laser beam in this case is typically sent through
the receiver telescope. This is called the “monostatic,” as opposed to ‘“bistatic,”
configuration.

Consider first the case in which the backscattered light is resonance fluorescence, that
is, spontaneous emission from atoms (or molecules) excited by laser radiation. Suppose
that a laser beam propagates vertically from ground level to an altitude z and excites
atoms within a column between altitudes z and z + Az (Az < z). The radiated energy
in time Az from these atoms is

7+Az
AEoms(2, 1) = hvAy AtJ
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Figure 14.1 Basic elements of a standard lidar system. A beam expander is usually used at the trans-
mitter in order to reduce the divergence of the laser beam before it propagates into the atmosphere. The
receiver includes a wavelength filter, a photodetector, and computers and electronics for data acqui-
sition and analysis.

where N(z) is the number density of atoms at altitude z, v is the transition frequency
(assumed to be equal to the laser frequency), A, is the spontaneous emission rate,
and p(x, y, z, ) is the excited-state probability at time ¢ for an atom at a point x, y, z.
If the excited atoms radiate isotropically, the power incident on a receiver of area A,
is simply

A,
PWI‘(Z, t) = TO(Z)4 ) AEatoms(Za t)
(s

dz'N(z’)J de dyp(x,y, 2,1, (14.1.2)
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where Ty(z) is the atmospheric transmission coefficient at the transition frequency for
propagation to ground from altitude z (or from ground to z), and is assumed not to
vary significantly between z and z + Az, and we continue to write Pwr for power, to dis-
tinguish it easily from P’s denoting pumping rate and pressure and probability, etc.
We will assume that the excited-state probability p(x, y, z, ) changes predominantly
by spontaneous emission; this is a reasonable assumption at high altitudes, where
molecular densities are sufficiently small that collisional deexcitation is negligible.
Suppose that the laser radiation is in the form of a pulse of duration 7, long compared
to the radiative lifetime 1/A,;. Then, for times # much longer than the radiative lifetime
(Problem 14.1),

oz, v)
Az] hv

P, y, z, 1) = I(x,y, z, 1), (14.1.3)

where o (z, v) is the absorption cross section at z at the laser frequency v, and so

7+Az 00 00
d7 No(Z, V)J de dyl(x,y, 7,1t (14.1.4)
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in this approximation.
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Now consider the number of photons counted in a time interval from 2z/c to 2z/c+ 1,4
by a detector at the receiver. 2z/c is the time it takes for the laser radiation to propagate to
altitude z, plus the time for photons radiated at z to propagate back to ground.' The
number of photons counted from the “bin” [z, z + Az] in this time interval is

1 2z/c+T14
N@=nx— xJ dt Pwr(z, t)
hv 2z/c

A, 1 2+Az 00 00 2z/c+74
= nTO(Z)ZJ dzl N(Z/)O-(Z/’ v)J de dyJ dt I(.X, Vs Z/’ t)’
4mz=hv |, —0 —o0 2z/c

(14.1.5)

where 1 (<1) is the photon counting efficiency at the receiver. If 7, is much larger than
the pulse duration, the integral of I(x, y, 7/, ) over x, y, and 7 in (14.1.5) is just the pulse
energy E(Z') at 7. Since E(Z') = To(Z)E, = To(z)E,, where E,, is the energy of the pulse
leaving the transmitter, we write (14.1.5) as

A E 7+Az

N@) = nT5(2) rsz d? N(Z)o (2, v). (14.1.6)
dmz= hv |,

The column length Az from which photons can reach the detector during the time

interval [2z/c, 2z/c + 7] is determined by 2Az/c = 7, or Az=c7,/2. We have

assumed that this range bin length is made small enough that N(z') and o (7, v) do

not vary significantly within it. Then we obtain from (14.1.6) the lidar equation

A,
4172

E a
N0z, v) L, (14.1.7)
hv 2

N(@) = nT4(2)

for the number of photon counts at the receiver from a range bin of length Az = ¢7,;/2 at
altitude z. There is clearly a trade-off between the range bin length and the strength of the
photon counting signal: The smaller the range bin, the greater the “range resolution” but
the smaller the number of photons backscattered from it.

Suppose some atmospheric constituent is probed as a function of altitude and the
detection electronics is designed to “reset to zero” at the end of each counting interval,
after which it begins counting photons from the next range bin. This range gating con-
tinues for some number of range bins, and photon counts per range bin are accumulated
with multiple laser pulses fired at some repetition rate R, over some “integration time”
7. The number of photons accumulated from a range bin of length Az over the integration
time 7 is obtained by multiplying (14.1.7) by R..,7. Then the lidar equation for the
number of photon counts from a range bin of length Az at altitude z takes the form

(Pwr), TA,
hv  Z2

N (@) = nT4(2) N@oP(z v) Az (14.1.8)
where (Pwr), = E,R,, is the laser power. We have assumed that the scattering (or
resonance fluorescence) is isotropic, i.e., that it is the same over all 47 steradians
about the scatterer; in this case the cross section for scattering in the backward direction

"Whether we use here the speed of light in vacuum (c) or the phase velocity or, more appropriately, the group
velocity, is inconsequential because the atmosphere is so weakly dispersive.
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is o (z, v) /47, where o (z, v) is the total (over all angles) scattering cross section. But in
general the scattering (or resonance fluorescence) is not isotropic, and to indicate this we
have written o-2(z, v) in (14.1.8) instead of o (z, v) /4, where o8(z, v) is the “differen-
tial” cross section for backscattering, and reduces to o (z, v) /4 if the scattering happens
to be isotropic.

Various expressions relating to (14.1.7) and (14.1.8) are found in the lidar literature.
For example, the average power at the receiver implied by (14.1.7) is

hvN (z) A,
Pwi(z) = dez = QS ENQO"G, v)%
- (Pwr)OTg(z)%N(z)aB(z, v)%, (14.1.9)

where (Pwr), is the single-pulse average power defined as E,/7,. Similarly, if we take
the time 7, to be some arbitrary number of single pulse durations we infer from
(14.1.7) that the photon count obtained from a single laser pulse is

AE
NG = T %N @ v) L. (14.1.10)
72 hv 2

What is called “the lidar equation” in the literature may refer to any of expressions
(14.1.7)—(14.1.10) or to some other variant of (14.1.7).

In practice the number of “background counts” N3, which includes detector dark
counts (Section 12.7) and counts from any background light sources (e.g., the sun),
must be added to the right-hand side of whatever form of the lidar equation is used.

If laser pulses propagate from ground at a zenith angle i, where s = 0 defines vertical
propagation, then the distance of atoms at altitude z from the receiver is R = z/cos i, and
this distance replaces z in the lidar equation. Similarly the lidar equation is often written
with Tg(R) expressed as an integral over the path to R:

R
T3(R) = exp [—2J a(R’)dR’], (14.1.11)
0

where a(R’) is the atmospheric attenuation coefficient at propagation distance R’ at the
wavelength of interest. For instance, a(R’) due to Rayleigh scattering will obviously
decrease with altitude as the density of scatterers decreases.

It has been assumed that the backscattered photons come from resonance fluores-
cence, but the lidar equation is in fact more broadly applicable, as its form suggests.
If the backscattered photons are due to scattering by air molecules (predominantly
N, and O,), the cross section o ®(z, v) in the lidar equation is the Rayleigh backscattering
cross section, which is

B @ ) — 17
M e

(Rayleigh backscattering cross section

for wavelength A = ¢/v), (14.1.12)

as shown below. The laser radiation is assumed to be narrowband and at the same fre-
quency as the scattered radiation. Since Rayleigh scattering does not involve a change
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in molecular energy levels, it is often called elastic scattering in the lidar literature. This
terminology applies also to the more general case of Mie scattering in which the scat-
terers are not necessarily small compared to the wavelength. The lidar equation is
based on the approximation that multiple scattering is negligible; this is the approxi-
mation that each molecule scatters only the laser radiation and not the radiation scattered
in its direction by another molecule.

We have implicitly assumed in deriving the lidar equation that the field of view of the
receiving optics is larger than the laser beam divergence. It should also be noted that,
although we have referred to photon counts at the detector, as is appropriate when
return signals are measured with photomultiplier tubes or avalanche photodiodes in
the Geiger mode, strong return signals are usually recorded in the analog mode and
then converted to digital form (Section 12.7).

e The electric field from an electric dipole oscillating along a direction € is proportional
to (€ I)I — € in the radiation zone, where T is the unit vector pointing from the dipole to the
point of observation [Eq. (8.9.13)]. The scattered power in the direction F is therefore
proportional to

[(B-P)F— £ =1—(§-1). (14.1.13)

For a dipole induced by an incident field, € is the polarization unit vector of the incident field.
Let 0 be the scattering angle, that is, the angle between the propagation direction z of the incident
field and the direction r in which the scattered field is observed. We write

I = X sin 6cos ¢ + y sin Osin ¢ + Zcos 0, (14.1.14)

where X and y are orthogonal unit vectors in the plane perpendicular to Z and ¢ is the angle
between X and the projection of r onto the xy plane. Then, for incident radiation polarized
along X or y, respectively, we have

1 — (8.1 =1—sin’60 cos’¢ (x polarization), (14.1.15a)

=1 —sin?@sin’¢  (y polarization). (14.1.15b)

In the case of unpolarized incident radiation the angular dependence of the scattered power can
be obtained simply by taking the average of (14.1.15a) and (14.1.15b), since the x and y com-
ponents of the incident field have the same (average) intensity:

L(1 —sin*@cos” ¢) + 1 (1 — sin*Osin® ) = 1 — Lsin®0 = 1 (1 + cos?6). (14.1.16)

The same result is obtained for incident light that is circularly polarized because the x and y field
components again have equal intensities. The integral of (14.1.16) over all solid angles () is

T

1 5 2 .1 5 87
dﬂi(l—}—cos 0) = do d0s1n0§(1+cos 6):?, (14.1.17)
4 0

0
. . . . 2
and so we define the differential scattering cross section do/dQ) such that fowd(b

joﬂdﬂsin 0(do/dQ) = og, where oy is the total cross section for Rayleigh scattering
defined by (8.9.5):

do 31 5 w2 [n2(z, A) — 117 1 )
:URX—§(1+COS G)ZW E(I“FCOS 0), (]41]8)

daQ 8
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for n(A) = 1. Similary, for incident light linearly polarized in the x direction,

do 772[’12(2’ /\) - 1]2 .2 2
d_Q:W(I — sin” 6 cos (b), (14119)
and for y-polarized light cos” ¢ is replaced by sin’¢ in this formula. Therefore, the differential
cross section for backscattering (6 = ) is

w2 n*(z, A) — 112

d
B = — pr— pr—
B v) =00 =m) o

(14.1.20)

for any polarization of incident light.
Using (14.1.20) and the formula (8.10.5) for the refractive index of air, we obtain for the quan-
tity N(z)oE(z, v) in the lidar equation for Rayleigh scattering the approximation (Problem 14.2)

33x10°P@)

NQ@)og(z, v) = X TQ m

, (14.1.21)

where P(z) and 7T(z) are, respectively, the atmospheric pressure (millibars) and temperature
(Kelvin) at altitude z and A is the wavelength in nanometers.

Rayleigh lidars typically probe the atmosphere at altitudes above about 30 km, where scatter-
ing from aerosols is negligible.3 They have been used to infer atmospheric temperature distri-
butions at such altitudes. To get a rough idea of the number of photon counts predicted by the
lidar equation, consider a fairly typical sort of Rayleigh lidar system in which 532-nm, 1-J
laser pulses at a repetition rate of 30 Hz propagate vertically to 30 km, and backscattered
photons are returned from a 150-m range bin (7, = 1 ws) to a 50-cm-diameter receiver aperture
over an integration time of 1 min. At z = 30 km the atmospheric pressure and temperature are
approximately 12 mbar and 250K, respectively; then, from (14.1.8) and (14.1.21) (Problem 14.2),

N(@) ~ 3.2 x 10° x nT2(2) (14.1.22)

from a 150-m range bin at 30 km. A reasonable estimate of Tg(z) at 30 km is about 0.6 for visible
wavelengths far from any absorption resonances of air; the attenuation in this case is due predo-
minantly to Rayleigh scattering from air molecules and to scattering from aerosols. Assuming
1 ~ 0.5 for the detection efficiency, we obtain A/(z) ~ 10° photon counts. Note that the power
hvN (z)/(n7) backscattered to the receiver during the integration time in this example is about
107w, compared to an average laser power of (30 Hz)(1J) = 30 W. o

The contribution of Rayleigh scattering by air molecules to the backscattered signal
can be calculated, since the backscattering cross section and the attenuation coefficient
for Rayleigh scattering are known as a function of pressure and temperature. The spectral
width of the backscattered light depends on the velocity distribution of the air molecules.
Since any aerosol particles present are much more massive and therefore have much
smaller thermal velocities than air molecules, the spectral width of backscattered light
from them is much narrower than that for Rayleigh scattering by air molecules.
Narrow-bandwidth filters can be used to distinguish the contributions of air and aerosol

2Since o',lf (z, v) is a differential cross section, N (z)o,f(z, v), strictly speaking, has dimensions of (length)fl
(steradian) ! rather than (length)fl. This distinction does not affect computations of backscattered photon
numbers.

*In the lidar literature Rayleigh scattering refers specifically to scattering by molecules rather than by aerosol
particles, which may or may not be small compared to the wavelength.
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particles to the elastic backscatter, and therefore to determine distributions of aerosol
concentrations. Similarly, whereas the absolute Doppler shift due to line-of-sight wind
is the same for light scattered by aerosols and by air molecules, the relative Doppler shift
for aerosols is much larger; in other words, the ratio of the Doppler shift resulting from
being carried along by wind to the average thermal velocity is larger for aerosols. The
large relative frequency shift allows the Doppler shift to be accurately measured as a
separation between two narrow “spikes” in the spectrum of the backscattered light.
This allows accurate profiling of atmospheric winds and is the basis for the atmospheric
laser Doppler instrument (ALADIN) planned for operation aboard the European Space
Agency’s ADM-Aeolus “wind watch” satellite. This lidar system will operate at the
355-nm wavelength of frequency-tripled Nd : YAG laser radiation. It is expected to pro-
vide 100 wind profiles per hour with a range resolution of 1 km for altitudes up to 30 km.

Elastic-backscatter lidars can detect the presence of large, nonspherical particles (e.g.,
ice crystals or soot). For spherical particles the backscattered light has the same polariz-
ation as the laser radiation. Nonspherical particles, however, result in a “depolarization”
of backscattered light; analysis of this depolarization can therefore determine whether
such particles are present. Polarization-sensitive elastic-backscatter lidar has been
useful, for instance, in studies of the distribution of ice crystals in cirrus clouds and
of aerosols in dust layers.

Resonance fluorescence lidar studies of sodium and other mesospheric metallic
species (e.g., potassium and iron) believed to result from meteoric ablation have also
been important in atmospheric research. Sodium is found in a layer about 30 km wide
centered at about 95 km.” It has been especially useful in resonance fluorescence lidar
because of its strong D line transitions and its relatively large density (only a few thou-
sand atoms per cubic centimeter!) in the mesosphere.

To be specific, let us consider, as in Section 3.13, the 3S;5(F = 2) <> 3P3, Dy
transition. We can estimate as follows the number of photon counts A that can be
obtained from the full width of the sodium layer with laser radiation at this transition
frequency. Assuming 7, range bins of length Az [~30km/n,] in the lidar equation
(14.1.8), we write

Zt Pwr), T A i
N ~ ZN(Z +m Az) ~ nngTraﬁaZN(z +mAz) Az
m=1 hv Zeff m=1
o Pwr) A, g
=3 SR S oG (14.1.23)

where C, (m~?) is the sodium column density. We have replaced Ty(z) and z within the
sodium layer by effective values T, and z.¢;, and o’ﬁa is the backscattering cross section
for sodium resonance fluorescence, which for our rough estimates is assumed to be
isotropic; thus we take

1
oh = 5(9.3 x 1071 m?), (14.1.24)

“The sodium layer is seen as a faint, thin yellow arc in a photograph taken by an astronaut during the
September, 1992 flight of the space shuttle Endeavour. This photograph is reproduced in W. J. Wild and
R. Q. Fugate, Sky and Telescope 87, 10 (1994).
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where 9.3 x 10~ '® m? is the total (absorption) cross section calculated in Section 3.13
[Eq. (3.13.10)] for T'= 200K, which is approximately the temperature in the meso-
sphere. Then, from (14.1.23) with z.;; = 95 km, we obtain the number of photons per
unit area and per unit time arriving at the receiver during the integration time 7:

N
nA, T

~ 2.4 x 10" T3 (Pwr),(W)C,(m?) photons/m?/s. (14.1.25)

The sodium column density C; varies with location, time of year, and even time of day,
typical values being 3 — 6 x 10"* m™2, corresponding to peak sodium densities of
around a few thousand atoms per cubic centimeter. Using C, =4 X 10" m™? and
T2 ~ 0.5, we estimate that N'/(nA,7) ~ 5 x 10° T2 photons/m?/s per watt of laser
power arrive at the detector. This is much smaller than the photon flux from low-altitude
Rayleigh backscattering, which can be eliminated from the measured sodium resonance
fluorescence signal by range gating [for pulses shorter than about (95 km)/c ~ 300 ps]
such that photon counting at the receiver is begun only after a sufficiently long time
following the launch of a laser pulse.

We have made assumptions about column density and temperature in order to esti-
mate photon returns, but, of course, one application of lidar is to determine such quan-
tities from measured photon counts. The temperature profile of the mesosphere, for
example, has been measured by sodium resonance fluorescence lidar based on the temp-
erature dependence of the absorption cross section shown in Fig. 3.20. The maximum
and minimum backscattering cross sections occur at frequencies we denote by V.«
and v,,,;,, respectively, and the ratio of these cross sections depends on the temperature.
The ratio of range-gated photon return signals taken at the two laser frequencies v, and
Vimin» fOr example, can therefore be compared with the theoretical ratio (Fig. 3.20) to infer
the temperature as a function of altitude in the mesosphere. Figure 14.2 shows results of

Na Density (x1000 cm™3)
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105 T T T T T

100 |- .
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Figure 14.2 Temperature and sodium density in the mesosphere over Ft. Collins, Colorado, obtained
from sodium resonance fluorescence lidar. [From R. E. Bills, C. S. Gardner, and C.-Y. She, Optical
Engineering 30, 13 (1991).]



14.1 LIDAR 645

such measurements for the temperature as well as the sodium density. The relatively
high-resolution (Az = 1 km) data were obtained with a cw dye laser tuned alternately
between two frequencies.

e The sodium density can be obtained by normalizing the sodium photocounts to the Rayleigh
photocounts from aerosol-free altitudes (<35 km) at which the Rayleigh scattering is due almost
entirely to air molecules; this has the advantage of effectively eliminating uncertainties in the
atmospheric transmission coefficient Tj(z). Thus, from Eq. (14.1.8) it follows that the sodium
density Nna(2) at altitude z can be expressed as (Problem 14.3)

NrGR)TE zx, v)} 2 M) (14.1.26)

NNa(Z) |: O'I\B}a(Z, V) lee -/\/I'Q(ZR) s
Here z and z are the altitudes for which the Rayleigh and sodium photon counts Ng(zz) and
Nra(z), tespectively, are taken, and Ng(zg) is the density of molecular (Rayleigh) scatterers at
zg. The factor in brackets on the right-hand side is known theoretically as a function of the
laser frequency [cf. (14.1.21)], z° /z%e is determined by the altitudes probed, and the ratio of
sodium and Rayleigh photocounts is measured to infer Ny,(z).

In deriving the lidar equation, we used the proportionality (14.1.3) between the excited-state
population and the intensity; this ignores the possibility of saturation or coherent excitation effects
that depend on the temporal variations of the electric field. In most lidar systems saturation or
coherent excitation effects are of no concern, and the forms of the lidar equation we have written
are quite adequate. It should be remembered, however, that backscattering cross sections gener-
ally depend on the polarization of the laser. In narrowband lidars, moreover, it is often necesary to
account for the laser linewidth via a convolution of the frequency-dependent cross section with
the laser spectrum. °

In differential absorption lidar (DIAL) the wavelength dependence of the trans-
mission coefficient 7} is used to determine the densities of absorbing species. Consider
the lidar equation for the power at the receiver [cf. (14.1.9)] when the laser is at wave-
length A:

A o (R i
Pwr(R, A) = (Pwr)o(A) R—;N(R)UB(R, A) ARe 2 Jy Ra®D, (14.1.27)

where we have used (14.1.11) and have written R instead of z to allow for arbitrary zenith
angles; AR is the range bin length, (Pwr)y(A) is the laser power at R = 0 at wavelength A,
and a(R', A) is the atmospheric attenuation coefficient at wavelength A and range R'.
The basic idea of DIAL is to measure photon return signals at two wavelengths A,
and A, where Ay, is a wavelength that is “on” resonance with an absorption line of
the atmospheric molecule of interest and Ay is “off” resonance. In other words, the
molecule of interest absorbs at wavelength A,, but not at A,y From (14.1.27) we
obtain the ratio

Pwr(R, Aon) JR . .

— = —2| dR'[a(R', Aon) — a(R', A . 14.1.28
PWI‘(R, )\off) exp 0 [a( on) a( Off)] ( )
We are assuming that the laser powers as well as the range bin lengths are the same at the
two wavelengths, and that the two backscattering cross sections due, for instance, to
Rayleigh scattering, are also approximately the same.
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The attenuation at the two wavelengths is attributable to scattering from air molecules
and aerosols as well as to absorption by any molecules with absorption lines near these
wavelengths. Suppose, however, that only a particular molecular species contributes
significantly to the integral over R of the difference a(R, A,,) — a(R, Aygp); this, of course,
is the species probed by DIAL with (slightly) different laser wavelengths A,, and Ayg.
Then we can ignore all contributions to (14.1.28) except that from this particular
molecular species. Since

a(R', Aon) = a(R', Xott) = No(R[0u(R', Aon) — 04(R', Aot)], (14.1.29)
where N, and o, are the number density and absorption cross section, respectively, of

this particular molecule, it follows from (14.1.28) that

PWr(R, Aon R

PWIR, Aon) _ exp {—4 ar’ Nu(R’)Aaa(R’)], (14.1.30)
Pwr(R, Aofr) 0

where we define the “differential absorption cross section”

Aoy(R) = 0u(R', Aon) — 0u(R', Aott). (14.1.31)
Differentiation of (14.1.30) yields

N.(R) =

—1 d |: Pwr(R, )\on):| (14.1.32)

— n —————
2A0,(R)dR | Pwr(R, Aur)
or, since the return signals are, of course, recorded in discrete range bins AR,

1 [PWIR + AR, Aor) _ PWI(R, Aow)
2A0,(R) AR PWI(R, Aott) PWIR + AR, Aon)|”

Nu(R) = (14.1.33)

Sometimes DIAL is said to be (approximately) “self-calibrating”: by measuring the
return signals at the two wavelengths A, and A, the number density N,(R) in different
range bins is determined independently of the area of the receiving aperture, the photon-
counting efficiency, the absolute laser power, the density and cross sections of the back-
scatterers, and the atmospheric transmission coefficient 7To(R). It is, of course, essential
that the differential absorption cross section Ao, (R) of the molecule of interest be known
from theory or from laboratory experiments. DIAL has played a very important role in
the determination of absolute concentrations of ozone, water vapor, carbon dioxide, and
other environmentally important absorbers. It has also been used for temperature profil-
ing of the atmosphere based on the known concentration of O, and the temperature
dependence of its differential absorption cross section.

e Lidar signals are often very weak, and it is sometimes essential to detect them in such a way
as to discriminate against background noise. This is done by heterodyne detection, as opposed to
the “direct detection” we have presumed. In heterodyne detection the return light is superposed
with light from a “local oscillator,” a cw laser at frequency wio. Let Eg cos(ws + ¢g)t and
E1 o cos(wr ot + ¢ o) denote the electric fields of the signal and local oscillator, respectively.
The electric current ip of a photodetector will be proportional to the total intensity
eoclEs cos(wst + ¢s) + Ero cos(wiof + dro)l’, or

ip < E5 +1E7 + EsEro cos [(ws — wro)t + (b5 — o)l (14.1.34)
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when terms at frequencies 2wg, 2wy o, and wg + wy o are dropped under the assumption that these
frequencies are so large that the detector can only respond to their time average, which is zero.
In addition to a dc component, the current at the detector oscillates at the difference (beat)
frequency ws — wp o, typically at radio frequencies, and with an amplitude proportional to
v/ (Pwr)g(Pwr); o, where (Pwr)g and (Pwr); o are the powers of the signal and local oscillator.
The principal advantage of heterodyning is the greater signal-to-noise ratio achievable with a
sufficiently strong local oscillator field.

Heterodyne detection is “‘coherent” in that it responds to the signal field rather than directly to
the intensity; it records information about the phase (and polarization) as well as the power of the
signal. Lidars employing heterodyne detection are referred to as coherent DIAL, coherent
Doppler, and so forth. Heterodyne detection requires a highly stable pulsed laser and local oscil-
lator as well as sufficiently fast detectors; while offering better noise performance than direct
detection, it is more sensitive to phase perturbations and misalignments. Because of the speckle
effect due to atmospheric turbulence (Sections 8.11 and 13.8), there are shot-to-shot fluctuations
in the return signal from each range bin, and a time averaging must be performed to smooth out
these fluctuations. The heterodyne signal decreases for ranges R greater than the coherence length
of the source (Section 13.11). °

Other lidar techniques are based on Raman scattering, an inelastic scattering process
involving a change in the vibrational-rotational state of a molecule. The scattered radi-
ation is shifted in frequency from the incident laser radiation by the change in the
vibrational-rotational energy. Since the energy levels are distributed according to a
Boltzmann distribution at the ambient temperature, Raman lidars have been used for
temperature profiling of the atmosphere. Unlike resonance fluorescence lidar or DIAL,
Raman lidars do not require specific laser wavelengths that match an absorption line
of an atmospheric constituent; Raman cross sections are approximately proportional
to A% as in Rayleigh scattering, so that the laser wavelengths used (often between
about 320 and 550 nm) are typically smaller than in other lidars. The cross sections
tend to be small, rendering Raman lidars most useful for probing constituents with rela-
tively high concentrations. One of their principal applications is to measurements of
water vapor concentrations in the troposphere, the lowest and densest layer of Earth’s
atmosphere containing nearly all its water vapor.”

The implementations and results of lidar are far too diverse to describe in any detail
here. Mobile lidar systems housed in trucks and airplanes are used to monitor concen-
trations in air of many constituents including ozone, carbon dioxide, methane, water
vapor, industrial emissions, and pollutants. Airborne lasers in the visible and ultraviolet
(e.g., frequency-doubled Nd: YAG laser radiation at 532 nm) are used in fluorescence
lidars in which chlorophyll, for example, absorbs at 532 nm and fluoresces at 685 and
740 nm; the strength of the radiation at these wavelengths provides information about
forest ecosystems and environmental variations. Fluorescence submarine lidars have
been developed for the detection of accidental or illegal chemical discharges in seawater.
All such lidars employ some variant of the basic lidar equation and software for
the “inversion” of the lidar equation to retrieve the desired information from measured
return signals.

The first spaceborne lidar—the Lidar-in-Space Technology Experiment (LITE)—
was launched in September, 1994 as the primary payload aboard the U.S. space shuttle

SThe troposphere extends from ground to ~8 km at the poles and to ~18 km at the equator. It is where
weather “happens.”



648 SOME APPLICATIONS OF LASERS

Discovery. The transmitter was a Nd : YAG laser with frequency doublers and triplers
generating 532 and 355 nm wavelengths at a 10-Hz pulse repetition rate. The receiving
telescope had a 1-m diameter, and photomultipliers (for 532 and 355 nm) and an ava-
lanche photodiode (for 1064 nm) were used for the detection of return signals; the ver-
tical range resolution was about 15 m. This experimental system, the data from which
were validated by six lidar-equipped aircraft as well as more than 90 ground-based sys-
tems in 20 countries, demonstrated that return signals in space could be obtained from
ground or close to ground, and it succeeded in identifying storm systems, dust layers, and
complex cloud structures. Earth-orbiting lidar systems under development will take
comprehensive data from clouds and aerosols in order to obtain information needed
for climate modeling.

Lasers have long been used for distance and velocity measurements. Range finders
employ photodetection and timing electronics to measure the time 7 it takes for a light
pulse to reach an object and reflect back to the transmitter: The distance to the object is
d = cT/2. The advantages of laser pulses over radio-frequency systems (radar) are their
very short durations, directionality, and their intensities that result in much stronger echo
signals. On July 20, 1969, Apollo 11 astronauts placed an 18-inch-square reflector on the
moon, and return pulses from a ruby laser at the Lick Observatory in California were first
detected on August 1. Distances between points on Earth and the moon were determined
to an accuracy of a few inches. The U.S. Laser Geodynamics Satellite (LAGEOS)
launched in 1976 is a sphere of mass 407 kg and diameter 60 cm covered with 426 retro-
reflectors for satellite laser ranging, similar in principle to lunar laser ranging. Laser
tracking of the position of LAGEOS in its orbital altitude ~5900 km revealed small vari-
ations in the length of the Earth day. A second LAGEOS satellite was launched in 1992
to provide more data relevant to seismic activity. Both satellites remain in service as of
this writing.

Laser ranging can also be done interferometrically. In a Michelson interferometer
(Section 13.10), for example, the fringe maxima and minima are interchanged when
the arm separation is changed by A/2: The magnitude of this change in the arm separ-
ation can be determined in terms of the wavelength A by counting the number of fringe
shifts as the change occurs. This technique is used routinely in length calibrations and
machining applications.

Lasers are also used to measure velocities based on the Doppler effect. Laser veloci-
meters, some employing heterodyne detection, allow accurate measurements of velo-
cities of aircraft and fluid flows, for example. Velocities can also be measured by time
of flight: The time T for a laser pulse to propagate to a target and back implies the distance
d = ¢T/2 to the object, and the slope of the plot of distance vs. time is the velocity. This
is how police lidar guns work. They typically employ GaAs diode lasers at an eye-safe
wavelength (904 nm) and average power (~50 wW). Since ~100 pulses are used to
compute the velocity, a typical pulse repetition rate of 300 Hz implies that only ~0.3
s is needed for a velocity determination—not much time for a speeding driver to react
and slow down.

142 ADAPTIVE OPTICS FOR ASTRONOMY

In Chapter 8 we introduced concepts such as the refractive index structure constant Cﬁ,
the coherence diameter ry, and the seeing angle 6 that are especially important in the
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theory of the propagation of light in the turbulent atmosphere. We showed that even
under good seeing conditions a large ground-based telescope, while collecting more
light and allowing the observation of far fainter objects, will have no greater image
resolution than a much smaller telescope of comparable optical quality. Were it possible
to eliminate the effects of atmospheric turbulence, the image-resolving capability of
ground-based telescopes could exceed that of a space telescope (Section 8.11). Substan-
tial enhancement of the imaging performance of ground-based telescopes is in fact poss-
ible with adaptive optics.

The degradation of image quality caused by atmospheric turbulence arises primarily
from phase distortions across an incoming wavefront; recall the discussion in Section
8.11, where we showed that relatively small phase variations can substantially degrade
image quality. The basic idea of adaptive optics is to measure the phase distortions, that
is, the variations in local time lags across a wavefront, and to correct for them by advan-
cing the phase at points where the atmosphere has retarded it and retarding it at points
where the atmosphere has advanced it. The result, ideally, is a “corrected” wavefront in
which transverse phase variations have been removed and the image of an object in a
telescope is free of the blurring effect of the phase-distorting atmosphere. The advance-
ment and retardation of the local phases are done with a deformable mirror surface, or
“rubber mirror,” as indicated in Fig. 14.3. The phase distortions across an incident wave-
front—or more precisely the transverse phase gradients—are measured by a wavefront
sensor and used by a wavefront reconstructor to compute approximations to the actual
phase gradients. These are converted to voltages that drive an array of mechanical actua-
tors (or “pistons”) that adjust the shape of the deformable mirror surface so that the phase
variations across an incoming wavefront are (ideally) absent in the reflected wavefront.

The most common type of wavefront sensor in adaptive optics is the Shack—
Hartmann sensor, an array of lenslets or “subapertures” (Fig. 14.4). Each lenslet pro-
duces a spot on a detector array in the focal plane, and the displacement of the spot
from its local null position is a measure of the local phase gradient—and therefore the
local ray propagation direction—of the incoming wavefront at that subaperture. (The
null positions of the focal spots can be defined using an undistorted incoming wavefront

Deformable
mirror
Input Wavefront
wavefront reconstructor
A
Wavefront
sensor
Output
\4 v wavefront

Figure 14.3 Schematic of the principal components of an adaptive optical system.
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Figure 14.4 Shack—Hartmann sensor consisting of an array of small lenslets (subapertures), each
of which focuses a small portion of an incoming wavefront onto a spot on a detector array in the
focal plane.

from a laser.) The Shack—Hartmann sensor thus transforms the local phase gradients
of the incoming wavefront into a matrix of focal-spot displacements. The spots have a
diffracted-limited form if the lenslet diameters are smaller than the atmospheric coherent
diameter ry (Section 8.11). The detection array used to determine the phase gradient
associated with each subaperture is usually a “quad cell,” which consists of four detec-
tors (e.g., avalanche photodiodes) forming the quadrants of a square: The different
photon counts in the four quadrants provide the measure of the local phase gradient.

The performance of the adaptive optical system depends, among other things, on
how accurately the local phase gradients can be measured. Measurement errors arise
from uncertainties in the centroid positions of the focal spots in the Shack—Hartmann
sensor. These uncertainties are due to photon number fluctuations of the incoming wave-
front and to detector readout noise: Both types of noise diminish as the average number
of incoming photons per subaperture increases.

The wavefront “reconstruction” process involves algorithms and software for estimat-
ing the actual phase profile from the measured matrix of phase gradients. This recon-
struction provides the information used to adjust the deformable mirror and retard or
advance the phase in such a way as to obtain the flat, undistorted output wavefront
indicated in Fig. 14.3.

Deformable mirrors are either segmented or continuous. The segmented type consists
of closely spaced planar mirror segments, each of which can be independently posi-
tioned, whereas the continuous type uses a single reflecting sheet (Fig. 14.5). Continu-
ous deformable mirrors require more sophisticated control algorithms but avoid
alignment and edge diffraction complications that arise with segmented mirrors.

When employed at a telescope the adaptive optical system of Fig. 14.3 operates as
follows. Light that has been phase distorted by atmospheric turbulence enters the tele-
scope and reflects off the deformable mirror. Part of the reflected light is incident on the
wavefront sensor. The sensor measures the phase “errors” (deviations of focal spots from
null positions), which would vanish if the deformable mirror were such that the reflected
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Figure 14.5 Continuous deformable mirror whose shape is controlled by voltages applied to a stack
of electrostatic actuators (pistons). Deflections ~ + 1jum are typically obtained with drive voltages
~+100 V.

wavefront had no phase distortions. The wavefront reconstructor then converts the
sensor output into voltages that drive the “pistons” of the deformable mirror to change
its shape in such a way as to reduce the phase errors measured by the sensor. In other
words, the adaptive optical system functions as a servo-control loop—a very compli-
cated one because of the large number of elements (pistons) that must be simultaneously
controlled. Moreover, it must correct for phase errors on a time scale short compared to
the ~10 ms in which phase distortions of incoming light change because of atmospheric
fluctuations (Section 8.11). Deformable mirrors typically have much faster response
times, so the rapidity of atmospheric fluctuations is not problemmatic.

Adaptive optical systems also employ a fast steering or “tip-tilt” mirror to remove the
overall phase slope or tilt (Section 8.11) of the wavefront; tilt causes the image wander or
“dancing” that is most responsible for the blurring of images obtained with long
exposure times (Section 8.12). A tip-tilt sensor controls the steering mitror to stabilize
the image for correction by the deformable mirror of “higher-order” phase distortions.
Tilt typically accounts for more than 80% of the total power in wavefront distortion,
but it can be followed and removed by the steering mirror with the light from stars as
dim as magnitude 17—19; stars of the required magnitude cover about 60% of the sky.®

e A highly simplified model shows how wavefront sensing errors decrease with increasing
light intensity. Consider instead of a quad cell a two-segment detector geometry that divides
the image plane in the neighborhood of a focal spot from a subaperture into the regions x < 0
and x > 0. Let N; and Ny be the number of photons counted in the regions x < 0 and x > 0,
respectively, in a given time interval. Since the direction of ray propagation at the subaperture
is perpendicular to the local wavefront, a phase tilt implies N # N;: The approximately
linear phase difference across the small subaperture results in a measured phase gradient

cI)ocNRiNL

= (14.2.1)
Ngr +Np

It should be noted that wavefront tilt cannot be compensated using (single-wavelength) artificial laser guide
stars because of “reciprocity:” The downward-propagating light from the guide star follows the same path as
the upward-propagating laser beam, and so the guide star image will not appear to wander in the focal plane
of the telescope.
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and fluctuations ANk and AN; in Nk and N; will cause a fluctuation

(Nr + NL)(ANg — AN) — (Ng — NL)(ANg + ANp)
(Ng + Np)?

_ NANg — NgAN,

MR+

AD o

(14.2.2)

in the measured phase. Assuming (ANg) = (AN;) = (ANxAN;) = 0, (Ng) = (N;) = N/2, and
Poisson statistics for Nz and Ny [(ANz) = (Ng), (AN?) = (N1)], we obtain a mean-square
fluctuation

(AD*) oc 1 /N (14.2.3)

for the measured phase, where N is the average photon count, or, more precisely, the average
number of photoelectrons collected per subaperture. Wavefront sensing therefore increases in
accuracy with increasing light intensity. °

Astronomical sourcess are too faint for the wavefront sensor to make accurate enough
phase measurements for correction of higher-order distortions. Adaptive optical systems
for astronomy therefore use the brighter light from a reference “guide star.” Ideally the
light from the guide star is distorted in the same way by atmospheric turbulence as the
light from an astronomical object of interest, so that removal of the phase distortions of
the light from the guide star will result in an improved image of the object. In order for
the light from the guide star and the object to be phase distorted in the same way by
atmospheric turbulence, the distortions should derive from the same “patch” of sky.
The angle 6 subtended by this patch at the receiver should be no larger than roughly
the coherence diameter r divided by the effective height (~10 km) of the atmosphere,
inthis case, 0 < 20 cm/10 km = 4 arcsec = 19 prad for ry = 20 cmin the visible. This
maximum allowable angular separation between the object and the guide star is called
the isoplanatic angle. Unfortunately, there is a dearth of sufficiently bright stars that
can be used as guide stars—it is estimated, for instance, that only about 0.1% of the
sky has stars sufficiently bright to serve as guide stars in the visible.

However, lasers allow artificial guide stars to be created anywhere in the sky. For
example, the Rayleigh-backscattered light from a laser beam propagating up into the
atmosphere can serve as a guide star. The resonance fluorescence from laser-excited
mesospheric sodium atoms provides another type of artificial guide star. Mesospheric
sodium has a major advantage over Rayleigh scattering as a guide star: It is at an altitude
(~95 km) much higher than can be probed with sufficient photon returns by Rayleigh
scattering. The light from it therefore suffers phase distortions attributable to essentially
the full height of the atmosphere, and so an adaptive optical system employing it as a
guide star will “correct” the wavefront from an astronomical object at “infinity.”
Figure 14.6 shows how an adaptive optical system and an artificial guide star can be
employed at a ground-based telescope. Experiments have demonstrated the feasibility
of adaptive optics using artificial as well as natural guide stars (Figs. 14.7 and 14.8).”
We will confine the remainder of our discussion mainly to the sodium guide star.

"For a comprehensive review of optical technology for improving the resolution of large ground-based tele-
scopes see, for instance, M. C. Roggemann, B. M. Welsh, and R. Q. Fugate, Reviews of Modern Physics 69,
437 (1997).
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Figure 14.6 Schematic showing how adaptive optics with an artificial guide star can be used to
improve the resolution of a telescope.

It is estimated that photon returns from the sodium layer of ~10° photons/m?/s are
required for adaptive optics as described above to result in a Strehl ratio of exp(—1.0) =
0.37, a nominal value associated with generally adequate imaging.® Calculations of
photon returns from the sodium guide star are the same as for the sodium resonance

8Estimates of required photon numbers for desired Strehl ratios, and comparisons of theoretical and
experimental photon returns for various laser pulse formats, are discussed, for instance, in P. W. Milonni,
R. Q. Fugate, and J. M. Telle, Journal of the Optical Society of America A 15, 217 (1998).



654 SOME APPLICATIONS OF LASERS

Figure 14.7 The 3.5-m telescope facility at the Starfire Optical Range in New Mexico with a 589-nm
beam propagating to the mesosphere to produce a sodium guide star. (Photo courtesy of J. M. Telle.)

(a) (b)

Figure 14.8 One of the early demonstrations of adaptive optics in astronomy (July, 1994). Images of
Saturn and one of its moons (Titan) obtained (@) without and (b) with adaptive optics using a Rayleigh
guide star at 656.4 nm with the 1.5-m telescope at the Starfire Optical Range in New Mexico. (Photo
courtesy of R. Q. Fugate.)
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fluorescence lidar and are generally consistent with observations. For example, formula
(14.1.25) predicts a return photon flux of 1.6 x 10° photons/m?/s per watt of cw laser
power at 589 nm, compared with a reported 1.9 x 10° photons / m> /s per watt when
T2C, = 6.7 x 10" m~2.? The reported data were actually the average of photon returns
obtained with linearly and circularly polarized excitation, which gave 1.5 X 10°
photons/m?/s/W and 2.2 x 10° photons/m?*/s/W, respectively. For reasons discussed
in the following section, circular polarization generally results in larger photon return
fluxes. With a 30-W, circularly polarized transmitted beam, for example, the photon
return was approximately 70x 10° photons / m? /s, whereas formula (14.1.25), which
is applicable for laser intensities sufficiently small that the polarization effects discussed
in the following section are insignificant, predicts a return of 52 x 10° photons/m?/s for
30 W of transmitted power.

e The intensity of light from an artificial guide star can be characterized by the “apparent mag-
nitude” m used to quantify the visually perceived brightness of stars. For reasons grounded more
in tradition than logic, the apparent magnitude is defined as

m=—[19 +2.5log1], (14.2.4)

where [ is the intensity in W/ m?. The smaller m, the brighter the object. For the sun, the brightest
object in the sky, /=~ 1.4 kW/m2 at Earth’s surface, and so m =2 —26.9. For the full moon,
m = —12.6, while for Sirius (the brightest star aside from the sun), m = —1.5. The faintest
stars observable with the naked eye have apparent magnitudes m = 6, whereas the Hubble
space telescope can detect objects as faint as magnitude 30 in the visible. A sodium guide star
yielding 70 x 10° photons/m?/s at ground level has an apparent magnitude of about 7.6. e

Quasi-monochromatic irradiation of mesospheric sodium excites only a narrow
velocity group within the approximately 3-GHz-wide Doppler absorption profile
(Fig. 3.20). By appropriate phase modulation the spectrum of laser radiation can be
made to cover essentially the entire Doppler absorption profile. Various pulse-train exci-
tation schemes have been employed, including trains of subnanosecond pulses produ-
cing the coherent excitation effects described in Chapter 9.

Saturation of the sodium transitions occurs at sufficiently high laser powers. If,
for example, the D, line is excited by phase-modulated light whose spectrum is
relatively flat over the absorption cross section, then formula (4.11.2) with the D, radia-
tive rate A,; = 1/(16 ns) and an “average” cross section o ~ 2 x 1071® m? at 200K
(Fig. 3.20) implies I** ~ 5 W /cm? for the saturation intensity. Suppose, for example,
that such a phase-modulated pulse with a duration long compared to the radiative
lifetime saturates the D, transition such that the excited-state probability for an atom
with coordinates (x, y) transverse to the propagation direction has the quasi-steady-
state value

H(x, y) /I

plx, y) =

°J. Telle, J. Drummond, C. Denman, P. Hillman, G. Moore, S. Novotny, and R. Fugate, Proceedings of the
SPIE (International Society for Optical Engineering) 6215, 62150K-1 (2006).
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during the pulse. Suppose also that the average intensity at the mesosphere may be
approximated by the Gaussian form'®

I(x, y) = Ipe 25 = =27/ (14.2.6)

(w is typically ~1 m). Then the rate at which photons are backscattered from such a
pulse to a receiving aperture of area A, at ground is
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aside from a possible factor accounting for anisotropy of the backscatter. Such an
approximate functional dependence of R on the peak intensity /, provides a good fit
to observed photon returns from “long,” phase-modulated laser pulses.”

Work on sodium guide star includes research into methods of generating high-power
radiation at 589 nm. Chains of dye lasers have been used to generate trains of pulses
of sufficient intensity to strongly saturate the mesospheric sodium D, line, but these
systems are large and complicated and the overall efficiency is low. Sum-frequency
(three-wave mixing) generation using Nd:YAG laser transitions at 1.064 and
1.319 pm (1/1064 + 1/1319 = 1/589) appears especially promising for laser guide
stars,” and fiber lasers capable of yielding sufficiently high powers at 589 nm are also
an attractive possibility.

In Section 8.11 we introduced the seeing angle as a measure of angular resolution,
and estimated that under good seeing conditions (characterized by a coherence diameter
7o = 10 cm in the visible) the angular resolution of a 10-m telescope is about 1 arcsec
compared to its theoretical diffraction-limited value of 0.01 arcsec. In other words, com-
pensation for atmospheric turbulence could ideally result in an improvement in angular
resolution by a factor of 100! Aside from far more detailed imaging, such an improve-
ment in angular resolution would have important benefits for ground-based astronomical
spectroscopy: It would allow the use of smaller spectroscopic slits and therefore a
reduction of background radiation in the spectroscopy of very faint objects.

e Adaptive optics was first proposed in 1953 by the astronomer H. W. Babcock, who envi-
sioned a deformable mirror based on an oil film whose thickness over a mirror surface could
be controlled electrostatically. Similar ideas were advanced by V. P. Linnik. These concepts
were impossible to implement without the computers and image-monitoring devices that came
much later.

The concept of an artificial guide star, like much of adaptive optics, originated in classified
military research on satellite surveillance and other applications. One type of guide star or
“beacon” used in satellite surveillance is a “glint” of sunlight reflected by a satellite. The use

10The laser radiation propagating to the mesosphere is of course subject to speckle and other effects of
turbulence discussed in Chapter 8.
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Figure 14.9 One of the early demonstrations of the use of the sodium guide star for adaptive optics
on a large telescope (October, 2006). Images of the Trapezium region of the Orion Nebula with
(left) and without (right) adaptive optics. (© Subaru Telescope, National Astronomical Observatory
of Japan.)

of Rayleigh-scattered light as a beacon for adaptive optics was first suggested in the late 1970s. In
1982 mesospheric sodium was proposed as a beacon for adaptive optics in a classified report;' " in
1985 it was suggested as a guide star for adaptive optics on telescopes,'” and the first experimen-
tal studies in that direction were reported in 1987." In 1991 most of the military research on adap-
tive optics and laser guide stars in the United States was declassified. o

Adaptive optics with a sodium guide star is not a perfect solution to the problem of
imaging through atmospheric turbulence. For one thing, focus anisoplanatism—the fact
that the light from the guide star is a spherical wave rather than the plane wave from an
astronomical object at “infinity”—implies that the guide star light does not “sample”
exactly the same part of the turbulent atmosphere as the light from an object at infinity.
And as already mentioned, a natural guide star is still required in order to compensate for
the overall phase tilt caused by the atmosphere. But the results thus far have been
impressive, and development of adaptive optical telescope systems with the sodium
guide star is proceeding rapidly. Figure 14.9 shows an example of the image improve-
ment obtained with the 8.2-m Subaru telescope at Mauna Kea, Hawaii, one of a growing
number of very large (6—10m) ground-based telescopes employing adaptive optics
with sodium guide stars. The adaptive optics system used a 188-subaperture Shack—
Hartmann wavefront sensor, about 2 m wide, and a 13-cm-diameter deformable mirror
with 188 actuators. The 589-nm beam was obtained by sum-frequency generation with
1064- and 1319-nm Nd : YAG laser radiation; the 589-nm radiation was sent by a photo-
nic crystal fiber from the room housing the lasers and the nonlinear optics to the launch
telescope. The diffraction-limited angular resolution at the 2.2-pm imaging wavelength
is ~2.2 X 10_6/(8.2) = (0.27 prad = 0.06 arcsec, compared to a 0.6-arcsec resolution
without any adaptive optics. With adaptive optics and the sodium guide star the angular
resolution was nearly diffraction-limited.

""W. Happer, G. J. MacDonald, C. E. Max, and F. J. Dyson, Journal of the Optical Society of America B 11,
263 (1994).

12R. Foy and A. Labeyrie, Astronomy and Astrophysics 152, L29 (1985).

L. A. Thompson and C. S. Gardner, Nature 328, 229 (1987).
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14.3 OPTICAL PUMPING AND SPIN-POLARIZED ATOMS

Aside from occasional allusions to the possibility of using polarized light to preferen-
tially populate particular magnetic substates (cf. Sections 3.7 and 4.11), we have pre-
sumed that degenerate states differing only in the magnetic quantum number m are
equally populated. In the calculation of the absorption cross section for the sodium
D line in Section 3.13, for example, the three magnetic substates of the 3S; »(F = 1)
level and the five magnetic substates of the 3S; »(F = 2) level were assigned equal
populations, as must be the case for degenerate states in thermal equilibrium. The pro-
cess by which a departure from a thermal distribution occurs due to irradiation with light,
as in the creation of population inversion in dye or solid-state lasers, for example, is
called optical pumping. The term often refers specifically to the redistribution of hyper-
fine levels and magnetic substates by a resonant atom—field interaction, and it is in this
sense that we will use it here. Optical pumping as such was well understood by the late
1940s but, as with so many other aspects of spectroscopy, it came into very widespread
use primarily because of the quasi-monochromaticity, directionality, tunability, and
intensity of light made possible by the laser.

Let us briefly review the physical significance of the magnetic substates. An atom has
a magnetic dipole moment proportional to its angular momentum F, and for a level with
total angular momentum quantum number F there are 2F + 1 degenerate substates cor-
responding to “magnetic” quantum numbers m = —F, —F +1,..., —1,0,1,...,F —
1, F. (Recall the simplified discussion of the hydrogen atom in Section 2.2, or Fig. 3.19
for the hyperfine structure of the sodium D5 line.) An atom in a state with magnetic quan-
tum number m will be found in a measurement to have a component of angular momen-
tum mh along any chosen “quantization axis,” which is usually called the z axis. We are
denoting the total angular momentum by F, the standard notation for the sum of the elec-
tron orbital angular momentum L, the electron spin angular momentum S, and the
nuclear spin angular momentum I. Atoms with an odd isotope number (the sum of
the number of protons and the number of neutrons in the nucleus) have a net nuclear
spin, hyperfine structure, and a total angular momentum F =L + S + I. For atoms
with even isotope numbers the net nuclear spin I = 0 and the total angular momentum
is L + S; in this case F in the discussion to follow, unless otherwise noted, is actually
L + S and is conventionally denoted by J.

In the presence of a weak magnetic field B = B.Z the degeneracy of the different mag-
netic substates is removed by the Zeeman effect: The state F, m is shifted in energy by an
amount proportional to F - B = mB,:

AEr,, = ppgrmB., (143.1)

where ug = eh/2m, = 9.274 x 10~%* joule/tesla is the Bohr magneton (e and m, are
the electron charge and mass, respectively) and g is a so-called Landé g factor. For
example, the Zeeman shift of a substate m of a hyperfine level with total angular momen-
tum quantum number F (Section 3.13) is given approximately by (14.3.1) with

FEF+1D)+JU+1D)—II+1)
2F(F + 1) '

o +](J+ D+SS+1)—LIL+1)

81 = 200 + 1) '

8r = 8

(14.3.2)
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Figure 14.10 Optical pumping with o, light of an atomic transition with lower- and upper-level
angular momentum quantum numbers 1 and 0, respectively. The o, light induces a transition indi-
cated by the solid arrow, whereas spontaneous emission can occur on the transitions shown by the
dashed arrows.

For sodium, I = %, S = %, 81=3/2(3P32) = %, and g;—1/2(3S; 2) = 2. Then, for example,

gr-1(3S12) = —3 and gr—1(3P3) = .

Now the fact that light carries intrinsic angular momentum implies that there can be a
change Am in the magnetic quantum number when light is absorbed or emitted.
Circularly polarized photons carry angular momentum =+1 (in units of # ) directed
along the propagation direction Z, and the selection rule for allowed transitions is
Am = +1 when the quantization axis is taken to be the z direction. For linearly polarized
photons the selection rule is Am =0 with the quantization axis along the polarization
direction, as discussed below. Based on these selection rules, it is easy to see how polar-
ized light can be used to preferentially populate a particular magnetic substate, or in
other words to “align” (or “spin-polarize”) an atom so that along a particular direction
its magnetic dipole moment has only one possible value. We will illustrate this with a
few examples.

The solid arrow in Fig. 14.10 shows the Am = +1 transition allowed when light with
o, circular polarization is resonant with an atomic transition having a lower level with
three degenerate magnetic substates (m = —1, 0, 1) and an upper level with a single
magnetic substate (m = 0).'* The only allowed absorptive transition that can be induced
by o, light is between the lower state with m = —1 and the upper state with m = 0."
Spontaneous emission from the upper states, however, is constrained only by the selec-
tion rule Am = 0, +1, since we cannot associate any special direction or quantization
axis with it. The upper state m = 0 can therefore decay spontaneously into any of the
three lower states in Fig. 14.10. When a spontaneous transition occurs from the upper
state to either the m = 0 or m = 1 lower state, the atom remains in that lower state

"o and o_ circular polarizations are defined with respect to the transitions they can produce rather than

with respect to left- or right-hand circular polarization of the light itself. Thus, for example, o, light propa-
gating in the +z direction (the direction of the quantization axis) is said in optics to be left-hand circularly
polarized, as is o_ light propagating in the —z direction. o photons have angular momentum +# along
their direction of propagation and therefore can induce Am = +1 absorptive transitions. It is best in this con-
text to avoid referring to “left” or “right” circular polarizations.

15Stimulated emission from the upper m = 0 state to the lower m = —1 state is also allowed, but it does not
change the fact that the atom ends up eventually with zero population in the m = —1 state.
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Figure 14.11 Optical pumping with o, light of an atomic transition with lower- and upper-level
angular momentum quantum numbers 1 and 2, respectively. o, light induces transitions shown by
solid arrows, whereas spontaneous emission occurs on transitions indicated by dashed arrows.

because there are no allowed transitions from it that can be induced by the applied o,
light. It is obvious then that, after a sufficient number of absorption and emission tran-
sitions, the atom will end up with zero probability of being in the m = —1 state, and
therefore will cease to absorb any o, light. In fact it is easy to see that any transition
with a lower level having a greater (or equal) number of magnetic substates than the
upper level will eventually cease to absorb o, light; the same conclusion holds for
applied o_ light.

The same sort of thing happens when resonant linearly polarized light (labeled by 7
instead of o) is incident on the atom with the upper and lower levels of Fig. 14.10.
Because of the Am = 0 selection rule for induced transitions in this case, while again
Am =0, +1 for spontaneous emission transitions, the atom after a few induced and
spontaneous transitions will have zero probability of being in the m = 0 lower state
and will not absorb the applied 7 light. The conclusion that 7 light will cease to
absorb is also reached (of course!) if we choose to take the direction of light propagation
rather than the direction of polarization as the quantization axis and regard the
m-polarized light as a superposition of o, and o_ light [cf. (14.3.4)]. In terms of this
quantization axis, with the magnetic quantum number denoted m’, absorptive transitions
occur only from the m’ = 41 lower states, and after a spontaneous transition from the
upper state to the m’'= 0 lower state the atom can no longer absorb."®

Consider next an example in which the lower level of a transition has a smaller
number of magnetic substates than the upper level. Figure 14.11 shows allowed induced
and spontaneous transitions when resonant o, light is incident on an atom with lower
and upper levels having three and five degenerate magnetic substates, respectively.
It is clear that in this case the atom will eventually have zero probability of being in
any state other than the lower m = 1 state or the upper m = 2 state. After it is fully
“pumped” by o, light it can only make spontaneous and stimulated transitions between
these two states—it is a two-state atom. The circularly polarized light has “spin-
polarized” the atom in the sense that its component of angular momentum along the
direction Z of field propagation (the quantization axis) is either # (when it is in the
lower, m = 1 state) or 2k (when it is in the upper, m = 2 state); if the o, light is shut

'The m’ states can be expressed as a linear combination of the m states, and vice versa. In general magnetic
substates corresponding to two different quantization axes making an angle 6 are related by rotation matrices
d;f,;,(@), See, for instance, A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University
Press, Princeton, NJ, 1996.
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off, the atom will stay in the lower m = 1 state after making a spontaneous transition to
that state. With o_ light, similarly, a two-state atom is created with lower and upper
states m = —1 and m = —2, respectively.

e We will derive the general selection rule Am = 0, +1 for electric dipole transitions using the
example of a one-electron, spinless atom and the fact that a transition from a state 1 of energy E to
a state 2 of energy E, > E is governed by the matrix element [see Eq. (9.3.16) and Problem 14.6]

Xy + € = J¢;(x)(x - 8)d, (x) d°x. (14.3.3)

The polarization unit vector € will in general have components in all three directions %, y, and Z
defined by some Cartesian coordinate system. Consider polarization in the xy plane. It is con-
venient in this case to combine the x and y components and define o, and o_ circularly polarized
light with complex unit polarization vectors (Problem 3.4)

1
V2

where the orthogonal unit vectors X and y are perpendicular to the light propagation direction Z.
To evaluate (14.3.3) we express the hydrogen wave functions in terms of spherical coordinates
(r, 6, ¢) defined with respect to the same (x, y, z) coordinate system, i.e., x=r sin 6 cos ¢,
y = r sin 0sin ¢, and z = r cos 6. Now all we need to know to derive the selection rule for the
magnetic quantum number is that, for a state of our hydrogen atom with principal, orbital angular
momentum, and magnetic quantum numbers n, ¢, m, respectively, the dependence of the wave
function ¢,,,,(r, 6, ¢) on the azimuthal angle ¢ is described entirely by a factor exp(imd).
Thus, for an electric dipole transition from a state with quantum numbers n, ¢, m to a state
with quantum numbers 7/, ¢, m’ the matrix element (14.3.3) is proportional to

€, = @&+ i), (14.3.4)

2

21 o o T
J o id b g J eion=mF b g (14.3.5)

0 0

since X+ &4=(k + 9 +22)- £+ =(1A2)(x + iy)=(1/A/2)(r sin 6 cos ¢ + ir sin O sin p)=
(1/\/§)r sin 0 exp(&i¢). m and m’ have only integer values, and consequently the integral
(14.3.5) is zero unless the exponent in the integrand is zero, i.e., unless the selection rule m' =
m + 1 (for o light) or m' =m — 1 (for o_ light) is satisfied.

The matrix element for the stimulated emission transition from the excited state 2 with mag-
netic quantum number 77’ to the lower energy state 1 with magnetic quantum number m is just the
complex conjugate of (14.3.3) (Problem 14.6). In this case the same selection rule applies
(Am = +1) but the magnetic quantum number decreases when the transition is induced by
o, light and increases when the transition is induced by o_ light.

For light polarization parallel to the z axis we have X « € = X « Z = z = rcos 0, and the matrix
element (14.3.3) is proportional to

2 27
[ o beind gy — [ i -me g (14.3.6)
JO JO

which vanishes unless m = m'. In other words, for linearly polarized light we have the selection
rule Am = 0 for allowed transitions. In this case the quantization axis (z) has been chosen to be
along the direction of field polarization, whereas for circular polarization we took it to be the
direction of field propagation.
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Selection rules for the total angular momentum quantum number are derived in textbooks
on quantum mechanics or atomic physics: AF =0, +1,but ¥ = 0 < F’ = 0 transitions are for-
bidden, that is, their electric dipole transition matrix elements are zero. If F is the total angular
momentum quantum number in the case of nonzero nuclear spin (F=J + I, the sum of
electronic and nuclear angular momenta), we also have the selection rules AJ=0, +I
(J =0« J' = 0 forbidden) and Am,; =0, +1.

There are also selection rules for magnetic dipole and electric quadrupole transitions,
which have much smaller transition rates than electric dipole transitions (typically about 10°
and 10® times smaller, respectively). The selection rules for magnetic dipole transitions are
AF =0, +1 and Am =0, *1, whereas for electric quadrupole transitions AF =0, +1, +2
and Am =0, +1, +2. In all cases F = 0 «» F' = 0 transitions are forbidden. °

Let us return to the example of the sodium D5 line. In Section 3.13 we calculated the
absorption cross section shown in Fig. 3.20 under the assumption that the eight magnetic
substates of the two 3S, /, hyperfine levels were equally populated, as is approximately
the case in thermal equilibrium at temperatures for which k3T is large compared to the
1.77 GHz 3S 5(F = 1) <= 3S; ;o(F = 2) hyperfine splitting. Suppose we irradiate the
sodium atom with 589-nm o light that can induce transitions out of both the 3S,
hyperfine levels. From Fig. 3.19 and the selection rules AF =0, +1 and Am =1 it
can be seen that, for irradiation times long compared to the 16-ns radiative lifetime of
the excited states, the sodium atom will be a two-state atom: only the 3S, >(F = 2,
m=2) and 3Pz ,,(F =3, m = 3) states will have nonzero occupation probabilities.
The optical pumping to this two-state system occurs in ~20 excitation and decay tran-
sitions, after which the absorption cross section will have only a single peak instead of
the two appearing in Fig. 3.20. As discussed below, this results in stronger absorption
than in the case of the unpolarized D, line. If the o, light is shut off after the two-
state atom has been realized, the sodium atom after spontaneous emission from
the 3P;»(F = 3, m = 3) state will be in the single, spin-polarized state 3S, >(F = 2,
m = 2). In this state the electron with spin z-component mg and the nucleus with spin
z-component m; have their spins aligned: m = mp = my +mg +m; =0+ % +% =2

Suppose instead that we irradiate the sodium atoms with narrowband, linearly polar-
ized () radiation that can only induce transitions from the 3S; >(F = 2) level. Because
the atoms excited to the 3Pz »,(F' = 1, 2, 3) levels can undergo spontaneous transitions to
3S;2(F =1, m = £1), the sodium atoms in this case will become transparent to the
light after several excitation and decay transitions.

Absorption can increase or decrease in strength, therefore, when the incident light
causes different, degenerate magnetic substates to have different populations. Such
optical pumping occurs in the absence of collisions and magnetic fields that tend to
redistribute the m-state populations. In collisions of sodium atoms, for example, the
valence electrons can be exchanged; these spin-exchange collisions can quickly
“thermalize” the populations of the magnetic substates. Spin-relaxation collisions can
have large collision cross sections (~10~ ' cm? for alkali atoms) and can prevent
or rapidly destroy spin polarization. In a dilute vapor with relatively infrequent
atom—atom collisions, atom—wall collisions can likewise prevent spin polarization.

Spin relaxation rates are greatly reduced in experiments with atomic beams, where
collisions are effectively avoided. They are also substantially reduced by the use of
“buffer” gases, especially inert gases, that cause very little spin relaxation in collisions
with polarized atoms. Buffer gases at pressures of typically a few Torr are used to slow
down the diffusion of polarized atoms to the cell walls and to maintain their polarization
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for times on the order of seconds or longer in the case of alkali atoms. Coating the cell
walls with paraffins and other materials that do not cause significant spin relaxation is
another frequently used method for preserving spin polarization.

Magnetic fields, including Earth’s magnetic field, can also induce transitions between
different magnetic substates F, m and F, m'. Such static B fields cannot induce transitions
between states of different energy, and, in particular, cannot cause transitions between
states of different total angular momentum quantum number F. The frequency with
which a static B field induces oscillations between different m states is on the order of
ugB/27h, as shown below. For Earth’s magnetic field, for example, B~ 0.5G
(gauss) = 0.5 x 10~* T (tesla), and so the time scale for spin depolarization due to
the geomagnetic field is typically on the order of a microsecond. Optical pumping exper-
iments often employ a magnetic field applied along the direction of spin polarization;
since the energy of the magnetic dipole moment M of the atom in a magnetic field B
is —M - B, the field serves to maintain the spin polarization in the presence of any
stray, weak magnetic fields B for which M x B, # 0.

e For an example of how a magnetic field can affect optically pumped atoms, consider the
experiment sketched in Fig. 14.12. Light propagating in the y direction and linearly polarized
along x is resonant with an atomic transition that we assume for simplicity has a lower level
with F = 0 and an upper level with F = 1. There is also a static B field along the z direction,
which we will take to be the quantization axis.

For the incident electric field we write

. 1 i :
EQ, 1) = iEoe™ "™ = S (G4 i) + (& — 9)]Ege

1 .
= —[&, + &_]Eje @0, (14.3.7)

V2

where as always it is implicit that we are to take the real part. The € . and € _ components result in
nonvanishing probability amplitudes for the F =1, m =1 and F =1, m = —1 atomic states,
respectively. We denote the stationary-state wave functions (eigenfunctions) of these two states
by ®,(x) and P_,(x), respectively, and similarly let ®y(x) denote the wave function for the
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Figure 14.12 Light polarized along x propagates in the y direction and excites atoms in a dilute
vapor. In the absence of a magnetic field the atoms do not radiate any light in the x direction. With
a magnetic field B in the z direction, however, resonance fluorescence polarized along y is observed
in the x direction. This is the Hanle effect.
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F =0, m = 0 lower state of the (one-electron) atom. Then for the wave function at time ¢ for an
atom in the field (14.3.7) we write

P(x, 1) = ao(NPo(x) + a1 (P (X) + a1 (NP (x). (14.3.8)

Let us calculate the expectation value p(¢) of the electric dipole moment of an atom described
by this wave function:

pi) =e¢e Jd3x P (X, DXY(X, 1) = exg1ap(t)a) (t) + exo—1a5(t)a_(t) + c.c., (14.3.9)

since the only nonvanishing dipole matrix elements are between the state ¥ = 0, m = 0 and the
states F'= 1, m = £ 1. In terms of spherical coordinates r, 6, ¢, Po(x) = Py(r, 0) and O ;(x) =
O(r, O)e J—”‘f’, so that for the x, y, and z components of X 4, we obtain

X041 = Jd3x Di(r, Oxd(r, BeT®

0o T 27
dr rJ dOsin O D(r, O)rsin 6D(r, 0) J d¢cos d)ei’d’
0 0

I
(=)

2
= “J dcos pet® = mu, (14.3.10a)
0
2 .
Vo1 = ;LJ d¢sin pet'® = +imu, (14.3.10b)
0
00 T 2 .
20,41 :J drrJ dfsin 6 (r, O)rcos 0 D(r, e)J dpe*® =0, (14.3.10c)
0 0 0

and therefore Xo 4| = Xo, 41X + Yo, 419 + 20,412 = mu(x + iy) and
p(t) = meulay(Da (DG + iy) + aj(Da—i (D& — )] + c.c. (14.3.11)

We will assume now that the light incident on an atom in Fig. 14.12 is in the form of a short
pulse that excites the atom at time ¢ = f,, after which the state probability amplitudes evolve
according to the time-dependent Schroddinger equation [cf. (9.2.2)]

o =0, (14.3.12a)
a = —i(wp + w)ay, (14.3.12b)
a_y = —i(wy — wp)a_i, (14.3.12¢)

where hwy, = upgiB and —hwy, are the Zeeman shifts of the F=1,m=1land F=1,m= —1
states, respectively [Eq. (14.3.1)] and wy is the F' = 0 < 1 transition frequency of the unper-
turbed atom. Then

ao(t) = co, (14.3.13a)
ay(t) = ce teni=io), (14.3.13b)
a_y(t) = c_je o=, (14.3.13¢)

where cg, ¢, and c_; are the probability amplitudes at 7= f,. Since the linearly polarized
pulse is a superposition of €, and €_ components of equal amplitude, we can assume that
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cyc1 = cpc—1 = p; we also assume that the phases of the probability amplitudes are chosen to
make p real. Then it follows from (14.3.11) and some simple algebra that

p(t) = dmepp cos wy(t — to){x cos[wr(t — 19)] + ysin[wr(t — to)]}, (14.3.14)

where w;, = pgg1B/h is the Larmor frequency.

This result suggests—correctly—that when B = 0 (w; = 0) the resonance fluorescence from
the atoms in the experiment of Fig. 14.12 is always linearly polarized along the same axis (x) as
the polarization of the incident field: The atomic dipole oscillates along the x axis and therefore
does not radiate in the + x directions. When B # 0, however, the dipole has a component along
v, produces resonance fluorescence polarized along y, and therefore does radiate in the +x direc-
tions. This effect of a magnetic field on resonance fluorescence is called the Hanle effect.

The Hanle effect is easily explained with the classical electron oscillator model (Chapter 3)
when we include the force ev X B in the equation of motion for the electron displacement x.
In our example the electric field polarized along x causes the electron to oscillate with a com-
ponent of velocity v along x, so that a magnetic field along z results in a force ev X B along y.
The oscillating electric dipole moment of the atom therefore acquires a y component that results
in y-polarized radiation in the + x directions.

We have not accounted for the damping of the expectation value p(¢) of the atomic dipole
moment as a result of the spontaneous emission from the excited states. To do so requires only
that we replace the density matrix element p in (14.3.14) by p exp(—y t/2), where 7 is the
spontaneous emission rate, which is the same for the degenerate magnetic substates of a given
energy level:

p(t) = daeppcos wy(t — to)e Y2k coswy (t — to] + Vsin[wp(t — 10)]}.  (14.3.15)

If a polarizer (or “analyzer”) on the x axis is oriented to fully transmit radiation polarized along a
direction a making an angle ¢ with respect to z, the time-averaged intensity /(¢) of the resonance
fluorescence measured by a detector behind the polarizer will be proportional to the time average
of [p(r) - @, or (Problem 14.7)

I(t) oc e Y7 cos® { (1 — to) — @}. (14.3.16)

This is the basis of a useful technique for measuring excited-state lifetimes (1/v). In fact “the
Hanle effect has been developed into one of the most reliable methods for measuring the lifetimes
of excited levels of atoms and molecules.”'” This is explored further in Problem 14.7.

Two points about our simplified approach to the Hanle effect are noteworthy. First, p # 0
means that the Hanle effect involves off-diagonal coherence of the atomic density matrix
(Chapter 9); this explains why it attracted interest during the development of quantum theory
in the 1920s. Second, as suggested by the classical oscillator model, expressions like (14.3.15)
for the Hanle effect, with relatively small modifications, describe more general cases than the sim-
plest one we have considered of a transition between levels with angular momentum quantum
numbers 0 and 1. °

‘We have considered specifically some examples involving polarized light, but in fact
a redistribution of magnetic substates occurs also for unpolarized light, provided it is
anisotropic (e.g., unidirectional). As long as the light is not isotropic the spherical sym-
metry of an unperturbed atom is “broken” and different magnetic substates defined with
respect to some quantization axis interact differently with different field polarization

17A. Corney, Atomic and Laser Spectroscopy, Oxford University Press, Oxford, 2006, p. 478. Chapter 15 of
this book is an extensive treatment of the Hanle effect.
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Figure 14.13  Simplified energy-level diagram of '**Cs, showing the hyperfine clock transition at
9.193 GHz. The nuclear and electronic angular momenta (/ = % and J = % respectively) result in a
splitting of the 6S, /, ground level into two hyperfine levels with F' = 3 (= % — %) and FF =4 (= % + %).

components, regardless of whether the field has a definite polarization. Polarized emis-
sion lines from the solar corona, for example, are observed and explained as a conse-
quence of the interplay of the sun’s magnetic field and optical pumping with the
(unpolarized) radiation from the photosphere.'®

Optical pumping has been a very useful tool in basic atomic physics, especially in
experimental studies of hyperfine structure and nuclear magnetic moments, atomic
collisions, and other aspects of spectroscopy. In the remainder of this section we briefly
discuss an application of optical pumping in atomic frequency standards. The following
section describes another important application.

e The idea that ground- and excited-state populations of atomic energy levels can deviate sub-
stantially from a thermal distribution as a result of resonant atom—field interactions, and in par-
ticular that atoms can become spin polarized, is attributed to Alfred Kastler, who was awarded the
1966 Nobel Prize in Physics for his research on optical pumping. Kastler’s work included the
prediction and observation of the polarization of the “twilight glow” resulting from the excitation
of the mesospheric sodium D lines by sunlight. The earliest observations of spin polarization of
atomic ground levels by optical pumping were reported by J. Brossel, Kastler, and J. Winter in
1952 and by W. B. Hawkins and R. H. Dicke in 1953. o

Since 1967 the second in the International System of Units (SI) has been defined as
“the duration of 9,192,631,770 periods of the radiation corresponding to the transition
between the two hyperfine levels of the ground state of the cesium-133 atom”
(Fig. 14.13). Time and frequency standards have evolved over many years and are an

18y, Trujillo Bueno, E. Landi Degl’Innocenti, M. Collados, L. Merenda, and R. Manso Sainz, Nature 415,
403 (2002).
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integral part of such applications as satellite communications and especially the U.S.
Global Positioning System (GPS), which would not exist without them; every GPS
satellite is equipped with an atomic clock. They are also required for basic scientific
experiments aimed at determining whether various fundamental “constants” actually
vary in time. The details of the design and implementation of these systems are complex,
but the basic operating principles are relatively simple. In the most widely used type of
atomic clock the frequency of radiation near an atomic absorption line is varied and con-
trolled to lock it to the peak absorption frequency vo. Then a number A of oscillation
periods 1/v, of the radiation is counted to determine a “standard” time interval; thus
the time taken to count N = 9,192,631,770 cycles of radiation at the 6S; pF=3)—
6S, »(F = 4) transition of cesium is, by definition, a second. Until recently it has been
necessary in atomic clocks to employ microwave frequencies, which are small enough
to allow accurate electronic counting of cycles (Section 14.7).

Cesium has been used in atomic clocks since the 1950s, and hundreds of commercial
time and frequency standards based on its “clock transition” are currently in operation.
Like all atomic transition frequencies, the cesium clock frequency is fundamentally the
same everywhere aside from generally calculable shifts due to electric, magnetic, and
gravitational fields. Cesium, while hardly the only atom used for atomic clocks, has a
vapor pressure that allows relatively intense atomic beams to be produced, a large
mass resulting in small thermal velocities and Doppler shifts and, in common with all
alkali atoms, only two lower hyperfine levels (Fig. 14.13). Other advantages of
cesium include its relatively large clock transition frequency, so that a large Q factor
vo/Avy is obtained for a given linewidth Avy, and the fact that this transition is only
weakly affected by small electric fields that may be present.

In a type of atomic clock that served as the primary frequency standard from the late
1960s until about 1990, a beam of cesium atoms, all in the (approximately equally popu-
lated) F = 3 and F = 4 hyperfine levels, pass through a strong and spatially inhomo-
geneous “Stern—Gerlach” magnetic field in region A that deflects atoms in different
hyperfine states (and therefore with different magnetic moments) by different amounts
(Fig. 14.14) and in one of two directions determined by the “polarity” (the sign of the
magnetic quantum number m) with respect to the field.'"” A second inhomogeneous
magnetic field in region B is designed to deflect atoms further, such that, absent anything
else, no atoms would be “focused” onto a hot-wire atom detector; such a detector causes
ionization of atoms incident upon it and thereby an electric signal proportional to the
number of incident atoms. However, if an atom undergoes a transition between the
F=3 and F=4 levels in a region C between A and B, the deflection caused by
magnet B reverses that caused by A, so that those atoms that have undergone a transition
are focused onto the atom detector. In other words, magnet A selects atoms in certain
magnetic substates, while magnet B is used for the detection of atoms that have made
a transition. Transitions are effected in region C by a 3.26-cm microwave field that is
resonant with the F =3, m = 0 «— F =4, m = 0 transition in the presence of a weak,
(nearly) uniform magnetic field (the “C field”) that Zeeman splits the different magnetic
substates; the m = 0 substates are chosen because they have no (first-order) Zeeman
shifts [Eq. (14.3.1)]. Region C is surrounded by a high-permeability material in order
to shield it from Earth’s magnetic field. The C field, perpendicular to the atomic

19Because the atoms have a distribution of velocities, it is generally not possible by this method to put only
atoms in one particular magnetic substate in region C of Fig. 14.14.
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Figure 14.14 Schematic of a cesium atomic clock. The atomic beam is split by a state-selecting mag-
netic field A into two beams. Atoms selected to enter region C are irradiated with microwave radiation
resonant with the clock transition indicated in Fig. 14.13. Those that have undergone the clock tran-
sition are focused by the magnetic field B onto an atom detector, the response of which is maximized
when the microwave frequency is matched to the clock transition. Feedback circuitry keeps the micro-
wave frequency locked to this value.

beam, acts to Zeeman shift m # O states in the presence of residual stray magnetic fields
away from the F'= 3, m = 0 < F = 4, m = 0 resonance, which has only a very small,
second-order (oc Bz) Zeeman shift.

The narrow linewidth of the clock transition results in a sharp resonance frequency vy,
the frequency at which the applied microwave field produces the largest signal from the
atom detector. A feedback loop keeps the field locked to this frequency, and the field
cycles provide the periodic “clicks” used to keep time. The locked microwave frequency
is downconverted electronically and used in a servo loop to lock a quartz oscillator at a
frequency of 5 MHz; this is used to generate a signal consisting of one pulse per second,
the “output” of the atomic clock.

In this scheme most of the atoms in the atomic beam—about % of them if only
the 6S;/»(F = 4, m = 0) state, say, were selected—are rejected, resulting in a smaller
signal-to-noise ratio than would otherwise be possible. State preparation by optical
pumping, however, has increased the accuracy of atomic frequency standards. For
example, all the atoms entering region C can be prepared in the 6S, >(F = 3) level by
irradiating them with laser radiation tuned to the 6S;,(F=4) < 6P3,(F=3)
transition, the upper state of which has a radiative lifetime of about 30 ns.
Spontaneous transitions occur to both 6S; >(F = 4) and 6S; />(F = 3), and transitions
out of the latter level do not occur because they are too detuned from the laser radiation;
therefore all the atoms are pumped into that level. A second laser can be used to optically
pump all the atoms into the 6S, ,(F =3, m = 0) state, thus preparing them for the
6S,2(F=3, m=0) < 68, ,,(F=4, m=0) clock transition in region C.

Optical pumping can also be used for state detection. For example, a laser tuned to
the 6S, >(F = 4) < 6P3,>(F = 5) transition results in allowed spontaneous transitions
from 6P3 »(F = 5) to 6S; >(F = 4), so that the detection of photons radiated in these
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transitions indicates that atoms in region C have undergone the clock transition. In other
words, in optical pumping schemes the state selection magnets A and B are replaced by
lasers, the atom detector is replaced by a photodetector, and signal-to-noise ratios are
increased because atoms are prepared in desired states rather than just selected from
an ensemble of atoms distributed over many states. Optical pumping is employed in
the cesium frequency standard NIST-7 of the U.S. National Institute of Standards and
Technology (NIST). This served as the primary frequency standard in the United
States from 1993 to 1999 but has been replaced in this role by the NIST-F1 standard
employing laser cooling (Section 14.4).

The accuracy Av, with which the cesium resonance frequency can be determined is
limited by the transit time 7; over which the atoms interact with the microwave field; the
fractional width Avg /vy is inversely proportional to the “interrogation time” 74, i.e., Avy/
vo o 1 /voty (Section 9.11). It is therefore advantageous to make #, as large as possible.
Cesium, in addition to the fact that it has the largest vapor pressure and the largest
ground-level hyperfine splitting of any alkali, has the advantage of a large mass and
therefore small thermal velocities (typically ~250 m/s). Relatively long interrogation
times (~0.004 s for a path of length L ~ 1 m) are therefore obtained with cesium.
However, it is impractical to produce magnetic fields that are sufficiently homogeneous
over such lengths; small field inhomogeneities give rise to line-broadening effects. For
this reason atomic frequency standards, which require extremely narrow resonance lines,
employ a U-shaped microwave cavity (Fig. 14.14) that takes advantage of the Ramsey
method of separated oscillatory fields. As discussed in Section 9.11, this avoids line
broadening due to field inhomogeneities while allowing large transit times and the
very sharp resonance of the central Ramsey fringe.

Inaccuracies Avy/v, as small as about 5 x 10" have characterized cesium frequency
standards of the type just described. This corresponds to a clock accuracy of about 1 s
in 6 million years. The atomic fountain clocks described in the following section are
more accurate by about an order of magnitude. These measurements of the cesium
clock frequency are probably the most accurate measurements ever made of any physical
quantity.

The cesium atomic clock is passive, as opposed to active frequency standards based
on masers. The hydrogen maser frequency standard operating on the 21-cm hyperfine
transition 1S »(F=1, m=0) — 1S;,(F=0, m=0) of atomic hydrogen, for
example, operates on the basis of a quartz oscillator locked to the frequency of the
hydrogen maser radiation.

The technical details involved in the operation of atomic clocks and their application
to the GPS, for example, are complex and too far removed from laser physics to delve
into here. The interested reader can easily find more information on the websites of com-
panies that sell atomic clocks and of national laboratories, such as NIST, that maintain
“primary” time and frequency standards.

In Section 3.7 we wrote rate equations for the occupation probabilities of degenerate
upper states and degenerate lower states of transitions between two energy levels. We
briefly discussed conditions under which the degenerate states of equal energy could
be assumed to be equally populated, including the case where the atom is irradiated
with isotropic rather than unidirectional radiation, or where collisions act to equalize
the degenerate-state populations, or where the light intensity is too small to produce
significant optical pumping. Under such conditions degeneracy results simply in factors
like the ratio g,/g; appearing in formulas for the small-signal gain or absorption
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coefficient. This is the case for most naturally occurring optical phenomena and may
therefore be called the case of “natural excitation.” In this respect a remark from a classic
work on atomic spectroscopy is revealing: “If the excitation occurs in some definitely
non-isotropic way, as by absorption from a unidirectional beam of light . . . , large depar-
tures from natural excitation may be produced. The study of such effects raises a whole
complex of problems somewhat removed from the main body of spectroscopy.””
Whether laser spectroscopy is considered to be “somewhat detached” from the main
body of spectroscopy is only a matter of viewpoint, of course. However, the reader
should be aware that formulas for absorption, emission, and dispersion found in pre-
laser reference material may not be directly applicable to atoms prepared by laser radi-
ation, which is definitely not isotropic!

e [t is often necessary in detailed computations to know how electric dipole transition matrix
elements depend on the quantum numbers F, m and F', m’ of the two states of an atomic transition.
Formulas expressing this dependence may be found in the book by Condon and Shortley®® and
other monographs.”' Here we present a few pertinent formulas.

The transition electric dipole moment between states with angular momentum quantum num-
bers F, m and F', m’ is nonvanishing only if g =m’ —m is 0 or +1, as discussed earlier. This
dipole matrix element is denoted (F'n’|d,|Fm) in the “bra-ket” notation of quantum theory.
According to the Wigner—Eckart theorem, it has the form

Fo1

Fmdy Fm) = (1) (7m, !

F /
m>(F \d||F), (14.3.17)

where (F'||d||F) is the reduced matrix element and the quantity in large parentheses is the
3j symbol, numerical values for which can be found in books?! or on the Web.

The reduced matrix element is independent of m and 7. In the case of hyperfine transitions it
depends not only on F and F’ but also on the electron angular momentum quantum numbers J and
J' of the two states and on the nuclear spin angular momentum quantum number /:

(F'||d||F) = —DF (2F+l)(2F’+1){§: ‘1’ ';/}(J’||d|u>. (14.3.18)

Here (J'||d||J) is a further “reduced” matrix element, and the quantity in curly brackets is the 6;
symbol that, like the 3j symbol, is tabulated in various places.?' The numerical value of (J'||d||J)
follows from the formula

1 4a° 1 )
— = || d|lJ 14.3.19
Tad 303 2J + 1 [ lal ( )
for the radiative lifetime 7,4 of the upper state with quantum number J'; the value of 7,4 is usually
provided by experiment. Here, owing to the smallness of the hyperfine splittings, w is simply

20E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra, Cambridge University Press, London,
1959, p. 97.

21See, for instance, R. D. Cowan, The Theory of Atomic Structure and Spectra, University of California
Press, Berkeley, CA, 1981. Different conventions, which are of no physical consequence when followed con-
sistently, are used in the definitions of the 3;j and 6/ coefficients. For example, the reduced matrix element
(J'||d||J) is sometimes defined such that a factor 2J + 1 appears on the right-hand side of Eq. (14.3.19).
We follow the conventions of Cowan, which is consistent with Condon and Shortley. We also write the elec-
tric dipole operator, which we have usually denoted by u, as d here in order to conform to a conventional
notation used in defining reduced matrix elements and related quantities.
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an average transition frequency, for example, @ = 27c/A with A = 589.0 nm in the case of
the sodium D, transitions. The spontaneous emission rate for the particular transition F,
m — F,mis

~3
4w 2
B

AF'm — F,m)= TS (F'm'|d,|Fm)

(14.3.20)

and the total rate of spontaneous emission from the state , m’ may be shown from the properties
of the 3j and 6 symbols to be just 1 /7,4

b

Trad

ZA(F,’ m — F, m)= (14.3.21)
F.m

So all the hyperfine states of the excited energy level have the same radiative lifetime, as implied
by (14.3.19).

The Rabi frequency for the F, m < F’, m’ transition in the case of a linearly polarized field
E(?) = Epxcos (wt + ¢) is

E
XF’,m’;F,m = <F/m/‘dq:0|Fm>ﬁoy (14322)
whereas for a circularly polarized field E(z) = (1/ V2)Ey[x cos(wt + ¢) + sin(wr + $)],

E
Xprpoorm = (F'mi | dye i1 \Fm)%. (14.3.23)

144 LASER COOLING

Atoms recoil when they emit or absorb light, as required by conservation of linear
momentum and the fact that photons carry linear momentum. Einstein (1909) inferred
from his analysis of thermal radiation that atoms recoil not only when they absorb radi-
ation but also when they undergo spontaneous or stimulated emission: They must do so
if their average kinetic energy as they absorb and emit thermal radiation at temperature 7
is to be equal to the value %kBT required by the equipartition theorem of statistical mech-
anics. (kg is Boltzmann’s constant.) As discussed in Chapter 12, the recoil of an atom in
spontaneous emission in particular provides strong evidence for the validity of the
photon concept. In fact, the Doppler effect can be understood simply as a consequence
of the fact that a photon of frequency v absorbed (or emitted) by a moving atom carries
linear momentum Av/c (Problem 14.9).

The recoil forces exerted on atoms by resonant laser radiation are used to slow atoms
to very small velocities and thereby to cool gases to extremely low temperatures. In this
section we discuss some of the basic physics of laser cooling.

Since a photon carries a linear momentum hv/c = hw/c = hk, the force (= rate of
change of linear momentum) on an atom is F' = fikR,s, where R, is the rate at which
photons are absorbed. In the case of a two-state atom,

dpP,
Ry.=[—) . 14.4.1
abs ( dt )abs ( )
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(dP5/dt) s, the rate at which the upper-state probability P, changes due to absorption,
may be obtained from the optical Bloch equations (9.5.1). Since P, = p,, =

22y — pr)+ Hpx + p1y) = 3w+ 1),

dP, 1/dw 1
) =2 =) == 14.4.2
( dr )abs 2 ( dt )abs 2 A ( )

which in steady state is obtained as usual by equating the derivatives in (9.5.1) to zero.
The resulting expression for the absorption rate in a monochromatic field has a familar
form:

P 3 SANI /T
Rups = (d 2) /B At/ (14.4.3)
abs

dl )y 1+ AYB 2/ BAn L+ AYE I

where we have used the fact that the intensity 7 is proportional to x> to write R,y in terms
of the line-center saturation intensity /°*. The force on the atom is therefore

A
14+ A%/ +1/1

(14.4.4)

In the case under consideration of radiative broadening, 8 = A,;/2 (Section 9.4).

Consider as an example a sodium atom that has been optically pumped by circularly
polarized light into the state 3S; >(F = 2, m = 2). For I = I*" = 6.3 mW// cm? the accel-
eration is found from (14.4.4) to be

a=4.6x 10" m/s* (14.4.5)

for laser radiation at resonance (A = 0) with the atom (Problem 14.8). This is 5 x 10*
times the acceleration due to gravity and indicates that resonant laser radiation of very
modest intensity can significantly affect how atoms move about. It should be noted,
however, that for this simplified calculation we have ignored the Doppler shift kv =
wv/c, which contributes to an atom—field detuning.

The force (14.4.4) will obviously slow down an atom moving oppositely to the propa-
gation direction of laser radiation, but eventually it will make the atom turn around and
speed up. Suppose, however, that there are two laser beams, propagating in opposite
directions. Assuming that both lasers have the same intensity and the same detuning
A from resonance with a stationary atom, the total force they exert on an atom with
velocity v is

F %Azll/lsat B %Aml/]sat
1+ A+ kv /B + 115 1+ (A — kv /B> + /15

hk.  (14.4.6)

The first term is the force exerted by the laser beam with propagation direction parallel to
that of the atom’s velocity v, so that it exerts a force in the same direction and is resonant
with the atomic transition when w = wg + kv. (Recall that A = wy — w, the detuning of
the field frequency w from the atomic transition frequency wy.) The second term is the
force exerted by the laser with propagation direction opposed to the atom’s velocity, so
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that it is at resonance when w = wy — kv. For velocities such that the Doppler shift kv is
small in magnitude compared to B8 and |A[, a binomial expansion of (14.4.6), together
with the fact that B = A,;/2, gives

41 /TN /B

F% — KU, =
“ CTATAYB 1y

(14.4.7)

for the total force. This force acts to “damp” the atom’s velocity if k > 0, i.e., if A > 0,
which means that the laser frequency w is smaller than the atomic transition frequency
. This has a simple interpretation. The laser beam propagating in the direction oppo-
site to the atom velocity and exerting a retarding force on it is seen by the atom to be
Doppler shifted closer to resonance, since its frequency in the laboratory frame is
below the atomic resonance frequency; the counterpropagating beam exerting a force
acting to increase the atom’s velocity, however, is seen by the atom to be Doppler shifted
further away from resonance. The net effect, called Doppler cooling, is therefore to slow
down the atom.

The net force (14.4.6) is zero if A =0 and acts to increase rather than decrease
an atom’s velocity if the lasers are tuned above the atomic resonance (A < 0).
Figure 14.15 plots F vs. v for A= B and I = 0.1I**. It is seen from this figure and
Eq. (14.4.6) that the force is always in a direction opposite to v for A > 0, but is very
small for atomic velocities much greater in magnitude than A/k = AA/2. For our
sodium example with A = B, AA/27 = AA,; /47 =3 m/s: An atom’s velocity must
already be relatively small in order to slow it further by Doppler cooling. |kv| < B
defines a “velocity capture range,” i.e., the velocities for which atoms are significantly
slowed by Doppler cooling. The cooling of “warmer” atoms is discussed below.

The force (14.4.7) implies that an atom in the field of two counterpropagating laser
beams tuned below resonance will eventually come to rest. But our analysis thus far
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Figure 14.15 The force (14.4.6) vs. kv/B for A = B and I = 0.17°**
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has ignored the fact that the absorption process itself, while producing no net recoil when
v==0 [Eq. (14.4.7)], causes the mean-square momentum of the atom to increase:
The atom can recoil with momentum + Ak, depending from which laser it absorbs a
photon. Thus, for small v, the rate at which the mean-square momentum of an atom
increases due to absorption is 2R,s, Where R,y is given by (14.4.3) (for v = 0) and
the factor 2 comes from the fact that we have two laser beams of equal intensity. In
addition, the atom can be driven from the ground state back to the ground state by
resonance fluorescence and in so doing recoil with momentum #k. This recoil, again,
has no preferred direction and is therefore zero on average, but, like absorption, it
causes the mean-square momentum of the atom to grow at the rate 2Rs(Rk)*. The
increase of the average kinetic energy E of an atom of mass M due to absorption followed
by emission is therefore

2 2
heating

dt Tdt2M T 2M

and this prevents an atom from coming to a complete stop.
The cooling force (14.4.6) causes the average kinetic energy to decrease at the rate

& = ety = 2 (L) = 2K
<E)cooling_ <FU> N K<U >_ M <2M<U >> = ME- (14.4.9)

Setting the sum of (14.4.8) and (14.4.9) to zero, we obtain the equilibrium kinetic energy
E= (Rabs/K)(hk)z, or, from (14.4.3) and (14.4.7),

2 2
E%ZBA<1+22). (14.4.10)

We are assuming for simplicity that //I**" < 1, that is, that we are in the linear absorp-
tion regime. This is consistent with our neglect of stimulated emission in deriving
(14.4.8).

According to the equipartition theorem of statistical mechanics, in thermal equili-
brium at temperature 7 the average kinetic energy £ = (%) kgT for motion along one
axis, that axis here being defined by the two counterpropagating laser beams. Then
(14.4.10) implies the equilibrium temperature

2 2
T~ ;ka (1 —|—22> (14.4.11)

for a gas in the field of two counterpropagating laser beams tuned below resonance.
dT/dA =0 when A= B, and for this value of the detuning the temperature is
minimized:

T~ (14.4.12)
kp
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The smallest possible temperature achievable by Doppler cooling is therefore estimated
to be

A
TP = Z—f = f;—]:; (14.4.13)

For the sodium D, line, for example, T2, = 240 pK, corresponding to an rms velocity
~0.3 m/s. Note also that the time scale for Doppler cooling in this case, which accord-
ing to Eq. (14.4.9) is ~M 2k, is about 16 ws for I/I** = 0.1. In other words, extremely
low temperatures can be achieved in very short times by Doppler cooling with very
modest laser intensities.

Two counterpropagating laser beams slow the atoms’ velocities only along one axis.
Doppler cooling in all three dimensions of space is realized using three pairs of counter-
propagating beams, each with detuning A > 0, along three orthogonal axes (x, y, and z).
An atom moving in any direction then experiences “viscosity” similar to that of a particle
in a fluid, while the random “kicks” (recoils) it gets in absorption and emission are
analogous to the thermal fluctuations resulting from collisions of a particle with the
molecules of a fluid. Because of these analogies, a vapor undergoing three-dimensional
Doppler cooling has come to be referred to as optical molasses.

Optical molasses was first observed in 1985. The temperature of Doppler-cooled
sodium vapor was inferred from the time taken for atoms to leave the confinement
region after the lasers were all turned off, and the result was consistent with the expected
TP. = 240 pK. Further experimentation during the next few years at Bell Laboratories
and NIST, however, resulted in temperatures =40 K, well below the theoretical mini-
mum for Doppler cooling.

The explanation of this sub-Doppler cooling invokes effects not included in the deri-
vation of (14.4.13), beginning with the fact that the atoms undergo optical pumping in
a field having a spatially varying polarization. We follow here a simplified model that
brings out the essential features,* assuming two counterpropagating plane waves with
orthogonal linear polarizations. At a point z along the axis of propagation we write the
total electric field as (the real part of)

1 . . .
E(z, 1) = —= Ey(ke™ + ye~*)e~iet (14.4.14)
V2
or
1 o ,
E@ 1) = \ﬁEo(fc + Pe e ) = g(g)Ege "), (14.4.15)
where
A | PP —2ikz
€(7) = ﬁ(x + ye ) (14.4.16)

22, Dalibard and C. Cohen-Tannoudji, Journal of the Optical Society of America B 6, 2023 (1989).
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is the complex unit polarization vector, defined with respect to propagation in the
positive z direction. Now

é(z)%\}z(ﬁﬂr?) for kzz¥:0’
H%@—iy):é forkzzg,
H%@_y) forkzzg,
H%(ﬁﬂ-iy)_a forkz:%r,

1
— — K+ for kz = , 14.4.17
\/Z( y) ( )

and so on: As z changes in steps of A/8, the field polarization changes from linear (along
X+ ¥) to o_ circular to linear (along X — y) to o, circular to linear (along X+ V) ...,
and so forth.?®> Because the transition matrix elements between magnetic substates are
different for these different field polarizations, the populations of different magnetic
substates of an atom will vary as it moves along z. This occurs whenever the two counter-
propagating fields have different polarizations and the total field therefore has a polariz-
ation gradient.

There is another effect that was neglected in our discussion of Doppler cooling:
Energy levels of atoms are shifted in an electric field. This is an electric analog of the
Zeeman shifts in a magnetic field. As is the case with Zeeman shifts, these Stark
shifts (or “light shifts”) are generally different for different magnetic substates. Light
shifts of ground magnetic states play a key role in sub-Doppler cooling; in the simplified
model followed here it is assumed that the ground level has an orbital angular momen-
tum quantum number J = % and therefore only two magnetic substates, m = + % For the
excited level it is assumed that J = 3 and therefore m = —3, — 1, 1. 3 (Fig. 14.16a). We
will assume laser intensities small enough that excited-state populations are negligible
and focus attention on the m = i% ground states. As shown below, the light shifts of

these two states at any point z in the field (14.4.14) are

AE(m = —}) = =2V — Vsin 24z, (14.4.18a)
AE(m = +3) = =2V + V sin 2kz. (14.4.18b)

For our purposes it will not be necessary to have a numerical value for V, which is
positive for the case of interest in which the laser frequency w is less than the atomic
transition frequency w.

ZNote that any phase difference between the two counterpropagating waves can be discarded simply by
defining the z = 0 origin appropriately.
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(a)

(b)

Figure 14.16 (@) Magnetic substates of a J = % —J = % transition. (b) Light shifts (14.4.18) of the
m= i% states of the J = % ground level. The dashed arrows indicate transitions between the light-
shifted J = J, m = +1 ground states and the J = 3 level at points for which sin 2kz = 1.

Optical pumping by the field (14.4.14) results in transfer of population between the
ground m = =4 states. Writing (14.4.16) in the form

. 11 . . i o
€7)=—|—((E.+€)——(€. —€_ ) ¢
(2) 7 \/5( T ) \/E( T )
1 , 1 )
= 5é+(1 — je 2k 4 3 & (1 + ie k), (14.4.19)

where € ; are the complex unit polarization vectors for o light [Eq. (14.3.4)], we see
that the intensity of o, light at any point z is proportional to (%)|1 —iexp (—2z'kz)|2 =
(%)(1 —sin2kz), while the intensity of o_ light is proportional to (4—1‘)\1 +
iexp (—2ikz)|* = (G)(1 + sin 2kz):

I(oy) = %10(1 F sin2kgz), (14.4.20)

where /) is the maximum intensity. The intensities /(o ) determine the time scale 7, for
population transfer by optical pumping between the m = i% ground states. For o, light,
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for instance, absorptive transitions are allowed from the m = —% ground state to the
excited m = —I—% state and from the m = —l—% ground state to the m = +% excited state.
As discussed in the preceding section, all the population in steady state will be in the
m= +% ground state if the intensity is small enough that saturation of the
m= —4—% —m= —I—% transition is negligible, even if all the population initially resides
in the m = —% ground state. In other words, o, light transfers population from the
m= —% ground state to the m = —I—% ground state. Similarly, o— light transfers popu-
lation from the m = +3 ground state to the m = —} ground state. Depending on z,
either transfer rate can be dominant since the relative strengths of the o, and o_
components vary with z according to (14.4.20).

We can now understand, qualitatively, how the polarization gradient and optical
pumping cause atoms to lose kinetic energy. Consider an atom at a point z such that
the field polarization is o_. At such a point the atom will be in the state
J = %, m= —% in steady state as a result of optical pumping. Now suppose the atom
is moving to the right with a velocity v such that v, ~ A/4, so that after the time 7,
it will be at a point where the field polarization is o, (Fig. 14.16). In other words, the
atom will have “climbed the potential hill” from a trough to a peak in the light-shifted
energy. At the peak the light polarization is o, and the population transfer rate from
m= —% tom = —1—% is greatest. The population transfer is not instantaneous, and if we
imagine that the atom stays in the m = —% state as it climbs the potential hill, and is
then optically pumped at the top of the hill into the m = —Q—% state at the bottom, we
can see from Fig. 14.16b that it emits a larger photon frequency than it absorbs and there-
fore that its kinetic energy decreases. After the absorption and emission the atom again
starts climbing the potential hill. In reality, of course, the absorption, emission, and opti-
cal pumping are statistical processes. But it should be clear that, because the population
transfers between the m = i% states are not instantaneous but require a finite time ~7,,
there is a net tendency for kinetic energy to be converted to potential energy and there-
fore for the atoms to be slowed. Regardless of whether an atom is moving to the right or
to the left, it finds itself continually climbing a potential hill and losing kinetic energy in
this so-called Sisyphus cooling.**

e The light shifts can be derived by first considering the work involved in inducing an electric
dipole moment p = «E. Since the potential energy of an electric dipole moment p in an incre-
mental electric field dE is —p + dE, this work is

E E 1
W:—J p-dE:—aJ E-dE:—EaEZ. (14.4.21)
0 0

The factor % appears because the dipole is induced by the field. In the case of a monochromatic
field E( cos o, the cycle-averaged energy

AE; = —Lay(w)E] (14.4.22)

24“The gods had condemned Sisyphus to ceaselessly rolling a rock to the top of a mountain, whence the stone
would fall back of its own weight.”—Albert Camus, The Myth of Sisyphus and Other Essays, Vintage Books,
New York, 1955, p. 119.
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is the “light shift” of an atom in a state with polarizability «;(w). The polarizability is in general
complex, and «;(w) here is implicitly assumed to be its real part.

The nearly resonant atom—field interaction is characterized by a detuning A = wy, — w, in
which case the polarizability of the lower state of the transition can be inferred from
Eq. (9.6.30) and the formula n(w) = 1 + Na(w)/2¢e, for the refractive index n(w) of a dilute
gas of N atoms per unit volume [cf. Section 3.15]:

(14.4.23)

for the lower state.?® In the more general case in which the state i can make allowed transitions to
more than one other state, this generalizes to

A 2
ai(w) = ————- mil™s (14.4.24)
h(A? +Bz),z| !
and the light shift (14.4.22) becomes
AE; = —+E3 > il ==l (14.4.25)
4h(A*+ g 5 ol

where [ is the intensity and C is positive for A > 0 (i.e., for the field tuned below resonance). It is
assumed that the states j all have the same energy, so that a single detuning A appears in this
equation, and that all the transitions i < j are characterized by the same homogeneous linewidth.
This simplification applies in fact to the example of interest here.

Consider now the two ground states of Fig. 14.16. For the J = 1, m = —1 state,

AE(m = —) = —Cl(0)|@ Y s — B 10| G — a5 - DI,

1] 3.3 (14.4.26)

since it has an allowed transition to J = % m :% for o, light and an allowed transition to

J = % m= —% for o_ light. We use here the notation of Eq. (14.3.17) for the electric dipole
matrix elements. Since we are ignoring any hyperfine structure for our model atom, the matrix
elements (J'm’|d,|Jm) (with ¢ =m’' — m) are given simply by (14.3.17) with F' =J' and

F = J. Then

3 1 1 2
2 2 2
QY- —(a | 2,)1<%nd||%>r — llalp) (14.427)
2 2
and
2 3o 1y 2 2
2 2
a-ga-or= (3 L -t asean
2 2
Therefore

AE(m = —Y) = —C[S1(a) + (o)) |@l1d|1H [,

(14.4.29)

ZNote from (9.6.30) that the polarizability of the upper state j is ;(w) = —a;(w). Here we are concerned only
with ground-state light shifts and therefore ground-state polarizabilities.
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and, from Eq. (14.4.20),

AE(m = —) = —5¢I|@|ld||D [P + sin 2kz) = V(2 + sin 2kz) (14.4.30)

for the light shift of an atom in state J = 1, m = —1 at the point z in the field (14.4.14). Similarly,

2
AEGn =+ = I )| Yy D~ Clto )|~ 11

— —C[t(oy) + S0 )] |E]|d|[H)
= —V(2 — sin 2kz). (14.4.31)

| 2

Since V and the optical pumping time 7, are directly proportional and inversely
proportional, respectively, to the intensity, the rate 1/7coo = E~(dE/dt)co0) < V,
for Sisyphus cooling is independent of intensity, in contrast to the rate (14.4.9) for
Doppler cooling, which is proportional to intensity. As in the case of Doppler cooling,
the heating rate is proportional to the intensity. Since the equilibrium temperature is pro-
portional to the heating rate times 7, it is proportional to intensity for Sisyphus cool-
ing. The velocity capture range is also intensity dependent, again in contrast to Doppler
cooling: Our simplified discussion shows that the optimal situation for Sisyphus cooling
occurs when v, ~ A, that is, when an atom with velocity v moves a distance ~ A during
an optical pumping time 7, so that kv ~1/7,, implying a velocity capture range inver-
sely proportional to 7, and therefore directly proportional to the laser intensity.

Atlow laser intensities the cooling in optical molasses is observed to be less effective
in the presence of magnetic fields, which cause transitions among magnetic substates
and thereby weakens the Sisyphus effect. If the laser intensity is sufficiently large, how-
ever, the cooling becomes less sensitive to magnetic fields because the light shifts and
optical pumping rates become larger. Detailed analyses of Sisyphus cooling are found to
be consistent with such experimental observations as well as with the extremely low
temperatures—as small as a few microkelvins—that have been realized in optical
molasses.

The temperatures obtained by Sisyphus cooling can be lowered by lowering the
ground-state light shift, for example, by decreasing the laser intensity or by increasing
the detuning. But there are limits even to Sisyphus cooling. The smallest average kinetic
energy for atoms absorbing and emitting photons is that associated with the recoil of a
nearly stationary atom when it absorbs or emits a single photon. The mean-square recoil
momentum, (hwy/c)*, implies a minimum average kinetic energy (hwo/c)*/2M =
h?/2M)* for an atom with mass M and transition wavelength A, and therefore a
temperature

h2
Migh*
For M = 23 amu and A = 589 nm (sodium), 7;ecoif = 2.4 pK; for M = 133 amu and A =
852 nm (cesium), Tiecoif = 0.2 wK. Temperatures several times larger than 7;...;; have
been obtained by Sisyphus cooling. By employing quantum interference effects similar

to those used to inhibit absorption in electromagnetically induced transparency (Section
9.10), it has been possible to cool atoms to temperatures well below the recoil limit.

(14.4.32)

Trecoil =
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e The force on an electric dipole moment p in an electromagnetic field is given by the “Lorentz
force,”

F=(p-VE+ % x B. (14.4.33)

To obtain the force on an electric dipole in the electromagnetic field
E(r, 1) = 1Eome ™ +1Ejme™,  B(r, 1) = Bo)e " + 1Bj(r)e', (14.4.34)

we write

p(r, 1) = ipy(m)e ™ + ips(r)e'™, (14.4.35)
with po(r) = a(w)E(r) and a(w) = ag(w) + ia(w) the complex polarizability. It follows from
the Maxwell equation V x E = —9B/0tthat By = —(i/w)V x E, and from these expressions
that the cycle-averaged z component of the force (14.4.33) is

1 0
Fo(r) = 7 (@) [Eo(o)]’

OE: OE}
0 4 F4,(r) —Z°y + Ep,(r)

OE;,
0z 19) ’

0z

- %al((u)lm Eo.(r) (14.4.36)

The x and y components of the force are obtained by replacing 9/0z with 9/9x and 9/dy,
respectively. The formula (14.4.36) also gives the dipole force on a small dielectric sphere
(Section 14.5).%

Consider as an example a two-state atom, for which the complex, near-resonance polarizabil-
ity can be inferred from (9.6.18), for instance:

w1
@) =5 8

(A = wy — w). (14.4.37)
The first term on the right-hand side of (14.4.36) is therefore the z component of
Fdipole = —V[U(I‘)], (14438)

where

|Eol”, (14.4.39)

which is just the light shift (14.4.22). In other words, the “dipole force” Fy;poc is the force result-
ing from a gradient of the light-shift energy; this is the basis for the optical lattices discussed in
the following section.

To interpret the other part of the force in (14.4.36), let us assume for simplicity the plane wave

Eo(r) = XEge™. (14.4.40)

26Gee, for instance, P. C. Chaumet and M. Nieto-Vesperinas, Optics Letters 25, 1065 (2000).
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In this case the part of the total force that is proportional to the imaginary part of the polarizability
in (14.4.36) is

L B

! B
2 ~
2h AT B = NkZRqbs, (14.4.41)

A2+B27

Frecoil - E(z)ké = hkz

for a two-state atom, R, being just the absorption rate [cf. Eq. (14.4.3)] when the intensity is well
below I**, as assumed here. F...; is just the recoil force (14.4.4) exerted on the atom.

The dipole force arises from spatial variations in the Stark shift U(r) of an atom, whereas the
recoil force is a direct consequence of absorption (and, more generally, emission). The recoil
force has its maximum value at resonance (A = 0) and decreases as 1/A? when the field is far
off resonance, whereas the dipole force vanishes at resonance and decreases more slowly, as
1/|A|, far off resonance.?” The recoil force saturates with intensity according to the formula
(14.4.3). The potential energy (14.4.39) determining the dipole force via (14.4.38) at large inten-
sities takes the form (Problem 14.10)

2
U(r):f%hAln[lJrl B } (14.4.42)

A7+

We have assumed in our discussion of laser cooling that only the recoil force affects the
motion of an atom. This assumption is justified if the field is well described as a plane
wave (VE,=0). In general, however, the dipole force must be taken into account and,
as discussed in the following section, it can significantly affect the motion of atoms in
optical fields.

We mentioned at the beginning of this section that Einstein invoked recoil in absorption and
emission in his treatment of thermal radiation. Assuming an isotropic and unpolarized field
with spectral density p(w), Einstein obtained a cooling rate of the form (14.4.9) with “friction”
coefficient

h d
K= (7‘;) (P — P»)B |:p(a)) - %’ﬁ . (14.4.43)

Py and P, are the lower- and upper-state probabilities of the two-state transition of frequency w
and B is the Einstein coefficient for absorption in a broadband field (Section 3.6). The retarding

force F' = —kv arises from Doppler shifts and “aberration” in the broadband field. The cooling
rate in thermal equilibrium is balanced by the recoil heating rate, which Einstein calculated to be
dE 1 (hoY
(—) . (—“’) P\Bp(w). (14.4.44)
dr heating 3 ¢

From this result, together with (14.4.9), (14.4.43), and E = (%)kBT, therefore, the sum of the
heating and cooling rates is zero when p(w) satisfies

wdp  ho P

3dw kTP —P,"

(14.4.45)

with P,/P; = exp(—hw/kgT) in thermal equilibrium. The solution for p(w) with “initial
condition” p(0) = 0 is exactly the Planck spectrum. o

*"In terminology that seems to generate more confusion than insight, the recoil and dipole forces are some-
times attributed to “real” and “virtual” transitions, respectively.
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The lowest temperatures obtained by laser cooling are realized with trapped atoms
(Section 14.5). In order for atoms to be captured by a trap, their velocities must be
small, much smaller than the typical mean velocity of atoms emerging from an oven,
which is ~800 m/s for sodium atoms at a vapor temperature 7 = 600K. Before atoms
can be trapped and cooled to temperatures in the microkelvin range and below, therefore,
they must first be cooled to temperatures well below their oven vapor temperature. This is
done with a counterpropagating laser beam with frequency w tuned below the atomic
resonance frequency w, so that an atom with an initial velocity v experiences the largest
retarding force when wy = w + kv, that is, when it is at resonance with the Doppler-
shifted field frequency. The atom moves increasingly out of resonance, however, as
its velocity decreases, and the degree of slowing it experiences is substantially reduced
unless w or w can be varied to maintain resonance. The field frequency can be changed
by chirping, but the most commonly employed method of maintaining resonance is to
change the atomic resonance frequency with a magnetic field that varies along the
atomic beam. In this Zeeman slowing the magnetic field along the atomic beam is
varied by varying the winding of a solenoid, as indicated in Fig. 14.17.

e To get an idea of the sort of numbers involved in Zeeman slowing, let us assume that atoms
start out with a velocity v; = 800 m/s and are brought to a complete stop (v;= 0) after a distance
z. Using a = 4.6 x 10° m/ §? [Eq. (14.4.5)] for the deceleration of sodium atoms in a field of
intensity /= I"* = 6.3 mW /cm?, we calculate that the time taken for the atoms to be stopped
is = (v; — v7)/a = 1.7 ms, and the distance over which this occurs is z = %at2 =70 cm.

The Doppler shift at a distance z from the trap (Fig. 14.17) is kv(z) = wv(z)/c. To estimate the
magnetic field required to compensate for this Doppler shift, we assume that the Landé g factors
of the upper and lower states of the atomic transition differ by a factor ~ 1—a reasonable approxi-
mation—so that the Zeeman shift of the transition frequency is Awy ~ ugB,/h for o, light
(Am = +1). The magnetic field required to keep an atom in resonance with the field as it
slows down is therefore

h h h
B.(2) = 2 v(2) ~ —2 g = "X \/2az. (14.4.46)
7 7 2

For the sodium transition at 589 nm we obtain, assuming again the accelaration a = 4.6 x 10° m/s?,
B.(2) ~ 120+/z gauss, (14.4.47)

where 7z (in centimeters) is the distance from the trap and we have used the fact that a tesla is 10*
gauss. °

Zeeman slower
solenoid

Oven
Laser

Figure 14.17 A Zeeman slower. Atoms are slowed by the force of a counterpropagating laser
beam and are kept near resonance with the Doppler-shifted laser field by the Zeeman shift of their
transition frequency in a magnetic field that varies along the direction of the atomic beam. The laser
and magnetic field parameters are chosen such that the atoms are slowed enough to allow them to
be captured in a trap.
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Laser cooling is used to slow cesium atoms and thereby to obtain the extremely small
transit-time line-broadening characteristic of atomic fountain clocks that, as noted earlier
(Section 14.3), are about 10 times more accurate than atomic beam clocks. Some features
of a fountain clock are indicated in Fig. 14.18. Cesium atoms in a trap (Section 14.5) are
cooled to microkelvin temperatures at the intersection of six laser beams, as discussed
above, and then “launched” upward. The launching can be done by the force on the
atoms of a single laser beam, but this results in heating of the atoms as they absorb
and emit photons and suffer recoil kicks. The atoms are instead launched by up-shifting
the frequency of the upward-propagating laser beam and down-shifting the frequency
of the downward-propagating laser beam to produce a moving standing wave. If the
up-shifted and down-shifted frequencies are, respectively, v + Av and v — Av, this
standing wave moves upward with a velocity v = A Av (Problem 14.11), and the atoms
move along with the standing wave without any average recoil velocity: The Doppler
effect causes the atoms to see the same frequency v for both fields, resulting in optical
molasses in the moving frame. The atoms continue moving upward at a few meters/
second after the lasers are turned off (Problem 14.11), and, after being optically
pumped into one of the states of the clock transition, they enter the microwave cavity,
which serves as the first field for the Ramsey method of separated oscillatory fields.
The atoms pass through the cavity, reach their apogee, and then fall by gravity and
experience the second Ramsey field as they pass through the microwave cavity a
second time. For a total atom path length of ~30 cm the Ramsey interrogation time
T ~ 1 s and therefore the Ramsey fringes are extremely sharp (Section 9.11). The detec-
tion of atoms that have made the clock transition is done by irradiating the atoms that fall
through the microwave cavity with laser radiation and counting resonance fluore-
scence photons, and the peak of the atomic resonance is determined by the frequency
of the microwave field that produces the largest fluorescence signal. The essential differ-
ence from the older atomic beam clock, then, is the narrower resonance of the
cesium clock transition resulting from the long interrogation time made possible by
laser cooling.

T Atoms move up

Microwave .
cavity [ _ landthen fall

l Laser

Figure 14.18 An atomic fountain in which atoms make two passes through a microwave cavity,
corresponding in effect to the Ramsey method of separated oscillatory fields. The long Ramsey
interrogation time (Section 9.11) is the primary reason for the high degree of accuracy of atomic foun-
tain clocks.



145 TRAPPING ATOMS WITH LASERS AND MAGNETIC FIELDS 685

14.5 TRAPPING ATOMS WITH LASERS AND MAGNETIC FIELDS

Laser cooling as such does not trap atoms since atoms can diffuse out of the laser fields.
For trapping we require forces acting to spatially confine atoms. The most ubiquitous
atom trap is the magneto-optical trap (MOT) employing both lasers and magnetic fields.
Before discussing the operating principles of a MOT we will consider briefly the trap-
ping of atoms by a static magnetic field, specifically the quadrupole magnetic field

B = Blxx + yy — 2zz], (14.5.1)

where B is the magnetic field gradient along the x and y axes; the gradient of B along the
z axis is —213, as required by the Maxwell equation V- B = 0. The field (14.5.1) is pro-
duced by a pair of Helmholtz coils (Fig. 14.19) when the coil separation is 1.25 times the
coil radius.

The Zeeman-shifted energy of an atom in a state i in a magnetic field of magnitude B
has the form [Eq. (14.3.1)]

Ei(B) = E(B =0) — w,B, (14.5.2)

where u; (cc mug) is the magnetic dipole moment of state i along the direction of the
magnetic field. A state with w; > 0 therefore has its lowest Zeeman-shifted energy at
points in space where the magnetic field is strongest, and an atom in such a state will
experience a force —V(—u;B) acting to move it to a point where the magnetic field
is higher. A state with w; > 0 is said to be a high-field seeker. Similarly a state with
m; < 0is a low-field seeker.”® The potential energy function —u;B ~ ugB = 9.274 X
10"%B J, or 0.67B K when expressed as temperature in degrees Kelvin (K). Thus, for
the magnetic fields typical of laboratory experiments (B < 1 tesla), the “depth” of a
magnetic trap is much less than 1K; atoms must be cooled to such temperatures
before they can be magnetically trapped. Trapping is accomplished much more effec-
tively by combining magnetic fields with lasers, as we now discuss.

J N\
“\/

Figure 14.19 Two Helmholtz coils with opposing electric currents produce a quadrupole magnetic
field.

21n regions free of electric currents there are no local maxima of [B|, and consequently only low-field seekers
can be trapped by magnetic fields alone. This is discussed by W. H. Wing, Progress in Quantum Electronics
8, 181 (1984).
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Equation (14.5.2) implies that atomic transition frequencies in a magnetic field such
as (14.5.1) are position-dependent. The force exerted by a laser field on an atom there-
fore depends on the position of the atom, and it is this position-dependent force that
confines atoms in a magneto-optical trap. Unlike a purely magnetic trap, a MOT acts
not only to trap atoms but also to cool them with counterpropagating laser beams as dis-
cussed in the preceding section. To understand this in more detail we consider a model
atom with aJ = 0 ground level and aJ = 1 upper level. The atom is assumed to be on the
z axis, where the magnetic field (14.5.1) is B = —23zz. The frequencies of the Am = 0
and Am = +1 transitions are

wo(J=0,m=0—-J=1,m=0)= wy,

B 2upgBz
_ B8 2 o+ M8

wJ=0,m=0—=J=1,m=+4+1)=w s s = wy+ Awy,
B 2upgB
a)o(JZO,mZO—>J:l,mz—1):(»04—'““3,‘;g *— wp — Ml;lg Z:wo—Awo.
(14.5.3)

where Awy =2uggBz/h and wy is the transition frequency in the absence of the mag-
netic field. The recoil force exerted on the atom by o light of frequency w is given by
Eq. (14.4.4) with A = 0wy — 0+ Awy:

1 sat 1 sat
LAy /1% LA I/T
F(O'+ ) 2 ~ _4

D=0 1 s T iAwo/Bhk (14.5.4)

for Awy < Band I < I*™. To simplify the algebra we have set wy—w = 8 = A,,/2, and
we are ignoring for the moment any motion of the atom. Under these assumptions the
average recoil force when the atom is irradiated with o, light propagating in the +z
direction and o_ light propagating in the —z direction (Fig. 14.20) is

14,1 1 1 Anl], A
F(0'+) F(OL)— |: Jsat :| |:1—|-Aw0/B 1—A(1)0/,3:|hk_ |: s :|hk B
21 ppgB =_
a [lsat h hk]z— o e

PN
o] e
St

Figure 14.20 One-dimensional model of a magneto-optical trap (MOT). After W. D. Phillips in
Fundamental Systems in Quantum Optics, eds. J. Dalibard, J.-M. Raimond, and J. Zinn-Justin
(North-Holland, Amsterdam, 1992), p. 165.
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when the two fields have the same intensity /. The combined effects of the magnetic field
and the counterpropagating laser fields produce a restoring force with “spring constant”
ky. The approximation (14.5.5) is valid when the magnetic field and the distance from the
center of the trap (z = 0) are sufficiently small.

In addition to the trapping effect in a MOT there is cooling by the counterpropagating
laser beams: The MOT produces a trapped optical molasses. Let us continue with our
one-dimensional model and include the effects of both the trapping and Doppler cooling
forces on the motion of an atom of mass M. The equation of motion for the coordinate z
of the atom is M d’z/dt*= —kyzz — av, or

d?z dz

_+%E

- +wjz=0. (14.5.6)

Here the oscillation frequency w, for an atom in the MOT is given by

y _k _ 2pgeBr

P == (14.5.7)

and the damping constant y, = /M, where k is defined by (14.4.7). As in (14.5.4) we
simplify some algebra by taking A = wy— = B. Then, if I/I*" is small,

_ Ink?
Ve = MIsat”

(14.5.8)

Equation (14.5.6) is the familiar equation for a damped harmonic oscillator and
expresses the fact that atoms in a MOT are both trapped and cooled. For M = 23 amu,
A= 589nm, and g ~ 1, we estimate w,/27 ~ 2 kHz and y, ~ 10° s~ " for I/I* = 0.3
and B = 10 G/cm, as is fairly typical of MOTSs. The atom oscillations are typically
“overdamped” (v, > w,), as this example suggests. In an actual MOT the oscillation
frequencies are different along the x, y, and z axes but have similar magnitudes.

The force (14.5.5) exerted on atoms by the counterpropagating laser beams in a MOT
is typically considerably larger than the magnetic force V(uggB) = uggl3 for atoms at a
distance of a wavelength or so from the center of the trap (Problem 14.12). Typically,
10'®-10*" atoms/m” are trapped, and the size of the trapped “cloud” can be inferred
from the temperature 7: According to the equipartition theorem, the average potential
energy 1k,z” and the average kinetic energy 3Muv? are equal to tkzT in thermal equili-
brium, so that the cloud size is estimated to be

Zcloud ™~ 'V kBT/ks’ (14.5.9)

which is typically ~ 10~% cm for temperatures 7' ~ 200 wK obtained by Doppler cooling
(Problem 14.12). The temperature 7 can be inferred by turning off the trap and determin-
ing the velocities of escaping atoms by their time of flight from the trap.

These results of our highly simplified, one-dimensional model for a MOT are in
reasonable accord with those of three-dimensional numerical analyses that account for
hyperfine structure and all the magnetic substates of real atoms. When such analyses
include polarization gradients and other effects, they become quite complicated, and
in fact the physics of atom cooling and trapping is a subject to which entire books are
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devoted.” Magnetic traps have been developed over many years, especially in connec-
tion with the confinement of hot plasmas in nuclear fusion research, and there is an
extensive literature on the subject.

Techniques for the cooling and trapping of ions differ in several respects from those
we have described for neutral atoms. In this case the electric charge of the particles
allows them to be efficiently cooled and trapped with static electric and magnetic
fields. In a Penning trap, for example, ions are confined in the x and y directions by a
magnetic field along z while a quadrupole electric field confines them in the z direction.
Cooling can be done by applying a laser beam along some other direction; the laser field
cools ions moving toward it and pushes them back to the center of the trap where they
exchange energy in collisions with hotter ions, resulting in a cooling of the ion “cloud.”
Ion cooling with a single laser beam is done similarly in a Paul trap, which confines ions
with oscillating electric fields. The repulsive forces between ions make it difficult or
impossible to realize Bose—Einstein condensation and, since we highlight that topic
in the following section, we will not consider ion traps any further.

e We have described the motion of atoms in a MOT using elementary classical mechanics
rather than quantum mechanics. Classical theory is a good approximation provided the atoms
are not too cold and therefore their de Broglie wavelengths are not too large. We discuss this
point a bit more in the following section.

According to the formula (2.3.8) for a particle in a harmonic-oscillator potential, the motion of
an atom in a MOT is characterized by the quantized energies E,, = hw,(n + %), n=20,1,2,3,...,
and so we can expect classical theory to be accurate if s, /kgT is small. But at sufficiently low
temperatures quantum effects become important, and in particular the zero-point energy %ha),
puts a lower limit on the temperature to which atoms can be cooled in a MOT:

hay
Tmin - E .

(14.5.10)
This limiting temperature is very small (Problem 14.12), but it has been closely approached in
experiments in which a single beryllium ion is confined in a Paul trap with w, ~100 MHz. e

There is a great deal more to be said about laser cooling and trapping of atoms than is
warranted here.?® In the remainder of this section we will touch on two applications of
the dipole force (14.4.38).

The light shifts (14.4.18) we calculated in connection with Sisyphus cooling imply
that the model atoms in their m = i% ground states experience periodic potentials in
the counterpropagating laser fields; the period of these potentials is half the wavelength
of the presumed plane wave. The dipole force given by Eq. (14.4.38),

Faipole = —V[U(®)] = V [} ag(w)Ej(r)] (14.5.11)

when we take E to be real, implies that an atom finds itself in a periodic potential U(r)
whenever the light intensity is periodic, for example, when the atom is in a standing-
wave field. The intersection of two plane waves at an angle 6 results in a periodic

2See, for instance, H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping, Springer, New York,
1999. A tutorial on the design and operation of an “inexpensive” MOT is given by C. Wieman, G. Flowers,
and S. Gilbert, American Journal of Physics 63, 317 (1995).
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potential with period A/[2 sin(6/2)] for a polarizable particle [cf. Eq. (11.14.31)], and,
more generally, pairs of interfering fields can produce a great variety of two- and three-
dimensional potentials with different periodicities along different directions. An atom in
such an “egg-crate” potential, called an optical lattice, behaves very much like an elec-
tron in a crystal, where the allowed energies are restricted to certain bands depending on
the crystal structure (Chapter 2). The light shifts can be comparable to or greater than the
average kinetic energy of atoms loaded into the lattice from a MOT. By varying the laser
intensity or detuning, the atoms can be tightly or weakly bound by the potential wells of
the “egg crate”; they can be confined—*"“held in midair” by laser beams—in potential
wells comparable in their spatial extent to an optical wavelength. If the field frequency
is such that ag(w) > 0, the dipole force moves atoms toward maxima of the electric field;
if ag(w) < 0, it moves atoms toward field minima. Either way, the atoms can be trapped
by the optical lattice, and the trapping potentials are increased or decreased as the field
intensity is increased or decreased. Thus it is possible with optical lattices to obtain a
“phase-space density” of atoms large enough to realize “all-optical” Bose—Einstein
condensation (Section 14.6).

Absorption and recoil in optical lattices can be minimized by detuning the lasers
far from atomic resonances. The peak values of the light-shift potentials are usually
expressed in units of the atomic recoil energy (Problem 14.14). Another attractive feature
of optical lattices is that the interaction strengths of atoms at different lattice sites can be
controlled by designing the lattice appropriately, and relaxation processes can be effec-
tively eliminated. Fundamental quantum phenomena predicted for electrons in crystal
lattices but difficult to observe because of electron—electron and electron—photon
interactions can be probed very “cleanly” with atoms stored in optical lattices.
Transferring atoms from a Bose—Einstein condensate in a magnetic trap to an optical
lattice has led to some remarkable experimental studies, one of which is described in
the following section.

We have restricted our discussion of laser trapping thus far to atoms, but lasers are
also used to trap many other particles including, for example, DNA molecules, biologi-
cal cells, and small dielectric particles. The physical basis for this trapping is again the
dipole force (14.5.11). Consider a nonabsorbing dielectric sphere with radius a smaller
than the wavelength of incident light. With n the refractive index of the dielectric
material, and n,;, the refractive index of the medium in which the sphere is placed, the
polarizability ag of the sphere is given by electromagnetic theory as

N AW
aR:47TEOI’lb m a . (14512)

(ag, 1, and ny, are all evaluated at the frequency of the incident light.) It follows that the
dipole force (14.5.11) is in the direction of increasing electric field if n > n,, and in the
direction of decreasing electric field if n < n,,. A sphere immersed in water and irradiated
with a Gaussian beam at an optical wavelength will experience a radial force toward the
axis of the beam if its refractive index n is greater than about 1.33. However, there is also
aforce of radiation pressure in the direction of propagation of the beam (Problem 14.15):

2 4 2 2\2
ny o , , 8w 5(“’)4 nc—np\
=0 E.=—n(—) | —%|d"l 14.5.13
T A ey 33 (@) 3¢ \¢ n? +2n3 a ( )
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Laser beam

Lens

Trapped
particle

Figure 14.21 “Optical tweezer” used in microscopy. A particle is trapped where the field intensity is
greatest.

In order to trap a particle with n > n;, both radially and axially with a focused Gaussian
beam, for example, the axial gradient of the field in the direction of the focal spot must be
large enough that the dipole force (14.5.11) acting to push the particle toward the focus
exceeds the force K4 acting to push it away. This condition is not difficult to satisfy.
Figure 14.21 shows a commonly used setup for trapping a dielectric particle with a
single laser beam, an example of an optical tweezer. (The terminology comes from
the use of laser beams to noninvasively “take hold” of a particle and move it from
one place to another.) Diode-pumped Nd : YAG lasers are commonly used in biological
applications of laser tweezers; the 1064-nm wavelength is not absorbed by water and
does not damage biological samples. The frequency-doubled Nd: YAG radiation at
532 nm, by contrast, is strongly absorbed by many samples and can serve as an “optical
scissors” used in conjunction with an optical tweezer. Optical tweezer technology and its
applications are advancing rapidly and, as with other applications of lasers, we cannot
go into 31}) in any depth without straying into topics quite distinct from laser physics
as such.

14.6 BOSE-EINSTEIN CONDENSATION

The classical mechanics of an object with linear momentum p is valid if the de Broglie
wavelength Aq.g = h/p is sufficiently small, just as ray optics well describes some
aspects of the propagation of light when the wavelength A [equal to the photon de
Broglie wavelength //(hv/c)] is small compared to apertures and other things affecting
the propagation. For an ideal gas with N atoms per unit volume at temperature 7, for
example, the wave nature of the atoms is not expected to play any role unless their
de Broglie wavelengths are comparable to the interatomic spacing ~N 173, Using

30A large list of papers on optical tweezers, with succinct commentaries, has been compiled by M. J. Lang
and S. M. Block, American Journal of Physics 71, 201 (2003).
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P’ /2M = %kBT to calculate A4.p for atoms of mass M, we estimate therefore that the
temperature must be less than

T, ~———N?/? (14.6.1)

if the wave nature of the atoms is to be important. A gas below this critial temperature
might be expected to behave as a single “matter wave” rather than as a collection of inde-
pendently moving atoms, much as laser light is better described as a wave rather than as a
collection of independently propagating photons. The possibility that particles of matter
can behave collectively as a wave exhibiting interference and diffraction effects follows
from a prediction in 1924—1925 by Einstein, who showed that, at sufficiently low temp-
eratures, noninteracting particles can “condense” into a single quantum state of zero
velocity. This is called Bose—Einstein condensation (BEC).

The critical temperature 7, for BEC is generally extremely small. Consider, for
example, a gas of 37Rb atoms at a density N = 2.5 x 10"® m™>, about 10~ times the
density of air at standard temperature and pressure (STP). Using (14.6.1) we calculate
T. ~ 130 nK, much smaller even than the sort of temperatures quoted in our discussions
of Doppler and Sisyphus cooling. Nevertheless, as discussed below, BEC has in fact
been realized in atomic clouds, including 87Rb at the density 2.5 x 10'® atoms / m’.

e Einstein deduced the condensation effect along the lines of the following simplified argu-
ment. Consider the number of possible quantum states d/NVg of a particle with energy in the inter-
val [E, E+dE] in an ideal gas of volume V. This is analogous to the number (3.12.12) of field
modes; in the case here of particles of mass M, all occupying the same internal quantum state
(e.g., the same electronic state of an atom),

1 1%
vV &k

WNe = oy T @y

A7k dk. (14.6.2)

This is derived in the same fashion as (3.12.12), except that (i) no factor of 2 associated with
photon polarization appears, and (ii) k here is related to the energy E by E = p?/2M =
h%*/2M, i.e., by relating a particle’s momentum p to its de Broglie wavelength (p = 2h/
AaeB = hk). It follows that AN = p(E) dE, where the “density of states” is

VM2
p(E) = 2113\515'/2 (14.6.3)
T
If the atoms are bosons, the number of particles A at temperature 7T is
B ©  p(E)dE
N = No(T) + Jo ATyeElT 1" (14.6.4)

The first and second terms on the right-hand side are the numbers of particles with energy £ = 0
and E > 0, respectively. Because of z(T"), whose functional form we will not require, the denomi-
nator in the second term differs from the (#/%” — 1) familiar from the case of thermal photons.
z(T') appears because, unlike the number of photons in thermal equilibrium, the total number of
particles (atoms) of an ideal gas in thermal equilibrium is a conserved quantity; z(T') is deter-
mined by this number. Since [z(T)ef/*7 — 117! represents the average number of particles in a
particular state of energy E > 0, and as such must be positive, we must have z(7) > 1. It then
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follows from (14.6.3) that the integrand of the second term in (14.6.4) vanishes when E = 0: as
stated, the integral is the density of particles with energy E greater than 0.

The Bose—Einstein “condensation” of particles into the state with £ = 0 occurs only at very
low temperatures. It can be seen from (14.6.4) that, as the temperature decreases, z(7') must also
decrease in order to keep the total number of particles fixed. As T — 0, z(T)) — 1, its smallest
possible value and the value that maximizes the number of particles with E > 0. Assuming
Z2(T.) = 1, we define the critical temperature 7, for BEC as the temperature at which E > 0 for
all the particles:

* oE)dE VM (® \JEdE 27aMkpT.N/?
/\/:J OIS J VE :2.612V(¥) . (1465)
()e/B"fl 7T2h3\/§()e/3 71 h
or
h2
T, =0084—N*?  (N=N/V). (14.6.6)
Mkg

Below this temperature some of the particles will be in the condensed phase [No(T) > 0]. T, as
defined here is about % the cruder estimate (14.6.1). At temperatures 7 < T,

® NE) dE Mk TN/?
N = No(T) + JO 7~ M) +2612( —5—
2aMkgT,N'? [ TN/? TV/?
= No(T) + 2.612<7T723) <—> = No(T) +N(—> . (14.6.7)
h T, T.
The fraction of particles in the condensed state is therefore
T TV/?
N/O\f, ): - (F) . (14.6.8)
c
The length
hZ 1/2
Ar = (m) (14.6.9)

is called the thermal de Broglie wavelength, and N)r’} is called the phase-space density. From
(14.6.7) it follows that the condition T < T, for BEC can be expressed in terms of the phase-
space density:

NA3. > 2.612. (14.6.10)

Usually z(T') is written as e M%7 where w, the chemical potential, is a thermodynamic quan-
tity defined as the change in the energy of a system when a particle is added while the volume and
entropy are kept constant. In the case of a BEC at a fixed temperature, the number of particles with
energy E > 0 is constant [cf. Eq. (14.6.4)], so that any added particles must become part of the
zero-velocity condensate. In other words, the chemical potential is nearly zero and therefore
z(T) = 1 for a BEC, as we have assumed in our derivation of 7. In Einstein’s work a parameter
related to z(7') appeared via a “Lagrange multiplier” used in imposing the constraint that the par-
ticle number is constant. Einstein suggested that condensation might be observed with a gas of
electrons—this was before it was understood that particles are either bosons or fermions, that
no two fermions can occupy the same quantum state, and therefore that the condensation
effect cannot occur with (unpaired) electrons or any other fermions. o
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Before laser cooling and trapping, experimental studies of Bose—Einstein conden-
sates were limited primarily to liquid “He. At the required temperatures most substances
solidify, and in those that do not the atoms interact too strongly to approximate an ideal
gas. Liquid “He, the superfluidity of which has traditionally been associated with Bose—
Einstein condensation, is the major exception. The small mass and therefore large zero-
point energy of helium atoms prevents solidification at atmospheric pressures, and below
a critical temperature of about 3K, some fraction of the atoms go into a superfluid state in
which the liquid has zero viscosity (Problem 14.16). At lower temperatures nearly all the
atoms are in the superfluid component. While many studies strongly support the con-
clusion that superfluid “He is a Bose—Einstein condensate, the density is sufficiently
large that interatomic interactions are significant, as evidenced by the mere fact that
low-temperature “He is a liquid. One of the most remarkable features of Einstein’s
prediction, after all, is that condensation can occur in the absence of any particle
interactions.

In dilute atomic clouds at temperatures below that required for Bose—Einstein
condensation, the average distance between atoms is fairly large, typically ~10* nm.
At such separations, interactions resulting in collisions that are deleterious to BEC are
weak if the atoms are spin polarized, as discussed below. However, these weak inter-
actions actually turn out to be essential for meeting the major experimental challenge,
which has been to realize the exceedingly small critical temperatures that, because
of the low densities of dilute gases, are much smaller even than those obtained by
Sisyphus cooling, as noted earlier. If we assume a density of 10'® atoms/ m’® in an
atom trap, the critical temperature predicted by Eq. (14.6.6) is about 20 nK for *'Rb,
for example, whereas the recoil limit is about 400 nK. Actually, as also discussed
below, critical temperatures for trapped atoms can be considerably larger than that
given by (14.6.6), but they are still much smaller than temperatures reached by laser
cooling.

The temperatures required for BEC in atomic clouds are realized by evaporative
cooling. In this technique the six cooling laser fields (Section 14.4) are turned off and
the low-field-seeking atoms are magnetically trapped; the lasers are turned off in
order to avoid photon scattering processes that limit the achievable densities and temp-
eratures. The magnetic trapping field is then slowly reduced, so that the (Zeeman energy)
depth of the magnetic trap is lowered, allowing atoms with sufficient kinetic energy to
escape the trap while cooler atoms remain. An rf magnetic field can also be applied to
induce transitions between magnetic substates such that atoms with the largest kinetic
energies are changed from low-field seekers to (untrapped) high-field seekers. The
effects of the reduced trapping field and the rf field are then to allow hotter atoms to
be removed from the cloud while cooler ones remain, analogous to the cooling of a
cup of coffee by evaporation; note that atom interactions in the form of elastic collisions
are essential for evaporative cooling, that is, for keeping the cloud thermalized as
the evaporation proceeds. Evaporative cooling from a laser-cooled temperature of
~10 pK to ~200 nK, sufficient for the formation of a spin-polarized condensate of
about 2000 *’Rb atoms, was first achieved in 1995; a zero-velocity BEC component
of the cloud was verified by a time-of-flight measurement of the atoms’ velocity distri-
bution when the cloud was allowed to freely expand. Following those experiments, BEC
has been demonstrated by similar methods in different gases. The basic technique has
usually been to use Zeeman slowing to cool an atomic beam from an oven, capture
and laser-cool the slowed atoms in a MOT, turn off the lasers and magnetically trap
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the atoms, and then evaporatively cool the atoms (typically a few million of them) to
below the critical BEC temperature.”'

A serious problem that had to be overcome in the first experiments concerned the
trapping in the static magnetic quadrupole field after the lasers were turned off. An
atom moving in such a field experiences a time-dependent field that can cause it to
make a transition from a low-field-seeking magnetic substate to an untrapped, high-
field-seeking state if this time variation is sufficiently rapid, that is, if the magnetic
field the atom sees has a Fourier frequency component near the frequency for a transition
between two Zeeman-shifted magnetic substates. Near the center of the trap the mag-
netic field and therefore the Zeeman splittings are small enough for even a slow atom
to experience a time-dependent field that causes its magnetic moment to flip into an
untrapped state: The quadrupole trap has in effect a “hole” near its center that prevents
atoms from being trapped for very long. In one of the original experiments this problem
was solved by applying an oscillatory magnetic field such that the total (time-averaged)
magnetic field did not vanish anywhere in the trap and therefore there was no “hole.” In
another a “blue-tuned” laser at a frequency giving a negative atomic polarizability was
applied such that atoms were repelled from the hole. Experiments that followed have
employed different magnetic field configurations to circumvent the problem.

e To derive the critical temperature 7. for atoms in a magnetic trap with restoring forces along
the x, y, and z axes and atom oscillation frequencies w,, w,, and w, along these axes, we first recall
that the quantized energy levels for the atomic motion in the trap are

E = (ny+H)ho, + (ny + Hhoy + (n, + Hho, (1, ny,n,=0,1,2,...).  (14.6.11)

Consider the number Af; of possible states with energies less than E. For cases of interest in the
trapping of neutral atoms, the energies may be assumed to be much greater than the zero-point
energies %hwx, %hwy, and %hwz. Then for the calculation of Ny the integers n,, ny, and n, may
be replaced by continuous variables E,/hwy, E,/hwy, and E, /hw.:

1 E E-E, E—E.—E, B3
Ng = 7J dExJ dEyJ dE, = ———— (14.6.12)

3 -3 :
I wwyo; Jo 0 0 6" w,wyw,

The number of states with energy between E and E + dE is therefore

E*dE
dNg = — = p(E)dE, (14.6.13)
2R w oy o,
which defines the density of states p(E). Proceeding now as in (14.6.5)—(14.6.8), using this den-
sity of states instead of the density of states (14.6.3) for untrapped particles, we obtain the critical
temperature

/"L(cuxwywz)l/2

. N3 (14.6.14)
B

T. =094

31For references to the original work and more detailed discussions see, for instance, C. J. Pethick and
H. Smith, Bose—Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, 2004.
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and the condensate fraction

3
NJO\&T) =1- <T1> . (14.6.15)

Unlike the critical temperature (14.6.6) for free particles, (14.6.14) depends on the number of
particles rather than the density. In the original 87Rb experiments the critical temperature was
about 170 nK.

Another important consideration in the physics of cold atomic gases is spin polarization.
BECs in magnetic traps normally consist of spin-polarized atoms, e.g., alkali atoms in which
the valence electrons have “spin up.” The atom interaction involving spin-up (or spin-down) elec-
trons differs from the interaction when the spins are opposite because the Pauli principle allows
two electrons in different spin states to occupy the same atomic orbital, as occurs in covalent
bonding. If the two electrons have the same spin, however, the Pauli principle forbids them
from sharing the same orbital, and the atom—atom interaction in this case is consequently
weaker. Of particular interest for BEC are the so-called doubly polarized and maximally stretched
states of the electronic ground state; spin-depolarizing collisions of atoms in these states have very
small cross sections and the atoms are low-field seekers. In the doubly polarized state the spin
components of the electron (m;) and the nucleus (m,) are aligned and have their largest allowed
values, for example, m; = % and m; = % for Na or ¥’Rb (nuclear spin I = %); the quantization axis
is in the direction of the magnetic field. Thus, for Na or 87Rb, both of whichhave F = land F =2
hyperfine ground levels, the doubly polarized state has the quantum numbers F = 2, mz= 2. In
the maximally stretched state, F = I — J and mp = — (I — 1), for example, F = 1, mp= —1 for
Na or ®’Rb. Collisions of atoms in these states are primarily the “good” collisions necessary to
keep the gas thermalized during evaporative cooling, as opposed to the “bad” collisions that
act to quench the low-field-seeking trapped states. °

The technique of evaporative cooling was developed about a decade prior to its play-
ing an essential role in the first observations of BEC in dilute gases. It was conceived for
the cooling of magnetically trapped hydrogen, which was considered at the time the
most promising candidate for BEC of an atomic gas; this consideration stemmed from
the fact that the interactions of spin-polarized hydrogen atoms are very weak, preventing
the formation of hydrogen molecules. The longest-wavelength transition from the ground
state of hydrogen is the Lyman-« line at 122 nm, too short for laser cooling with avail-
able lasers. This short wavelength and the small mass of the H atom also imply too large
a recoil temperature (7;ecoi = 1.3 mK) for BEC (Problem 14.16). BEC in magnetically
trapped hydrogen was achieved in 1998 by cryogenic cooling followed by evaporative
cooling. The BEC transition was observed at 7, = 50 pK at a density of 1.8 X 10%°
atoms/ m°. The presence of a condensate was inferred from a large shift in the absorption
frequency of the two-photon 1S — 2S transition (Problem 14.9).

Atoms in a Bose—FEinstein condensate can be “loaded” into an optical lattice from a
magnetic trap by applying off-resonance laser beams to produce the desired lattice spa-
cings and light-shift potential depths. With the magnetic trapping fields turned off, the
atoms are left trapped solely by the laser fields forming the lattice. The potential depth is
usually sufficiently large that, according to classical mechanics, the atoms cannot cross
the potential energy barrier between sites and move about the lattice. However, accord-
ing to quantum theory there is a nonzero probability that they can “tunnel” across the
barriers, and in the case of a Bose—Einstein condensate this can result in an atomic
matter wave whose phase is approximately constant while the number of atoms at
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each lattice site fluctuates. This is analogous to a coherent light wave in which the phase
but not the number of photons is fixed (Chapter 12): The smaller the fluctuations in the
phase, the greater the fluctuations in the photon number, and vice versa. In the case of a
fixed number of atoms at each site of an optical lattice, the phase of the matter wave is not
well defined and, by analogy to a similar situation for electrons in a crystal, the atoms are
said to form a Mott insulator. In this case, no interference effects involving a coherent
matter wave are observed when the gas is released from the lattice. If, on the other hand,
the phase of the matter wave is well defined while the number of atoms at each site fluc-
tuates, matter—wave interference effects can be observed. By changing the potential
depth of an optical lattice it has been possible to observe the Mott transition between
a Mott insulator and the (“superfluid”) case of coherent matter waves exhibiting interfer-
ence. It has also been demonstrated that evaporative cooling leading to a Bose—FEinstein
condensate can be done with atoms trapped in an optical lattice, without any magnetic
trapping field. In this case the evaporative cooling results from lowering the power of the
laser beams defining the lattice.

Two-slitinterference and other effects of coherent matter waves have been observed in
experiments with optical lattices and other cold-atom systems, and the new field of atom
optics is based on the wave properties of cold atoms. Atomic interferometers employing
atom—wave analogs of mirrors, gratings, and other optical elements will very likely be
used in applications such as the detection of rotations and gravitational gradients.*>

Bose—Einstein condensates have been produced by trapping atoms with magnetic
fields from planar wire structures fabricated lithographically on a substrate. The small
scale (~0.1-10 pm) of these structures allows strong magnetic field gradients to be pro-
duced with small currents (<1 A) and low power dissipation, and the wire patterns can
be designed to form, for instance, magnetic traps similar to the Helmholz coil quadru-
pole trap described earlier. The tight trapping results in rapid cooling and the formation
of a BEC in a second or less. The motion and positions of atoms trapped a few microns
above the surface of these structures are more controllable than in the case of MOTs in
which the trapping fields are produced by lasers and coils outside the atomic cloud. For
example, it has been demonstrated that a BEC cloud can be moved about in a prescribed
fashion on such an atom chip. Integrated atom chips including tiny lasers and readout
electronics might eventually be the basis of miniaturized sensors, atomic clocks, and
other devices.

e Atoms in which the numbers of electrons, protons, and neutrons are even (odd) integers
are bosons (fermions). Neutral atoms (number of electrons equal to the number of protons) are
therefore bosons or fermions depending on whether the number of neutrons is even or odd,
respectively. Thus, Li (atomic number Z = 3, neutron number N = 4) is a boson, whereas Li
(Z=3, N=3)is a fermion. It is a remarkable consequence of quantum statistics that a Bose—
Einstein condensate can be made with “Li but not with °Li, which differs from "Li only in
having one less neutron in the nucleus.

While fermionic atoms cannot form BECs, they can be cooled and trapped with lasers
and magnetic fields. Techniques have been developed to control with applied fields the intera-
tomic forces in cold fermion gases in such a way that pairs of atoms behave compositely
as bosons, somewhat similar to the way coupled pairs of electrons behave as bosons in a
superconductor. o

3 2See, for instance, M. A. Kasevich, Science 298, 1363 (2002) for an overview of matter—wave experiments
and applications of atom interferometry.
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14.7 APPLICATIONS OF ULTRASHORT PULSES

Ultrashort laser pulses make possible an astounding degree of time resolution, and the
extremely high intensities that often characterize them are of interest for basic research
as well as for a growing number of applications. In this section brief introductions are
given to three new fields created by ultrashort laser pulses.

Time Resolution of Atomic and Molecular Processes

In the 1870s the photographer Eadweard Muybridge carried out experiments on the Palo
Alto, California, farm of Leland Stanford to answer the question whether all four hooves
of a horse are off the ground at any point in its trot. Using a series of cameras whose
shutters were triggered by strings placed along a track, and later a periodic mechanical
triggering, Muybridge eventually achieved millisecond time resolution—probably the
record at the time—and found that the answer to the question was Yes.

Great progress in the resolution of short-duration events followed advances in elec-
tronics and other areas. But before femtosecond lasers™ there was no way of following
in real time such things as the vibrations of atoms in molecules or the detailed time
evolution of a chemical reaction. Chemical reactions at room temperatures typically
involve atomic or molecular velocities ~10° m/s and distances ~107"%m, implying
atime scale ~(10™ 10 m)/ (103 m/s) = 100 fs. Observation of the evolution of a reaction
therefore requires a time resolution of about 1/10 x 100 fs = 10 fs, about 1000 times
shorter than that possible with the fastest available electronics.

However, resolution on femtosecond time scales is still possible. We saw an
example of this in Section 11.13, where we described how the durations of femto-
second laser pulses can be inferred from measurements of a field autocorrelation func-
tion. The “event” of a laser pulse is recorded via an interference of the pulse with
itself: The pulse is used to measure its own time evolution. But how can femtosecond
pulses be used to time-resolve processes occurring in and among atoms and
molecules? To illustrate how this is done, we will focus on the vibrations of a diatomic
molecule.

Recall that the potential energy function V(R) for the bonding of the atoms of a
diatomic molecule is well approximated near its minimum by a parabola, that is, by a
harmonic-oscillator potential [cf. Fig. 2.6]. The vibrational energy levels are therefore
approximately those of a harmonic oscillator [Eq. (2.3.8)]; anharmonic effects are
accounted for by formula (2.3.12), where the frequency w, characterizes the molecule
and the vibrational mode. To the extent that the vibrations are harmonic, we can picture
a diatomic molecule as two atoms whose separation R oscillates sinusoidally in time with
a period 1/w, that is typically ~10~ "% s,

Figure 14.22 shows potential energy functions V(R), V|(R), and V,(R) for three elec-
tronic levels 0, 1, and 2 of a hypothetical diatomic molecule. A field of frequency vpump
can induce transitions between vibrational states of electronic levels 0 and 1, and a field
of frequency vy can induce transitions between vibrational states of electronic levels 1
and 2, as indicated. In accordance with the Franck—Condon principle (Section 11.11),
transitions are indicated by vertical lines, i.e., they occur without a change in the

33“Femtosecond” here refers to pulse durations between roughly 1 fs and 0.1 ps = 100 fs.
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Figure 14.22 Time resolution of molecular vibrations using femtosecond pump and probe pulses.
The pump pulse excites a molecule to an electronic level 1 with potential energy function Vi(R),
and after some time delay 7 the probe pulse is applied to excite the molecule to a level 2 that decays
by fluorescence to level 3. During the time 7 the interatomic separation R changes, so that the strength
of the fluorescence signal depends on 7. The variation with 7 of this signal therefore reflects the vari-
ation with 7 of the distance between the atoms. [From M. Gruebele and A. H. Zewail, Journal of
Chemical Physics 98, 883 (1993).]

interatomic separation R. Excitation to the electronic level 2 by absorption of radiation at
Vpump followed by absorption of radiation at vy, can be monitored by detection of the
fluorescence accompanying transitions from 2 to some other level 3 (“laser-induced
fluorescence,” indicated by LIF in Fig. 14.22).

Suppose a laser pulse at frequency Vpope 18 applied after some time 7 following a
pulse at frequency vpump. During this time the interatomic separation R of a vibrating
molecule in electronic level 1 will have changed. If the durations of the pump and
probe pulses are short compared to the vibrational period, the variation with 7 of the
LIF from level 2 signifies the variation of R with 7: Oscillations of the interatomic
separation R are reflected in oscillations in the observed LIF signal. If, as estimated
above, the period of the molecular vibrations in electronic level 1 is 100 fs, these
vibrations can be observed in “real time” using pump and probe pulses of duration
less that 100 fs. This is the basic idea behind time-resolved studies of atomic and
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Figure 14.23 (a) Femtosecond pump-probe data showing vibrations of molecular iodine with an
oscillation period of 300 fs. The much longer oscillation period of 10 ps is due to the anharmonicity
of the vibrations. (b) Calculated signal with the two principal oscillation periods seen in (a). [From
M. Dantus, R. M. Bowman, and A. H. Zewail, Nature 343, 737 (1990).]

molecular processes with femtosecond lasers: Pump pulses set the “zero” of time from
which temporal variations are determined with time-delayed probe pulses. The time
delay 7 between the pump and probe pulses can be varied by changing the difference
AL in their path lengths: 7= AL/c. A path difference of a micron, for example,
corresponds to a time delay of 3.33 fs.

Figure 14.23 shows the first reported time resolution of molecular vibrations. The
molecule in the experiments was room temperature I, for which the vibrational
period of the electronic level “2” is known from spectroscopic studies to be = 300 fs.
The pump and probe wavelengths were 620 and 310 nm, respectively. The vibrational
period is clearly seen in the data. The amplitude of the LIF signal is modulated at a
longer period (10 ps) as a consequence of anharmonicity. On a much longer
time scale a period ~600 ps is observed as a consequence of the rotation of the I,
molecule.

In our simplified discussion we have imagined that the interatomic separation R
follows a classical trajectory, when in fact it must be described statistically using a
quantum-mechanical wave function W(R, t): The probability that R is between R
and R + dR (dR < R) at time # is [(R, 1)|* dR. The lowest energy (v = 0) vibrational
stationary state (or eigenstate), for example, is described by a time-independent wave
function whose squared modulus in the harmonic-oscillator approximation is a
Gaussian function of R. (Recall the remarks near the end of Section 11.10.) This is
indicated for the electronic level with potential curve Vy(R) in Fig. 14.22. The band-
width of the pump pulse results in nonvanishing occupation probabilities for a range
of vibrational eigenstates of the electronic level 1, as also indicated in Fig. 14.22. To
simplify matters, let us suppose that only two eigenstates, with vibrational quantum
numbers v and v+ 1 and wave functions ¢,(R) and ¢, (R), have significant
excitation probabilities, so that the wave function describing the vibrational state of
the molecule in electronic level 1 at the time = 0 immediately after irradiation by
the pump pulse is

(R, 0) = a,(0)p,(R) + av+1(0), 1 (R). (14.7.1)
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The probability amplitudes satisfy the time-dependent Schrodinger equations
iha,(t) = Eya,(t) and ihay, 1 (t) = Eyp1a,41(2) (14.7.2)

in the absence of any perturbation of the molecule [cf. Eq. (3.A.7)], so that a,(r) =
ay(0)exp(—iEyt/h), a,1(t) = a,1(0) exp(—iE,1t/h), and the vibrational wave func-
tion is

UR, 1) = a,(0)e B Gy (R) + appre B, (R) (14.7.3)

at atime ¢ after irradiation of the molecule by the pump pulse and before irradiation by the
probe pulse. The probability distribution for the interatomic separation R is therefore

R, D] =aO)| R + |avi1 (0|, 1 (0)]

+2Re [a;l ()00, | (R, (RelEvs1 ~E:N/ } L (1474

This oscillates in time at the frequency (E,; — E,)/h which, in the harmonic-oscillator
approximation, is just cw, [Eq. (2.3.12)]. This oscillatory behavior of the probability
distribution for R is indicated for the potential curve V,(R) in Fig. 14.22.

Now consider the probability amplitude for the transition to a vibrational eigenstate v/
of electronic level 2 when the probe pulse is applied at a time 7 after the pump pulse.
Assuming it is small enough for lowest-order perturbation theory to be accurate, this
amplitude is proportional to

r &7 (RIDY(R, 7)dR = a,(0)e /" Jw ¢,(R\D,(R) dR

—00

+ apy (0)e ot/ J - (R)Dd,.(R) dR

—00

=Dy, (0)e “" 4 Dy y 1,1 (0)e BT (14.7.5)

where ¢, (R) is the wave function for the vibrational eigenstate v’ for the potential energy
curve V,(R) and D is an electric dipole moment operator that depends on the polariza-
tion of the probe field. The probability amplitude will of course also depend on the
electric field of the probe; this dependence can be ignored for our purpose here,
which is simply to note that the LIF signal intensity of interest, which is proportional
to | [*, &L(RDWR, 7) dR|2 for a pump-probe delay 7, will, like (14.7.4), oscillate at
the frequency (E,.; — E,)/h = cw,. Because the vibrational states are approximately
equally spaced, this conclusion holds also if more than two vibrational states of the elec-
tronic level 1 are populated by the pump pulse. The (anharmonic) deviations from equal
spacings result in additional frequency components in the LIF signal.

Quantum mechanics therefore predicts the same sort of LIF signal intensity expected
from a classical trajectory picture of molecular vibrations: The signal oscillates with
the pump-probe delay 7 at principally the vibrational frequency cw,, with additional
frequency components due to anharmonicity. The wave function (14.7.3) depends on
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the probability amplitudes [a,(¢) and a,(¢)] of the two states described by ¢,(R) and
¢,,1(R) and not just their occupation probabilities [la,(t)|* and |a,,1(t)]*]. In other
words, it is a coherent superposition of two states, just as the wave function (9.3.3) is
a coherent superposition of the states of an atom modeled as a two-state system. In gen-
eral, the broad bandwidth of a femtosecond pulse, together with the approximately equal
spacing of vibrational levels, results in a so-called coherent wave packet:

PR, D= au)b,R). (14.7.6)

v=0

The number of vibrational levels with significant probability amplitudes a,(z) is typi-
cally ~5-10 in studies of the type considered here. Of course, a more realistic theory
requires that rotational energy levels be included. Since rotational periods are
typically ~ 107 times larger than vibrational periods, an effect of rotations is to introduce
periodicities on a much longer time scale than is shown in Fig. 14.23.

Fourier analysis of time series such as the data plotted in Fig. 14.23 can be used to
extract spectroscopic information about molecular vibrations and rotations, i.e., to deter-
mine vibrational and rotational constants. This femtosecond wave packet spectroscopy
can be performed on molecules in cells as well as in beams, since collision times are
so much longer than the pulse durations and delay times (Problem 14.17).

Femtosecond lasers have made it possible to follow the movements of atoms in
chemical processes, creating the field of femtochemistry. For example, the breaking of
the chemical bond between two atoms of a diatomic molecule has been time-resolved
by the femtosecond pump-probe technique. A pump pulse creates a coherent wave
packet that oscillates within the potential energy well characterizing the bond. If
Vpump 18 sufficiently large, the outer wings of the wave packet can escape the well,
that is, the molecule can dissociate. If the time-delayed probe pulse is at the frequency
for which there is absorption when the molecules are closest together, for instance, an
LIF signal oscillates as the molecule vibrates, but the oscillation is damped because
of dissociation. Fluorescence from a dissociation product excited by a laser at the appro-
priate wavelength can also track the dissociation in real time.

The femtosecond pump-probe method has been employed in studies of subpicose-
cond processes in liquids and solids as well as in gases. It has spawned another field,
Sfemtobiology, based on time-resolved studies of phenomena such as vision and photo-
synthesis at the molecular level.

With the advent of attosecond pulses (see below) it has become possible to observe
phenomena on a time scale characterizing the motion of atomic electrons.* Because
electrons have a much smaller mass than atoms, their movements can be expected,
generally speaking, to be faster and therefore to be significant on much shorter time
scales; the relevant time scale for an atomic electron can be roughly estimated using
the Bohr model, according to which the orbital period of the electron in the ground
state of hydrogen is about 150 attoseconds (as). With pump-probe techniques it is
even possible to follow the oscillations in time of the electric field of a femtosecond opti-
cal pulse. The details of such measurements are complicated, but the basic concept can

34See, for instance, R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer,
A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Nature 427,
817 (2004).
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Figure 14.24 Attosecond burst of radiation (XUV pulse) photoionizes an atom, and a time-delayed
femtosecond pulse then imparts a momentum impulse to the freed electron, affecting its time of flight to
a detector. By repeating the TOF measurements with identical pulses and different time delays, the
oscillations of the electric field of the femtosecond pulse can be determined. [From E. Goulielmakis,
M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh,
U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, Science 305, 1267 (2004).]

be simply illustrated as in Fig. 14.24. The arrows in the lower left part of the figure
indicate the electric field E(¢) of a few-cycle, linearly polarized femtosecond pulse
whose oscillations are to be measured. This field is applied at a time ¢ after the time
t =0 at which an extreme-ultraviolet (XUV) attosecond “burst” of radiation photo-
ionizes an atom to produce a free electron. The field E(#) does not cause any significant
ionization of the atom, but it does impart to the electron a momentum impulse

00

Ap(t) = eJ E{)dt . (14.7.7)

t

Depending on the sign of this impulse along the direction pointing to the electron detec-
tor in Fig. 14.24, the time of flight of the electron is either increased or decreased; in
other words, time-of-flight (TOF) measurements on the electrons provide information
about the amplitude and phase of E(t), and repeated TOF measurements with identical
pulses and different time delays then allow the temporal variation of E(¢) to be mapped
out (Fig. 14.25). Thus, for two different times differing by a time & much smaller than
the period of the femtosecond field oscillations,

1 1 t+%5t
Ap <t -5 8t> —Ap <t + 3 8t> = ej E(f)dt =~ eStE(t), (14.7.8)

—3ot
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Figure 14.25 Electric field oscillations of a few-cycle femtosecond pulse, determined from electron
time-of-flight data. [From E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer,
A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz,
Science 305, 1267 (2004).]

or

Ap(r —16t) — Ap(t +18¢t)
eot

E(t) =~ , (14.7.9)
and E(t) can be determined by TOF measurements in which ¢ is varied over the duration
of the femtosecond pulse.

e Among the highly nontrivial details ignored in our discussion is the need for precise timing
between the attosecond and femtosecond pulses. For the data shown in Fig. 14.25, the ionizing
pulses were 250-as bursts of 13.4-nm (93-eV) XUV radiation produced via harmonic generation
with 0.5-mJ, 750-nm, ~5-fs Ti: sapphire laser pulses incident on a neon target (see below). The
attosecond and femtosecond pulses then propagated along the same direction to a second neon
target where the photoionization occurs. This second neon target, a <50-um jet, was at the
focus of a specially manufactured spherical mirror, such that the focused femtosecond pulse inci-
dent on the jet had a diameter >60 pm. Because of their much longer wavelengths, the femto-
second pulses diverged more in their propagation to the mirror, spreading over a diameter on the
mirror of about 25 mm compared to a much smaller spot for the attosecond pulses. Piezoelectric
adjustment of the movable central part of the mirror with nanometer precision allowed the time
delay between the femtosecond and attosecond pulses incident on the second neon target to be
controlled with attosecond precision [(1 nm)/c = 3.3 as]. °

High-Harmonic Generation

In Chapter 10 we explained various nonlinear optical phenomena by expanding the
polarization P in powers of the electric field strength. As remarked at the end of that



704 SOME APPLICATIONS OF LASERS

chapter, this perturbative approach cannot be usefully applied when, for instance, the
radiation is so intense that many harmonics of the incident radiation are generated. In
this regime of “extreme nonlinear optics” the field so strongly affects an atom that it
is anything but a small perturbation.

The electric fields resulting from mode locking and chirped pulse amplification can
approach or exceed the fields acting on atomic electrons (Section 11.13). For the hydro-
gen atom, for example, the electric field at the electron is about 5 X 10°V /cm; a laser
with this electric field strength would have an intensity of about 3x10'® W/cm?,
which is smaller than the intensities obtainable by mode-locking and CPA techniques
(Problem 11.9). Similarly the energies of photons that can be created by harmonic gen-
eration can exceed the binding energies of atomic electrons, for example, the 13.6-eV
ionization energy of the hydrogen atom. For this reason photons created in high-
harmonic generation are often characterized in terms of energies in electron volts
rather than their associated wavelengths or frequencies: near-IR to optical wavelengths
correspond to ~1-2 eV (~1200-600 nm), XUV wavelengths to ~10-100eV
(~120-12 nm), and soft X rays are characterized by photon energies up to ~1 keV
(~1 nm). For a Ti:sapphire laser at a wavelength of 800 nm, by comparison, the
photon energy is about 1.5 eV.

It is not surprising that an extremely intense field can generate high-harmonic radi-
ation, given that the response of matter to high-intensity radiation is nonlinear
(Section 10.1 and Problem 10.1). The electric field from an atom is proportional to
dzp/dt2 in the radiation zone, where p(¢) is the induced electric dipole moment.
Integrating the equations determining p(¢) in the model of a two-state atom in a field
of frequency w, for example, and then computing the Fourier transform S({2) of the
field radiated by p(¢), one finds for sufficiently high intensities that S({2) has peaks at
harmonics ) = Nw for a large set of odd integers N. By performing such an exercise,
one can also demonstrate the inefficacy of an approach based on a perturbative expan-
sion of p(¢) in powers of the electric field.

High-harmonic generation (HHG) has most often been achieved by focusing laser
pulses onto a small cell or jet of atoms with a high ionization potential, i.e., an inert
gas. Figure 14.26 shows an HHG spectrum measured in one of the earliest such exper-
iments. The basic features of this harmonic distribution have been amply confirmed in
many later experiments: There is a steep decline in the intensity of the first few harmo-
nics, followed by a plateau of roughly comparable intensities and then a sharp cutoff
beyond which no higher harmonics are observed. Note also that only odd harmonics
appear, as expected from inversion symmetry (Chapter 10).

The development of Ti:sapphire systems yielding extremely intense pulses has
greatly extended the range of HHG photon energies, so much so that compact femto-
second laser sources are now used to generate coherent (laserlike) XUV and soft
X-ray radiation for various applications. The photon energies are limited by the cutoff
feature of HHG spectra, e.g., N =33 in Fig. 14.26. Experimental results have been
consistent with the following “universal” cutoff, i.e., the largest photon energy
achievable by HHG in a gas of atoms with ionization potential /,,:

Emax =1, +3.17U,, (14.7.10)

where U, is the ponderomotive energy, defined as e*E} /4mw?, where Ej is the electric
field strength of the laser radiation at the fundamental (angular) frequency w and e and m
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Figure 14.26 Distribution of harmonics in an early experiment on high-harmonic generation. The
harmonics were generated when 3 x 10'* W/cm? mode-locked Nd : YAG pulses were focused onto
a 15-Torr, ~1-mm argon jet. 3s, 3p, and 3p™ indicate ionization energies for levels of Ar and Ar™".
[From X. F. Li, A. L’Huillier, M. Ferray, L. A. Lompré, and G. Mainfray, Physical Review A 39,
5751 (1989).]

are the electron charge and mass, respectively. U, is the cycle-averaged “quiver energy”
of an electron in an electric field E, cos wr:

2712
ek

2mw?

sin® wt,

.. . ek . 1 2
mX = eEg cos wt, v(t) = x(t) = —sin wt, —mv-(t) =
mw 2

212
_ K

4dma?

(14.7.11)

U, =0.93x107°1A% eV,
where 7 (W/cm?) is the intensity and A (wm) is the wavelength of the presumed
monochromatic field. The relation (14.7.10) has a surprisingly simple explanation, as
follows.”

At the high intensities needed for HHG we can expect ionization. It is not necessary
for our purposes to delve into the quantum theory of the ionization process; in fact we
will describe the freed electron using classical mechanics, assuming that at the instant
t; at which ionization occurs, the electron is momentarily at rest at the position x = 0

35K. C. Kulander, K. J. Schafer, and J. L. Krause, in Super-Intense Laser-Atom Physics, eds. B. Piraux, A.
L’Huillier, and K. Rzazewski (Plenum, New York, 1993), p. 106; P. B. Corkum, Physical Review Letters 71,
1994 (1993).
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Figure 14.27 Numerical results from Eqs. (14.7.12) for the kinetic energy of an electron at the
moment it returns to the parent ion after ionization at time #;. The largest kinetic energy the electron
can have when it hits the ion is computed to be 3.17U,,.

of the ion in a field £, cos wt linearly polarized along the x direction. Ignoring any effect
of the parent ion, we describe the electron’s motion at times ¢ > ¢; by the classical
Newton equation, mx = eE cos wt, which gives

E,
ot 1) = it 1) = =2 (sin wr — sin o), (14.7.12a)
mw
eEy .
x(t, ;) = — — [cos wt — cos wt; + w(t — t;) sin wt;] (14.7.12b)
mar

for the chosen initial conditions. Equation (14.7.12b) can be solved for the time #;(>1;)
at which an electron freed from the atom at time #; and “quivering” in the field can collide
with the ion, that is, the time ;- for which x(#, ;) = 0. The velocity at which the electron
strikes the ion in this classical model is v(t; 1;), and the kinetic energy is E(t, t;) =
2mv*(tr, 1;). Thus, for any particular ionization time #; we can calculate the time 7 at
which the freed electron can “recollide” with the ion, and from that the electron’s kinetic
energy E(t5, t;) at the moment of impact (Problem 14.19). Figure 14.27 shows numerical
results for E(t; t;) obtained in this way for values of wt; between 0 and 277. For wt; such
that E(#5, 7;) = 0 in the figure the freed electron never returns to the jon.>®

The largest possible value of E(#; f;) is 3.17U,, which is found to occur at
wt; 22 0.30 rad = 17°; the corresponding value of #,is given by wt; = 4.45 rad. Thus,
tr— t;= (445 — 0.30)/w = 1.8 fs for an 800-nm Ti: sapphire pulse, compared with
the 2.7-fs period of a monochromatic wave at 800 nm. In reality, of course, the electric
field is not periodic, and during a few-cycle pulse, for instance, the electron can return to
the ion a few times at most. The main point for our purposes is that in an initial recolli-
sion the electron’s kinetic energy cannot exceed 3.17U,. For a gas of atoms in which
these ionizations and recollisions occur, the kinetic energies vary over the distribution

3We are ignoring any motion of the electron transverse to the direction of field polarization. Such motion
will reduce the number of electrons that actually recollide with their parent ions.
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of ionization times, but the kinetic energy with which any electron can hit its parent ion
cannot exceed Enax = 3.17U,,.

We have avoided any analysis of the ionization process, and likewise we will not ana-
lyze in any detail what happens when the electron collides with the ion. It can scatter off
the ion and in so doing absorb energy from the field, or it can lose energy by releasing
another electron from the ion by collisional ionization. It can also lose energy by radi-
ation since together with the ion it forms a dipole driven by the laser field; based on the
remarks above, any emitted photons must be at odd harmonics of the field. The classical
model, of course, can only be taken so far, but it suggests that the largest possible energy
that the electron could lose whenever it recollides with the ion is E ., + 1, this being the
largest possible energy lost when the electron is recaptured by the ion and falls into the
ground atomic level of energy —/, from which it was freed in the first place. Equating
this largest possible energy loss to the largest possible energy of a radiated photon, we
arrive at the HHG cutoff relation (14.7.10). Electrons recolliding with their ions with
kinetic energies smaller than E,,,, result in radiation at lower harmonics.

Further support for this model of high-harmonic generation may be found in its pre-
dictions regarding the laser polarization, which we have assumed to be linear. If we write
the Newton equation of motion for an ionized electron in a circularly polarized field, we
find that the electron never returns to the ion, in which case there should be no HHG. In
fact it is found experimentally that high-harmonic intensities decrease very rapidly with
increasing polarization ellipticity of the laser field, which is O for linear polarization and
1 for circular.

e The model just described is called the three-step model: (1) an atom is ionized by the field, (2)
the freed electron is driven back into the ion by the field, and (3) an electron returning to the ion
emits a high-harmonic photon. The ionization is assumed to occur by a tunneling process that is
best understood in the limiting case of a static electric field £. In this case an electron in the hydro-
gen atom, for example, has a total potential energy —e?/r + e&z if the applied static field is along
the z direction. Thus, the applied field effectively lowers the “Coulomb barrier” confining the
electron, allowing it to escape (ionize) by quantum mechanical tunneling; the stronger the applied
field, the more the barrier is lowered and the greater is the rate of tunneling.

Although the applied field in the three-step model for HHG is certainly not static, the assump-
tion that ionization occurs by tunneling appears to be a good approximation if the field frequency
is not too large. This condition may be expressed in terms of the Keldysh parameter defined as

) (14.7.13)

where w; = eEy/\/2ml,. vy delineates approximately between ionization by tunneling and by a
multiphoton ionization process, tunneling dominating if y << 1. The assumption of tunneling ion-
ization in the three-step model is implicit in the initial condition that the electron velocity is zero at
time #;, since in the case of tunneling ionization, as opposed to multiphoton ionization, the initial
kinetic energy of the electron can be assumed to be small. In the case of tunneling, furthermore,
the ionization typically occurs in a short time compared to the field period, and the amplitude of
the electron quiver is larger than an atomic dimension (Problem 14.19). For the ground state of the
hydrogen atom, for example, the rate of tunneling ionization in the static-field approximation is
given by quantum theory as

Ey 2 Ey
Rion =4 a - = . 14.7.14
® er(t)eXP[ 3E(t)} ( )
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where wy = (1/4mep)*me*/h’ = 4.1x 101 57! and E, = (1 /4mep)e/ad = 5x 10° V/cm is the
electric field on the electron (ay = Bohr radius). Note the exponential sensitivity of the tunneling
rate on the electric field strength E(#). For a multiphoton ionization process involving the absorp-
tion of ¢ photons, by contrast, the ionization rate is approximately proportional to E(z)q.

For a linearly polarized field E(t) = E cos wt the cycle-averaged tunneling ionization rate is

. /2 4 1 /2 1
Rion = _J Rion(Dd(wt) = - _J _3_2/(3FCOSX) dx, (14.7.15)
7 F)_5pcosx

—/2
where F = Ey/E, (>0). Since the integrand is strongly peaked around x = 0, we make the
approximation 1/cosx 22 1/(1 — x?/2) 2 1 + x? /2 in the exponential and replace cos x by 1 in
the prefactor:

_ dag 1 (™2 _ dary 2 2,
Rion ~ watij e QB3P /2) g wdtie—2/3F‘[ e 3F gy
7T F —7/2 T F 0

4wat —2/”5F\/_ e dy 4war 72/%F\/_J. - 1
T

—4waq/—e*2/3" \/ Rf;":f“"', (14.7.16)

where ngl‘fic = (4wy/F)exp(—2/3F) is the ionization rate in a static field of strength E,. We have
assumed that ' < 1, as is the case in most situations of interest, allowing us to replace the upper
integration limit by oo in the second line.

For circularly polarized light the magnitude of the electric field is independent of time, and the
tunneling ionization rate is the same as that for a static field.

The calculation of the HHG spectrum and cutoff in the three-step model is based on the
expression [cf. Eq. (3.A.13)]

Jw/a\/" )

p() = J &x i (x, Dexix, 1) (14.7.17)

for the expectation value of the electric dipole moment when an atomic electron is described by a
wave function {(x, t). The electron in a strong field can either remain in the initial atomic ground
state with wave function ,(x, t), or it can be in a continuum state with wave function (x, ) if
ionization occurs. If it is assumed that the occupation probabilities of excited bound states are
neghglble Y(x, 1) in Eq. (14.7.17) takes the form ¥(x, t) = agt,bg(x 1) + a.p(x, t), where \ag|

and |a.|* are, respectively, the probabilities that the electron is in the ground state or a continuum
state. Assuming furthermore that the ionization probability is small, or in other words that the
ground state is negligibly depleted, the dipole moment (14.7.17) is determined approximately
by the real part of [ d*x :(x, exi.(x, ), and this expression can be evaluated “semiclassically”
using results of the classical model of electron—ion recollisions.* o

According to the three-step model, electrons ionized by the laser field at different
times recollide after different times with their parent ions, and their different kinetic
energies upon recollision result in a distribution of radiated photon energies over the
odd harmonics of the laser. The HHG radiation is assumed to be sufficiently weak
that it does not produce any significant ionization. Each electron that does recollide
with its parent ion does so by first being pulled away from the ion by the field and
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Figure 14.28 Experiment vs. theory for the cutoff HHG photon energies in inert gases. Note the
logarithmic scale. [From Z. Chang, A. Rundquist, H. Wang, M. M. Murnane, and H. C. Kapteyn,
Physical Review Letters 79, 2967 (1997).]

then being forced back into the ion, the process occurring over a half-cycle of the field.
After each half-cycle of the laser field, therefore, there is a burst of radiation whose spec-
trum consists of all the harmonics up to the cutoff photon energy, and whose duration is
much shorter than a field cycle.

The cutoff relation (14.7.10) is an approximate, theoretical upper limit to the HHG
photon energy, given the ionization potential and the laser intensity and frequency. In
practice, the observed cutoff energy is generally smaller than that predicted by
(14.7.10) for several reasons.”” One is that at sufficiently high intensities the ground
state is fully depleted and all the atoms are ionized by the leading edge of the laser
pulse; the intensity / appearing in (14.7.11) is then replaced by a smaller “saturation”
intensity /; that can be estimated from quantum theoretical calculations of ionization
rates. Figure 14.28 shows a comparison of experimentally observed HHG photon
cutoff energies to the theoretical cutoff given by (14.7.10) with calculated values of
I, used for 7 in the expression for the ponderomotive energy. In these experiments
800-nm, 26-fs pulses from a Ti: sapphire laser system were focused onto gas jets from
1-mm-diameter nozzles, such that the gas pressures were ~8 Torr in the ~100-pwm
focal region. The peak intensity of the 20-mJ laser pulses was ~6 x 10"° W/ cm?,

The three-step model applies to a single atom, and as such does not account for propa-
gation effects such as phase mismatching. Furthermore, the intensity used to estimate the
cutoff energy might well be higher than that in the medium under conditions of signifi-
cant ionization, resulting in a smaller than calculated cutoff energy: The refractive index
of a plasma, given approximately by Eq. (3.14.13), decreases with electron density,
which is largest where the field intensity is greatest and causes the most ionization.

37See, for instance, K. Miyazaki and H. Takada, Physical Review A 52, 3007 (1995).
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Therefore, a beam with a Gaussian transverse spatial profile, for example, will experi-
ence a smaller refractive index near the beam axis and can undergo self-defocusing as
it ionizes atoms in its path. The good agreement between the experimental results
shown in Fig. 14.28 with the predictions based on the single-atom cutoff relation
(14.7.10) was attributed in part to the low gas density; at higher densities, where propa-
gation effects are more significant, the cutoff energies were smaller, as expected.

Thus far, we have considered HHG mainly in terms of the frequencies generated, and
have not addressed the question of the temporal nature of the HHG pulses aside from
concluding from the three-step model that their duration should be extremely short.
Their short wavelength, broad spectral width, and low intensities make them unamen-
able to the standard autocorrelation techniques described in Section 11.13, and studies
of their temporal characteristics became possible only relatively recently. It is now well
established that HHG produces attosecond pulse trains, and, as discussed below, can
even produce the single attosecond pulses desired for time-resolved studies of subfem-
tosecond phenomena [cf. Figs. 14.23 and 14.24].

The very broad frequency spectrum associated with high-harmonic generation
immediately suggests the possibility of producing attosecond pulses. Recall from our
discussion of mode locking in Section 6.8 that if N phase-locked fields with equal ampli-
tudes and with angular frequencies separated by A are superposed, the resulting field is a
train of pulses separated in time by 7 = 27/ A, each pulse having a duration 7= 7/N. In
HHG, where only odd harmonics of the fundamental (laser) frequency w appear, we
have frequencies separated by 2w, suggesting that the generation of N harmonics
might result in a pulse train with 7= 7/ and 7 = 7/ Nw. For example, 100 harmonics
of 880-nm radiation might form a train of 15-as pulses separated by 1.5 fs. However, the
equal spacing of the high harmonics is by no means sufficient to make an attosecond
pulse: The harmonics must also be phase-locked.

Quantum mechanical calculations reveal that the harmonics generated by a single
atom are not phase-locked. It is found that, in the language of the semiclassical three-
step model, the main contribution to each harmonic comes from two electron trajectories
that correspond to different ionization and recollision times but that recollide with the ion
with the same kinetic energy. Based on their differences in ionization and recollision
times, these two types of trajectory are referred to as “long” and “short.” The two types
of trajectory give rise to single-atom HHG emission in the form of a pulse train in which
there are mainly two pulses per half-cycle (T = 7/ w) of the laser field. However, non-
linear propagation effects in a gas act in such a way that the harmonics are generated by
either the long or the short trajectories, depending on the focusing geometry, and the
harmonics are phase-locked. The HHG emission is then in the form of a train of extre-
mely short pulses, one per half-cycle.*® Experimental results are consistent with these
predictions. It has been found, for instance, that the 5 odd harmonics 11-19 generated
by 40-fs Ti: sapphire laser pulses (T'= 7/ = 1.35fs) in argon are phase-locked and
can combine to produce trains of 250-as pulses separated by 1.35 fs.””

Pump-probe time resolution of subfemtosecond phenomena, as discussed in the pre-
ceding subsection, generally requires single attosecond pulses rather than pulse trains.
Pulse pickers that select a single pulse (or a sequence of pulses to produce a train with

38p_ Antoine, A. L'Huillier, and M. Lewenstein, Physical Review Letters 77, 1234 (1996).
39p, M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, P. Balcou, H. G. Muller, and P. Agostini, Science
292, 1689 (2001).
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a smaller repetition rate) from a mode-locked train of picosecond or femtosecond pulses
typically employ a Pockels cell between two crossed polarizers, much like a light modu-
lator (Fig. 5.19). The repetition rate of attosecond pulses in HHG, however, is far too
fast for any electronics that can switch a Pockels cell. Single attosecond pulses have
been produced by a polarization gating technique that relies on the strong dependence
of HHG on the laser ellipticity, as noted earlier; the idea, basically, is to form a laser
pulse with a time-dependent ellipticity, such that HHG can occur only within a
narrow time window. Here we will briefly describe single attosecond pulse generation
in the particular case of a few-cycle laser pulse. Based on the three-step model in
which electrons emit short bursts of radiation only every half-cycle of the field, a
few-cycle laser pulse can be expected to produce at most only a few pulses of high-
harmonic radiation.

For the electric field of a linearly polarized laser pulse used to generate high harmo-
nics we write

E(t) = E(t) coswt + ). (14.7.18)

Usually, we can make the assumption that the envelope £(¢) is slowly varying in time
compared to the carrier wave cos(wf + ¢). Since w ~ 10" s at optical frequencies,
this is a valid approximation for pulses in which £(¢) varies negligibly on a femtosecond
time scale, for example, for picosecond pulses; for such pulses the constant phase ¢ in
(14.7.18) is unimportant. We used this approximation in Chapter 9, for instance, to
formulate the theory of resonant pulse propagation based on the Maxwell-Bloch
equations. For pulses lasting only a few cycles of the carrier wave, this approximation
of a slowly varying envelope breaks down. Moreover, the phase ¢ for such pulses
plays an important role in HHG, which depends sensitively on how the electric field
varies over the duration of the laser pulse. In particular, different half-cycles of the
field have different electric field amplitudes (Fig. 14.29) and will therefore lead to
different peak (cutoff) photon energies.
Consider the example of a Gaussian pulse envelope:

E@t) = Ege /™ cos (wt + ), (14.7.19)

>Time

Electric field

Figure 14.29 Carrier-envelope phase ¢ of a few-cycle pulse gives the phase difference between the
peak of the pulse envelope and the nearest peak of the carrier wave.
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Figure 14.30 Dependence of peak-energy high-harmonic generation on the carrier-envelope phase
of a few-cycle pulse. The peak pulse intensity is large enough to give rise to tunneling ionization and
therefore bursts of high-harmonic radiation at times near that at which the peak of the pulse envelope
occurs. In (a) the CEP is zero. Atoms undergo tunneling ionization at a time #;, and an electron freed at
this time, as indicated by the solid arrow, recollides with the parent ion half a field cycle later, emitting a
burst of radiation according to the three-step model. In (b) the CEP is nonzero, and tunneling ionization
of atoms is indicated at the two times #;; and 7;,. The radiation that occurs half a field cycle after ion-
ization now results in two bursts of radiation. In each case the electron “trajectories’ shown are those for
which the electron recolliding with the ion experiences the strongest field half-cycle, resulting in bursts
of radiation at the peak photon energy.

for a pulse duration amounting to just a few cycles (Fig. 14.29). The pulse envelope
peaks at t = 0, which coincides with the peak modulus of the electric field only if
¢ =0, where ¢, the carrier-envelope phase (CEP), specifies the difference in time
from the peak of the envelope to the nearest peak of the carrier. As illustrated in
Fig. 14.30, a few-cycle laser pulse with zero carrier-envelope phase results in a single
burst of radiation at the peak photon energy, whereas a nonvanishing CEP can produce
two. Techniques have been developed to measure and control the carrier-envelope phase
of few-cycle laser pulses and thereby to reliably produce single attosecond pulses by
high-harmonic generation.*’

As discussed in Chapter 10, harmonic generation is generally very inefficient without
phase matching. Gaseous media are nearly always used for high-harmonic generation

4Gee C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch,
Nature Physics 3, 52 (2007) and references therein.
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in order to minimize absorption, and the ionization that accompanies the process results
in large phase mismatches between the fundamental and the co-propagating harmonics
due to the plasma dispersion. Since gases are not birefringent, they do not permit angle
phase matching based on birefringence. It has been demonstrated, however, that HHG
conversion efficiencies can be subtantially increased by a quasi-phase-matching in
which counterpropagating Ti : sapphire pulses in a waveguide containing an inert gas
modulate the field in such a way that phase matching is effectively realized periodically
along the waveguide.*' Enhancement of HHG conversion efficiencies will have import-
ant consequences for attophysics and in a broad range of applications requiring coherent
XUV and soft X-ray sources.

Frequency Combs and Optical Frequency Metrology

Throughout its history optical spectroscopy has been based on measurements of wave-
lengths rather than frequencies. Wavefront distortions result in different path lengths
for different parts of a wave, limiting the most precise measurements to relative accu-
racies (AA/A) of about 10~ 10 Measurements of frequencies could be far more accurate
since, as noted in Section 6.8, atomic clocks allow measurements of time to relative
accuracies on the order of 10~ ">, While frequency counters allow measurements of
microwave frequencies as high as a few tens of gigahertz, no available electronics can
count the ~10" cycles per second of optical waves. This problem was circumvented
in the late 1990s with the use of frequency combs, allowing measurements of absolute
optical frequencies (optical frequency metrology). By an “absolute” frequency (or an
absolute measurement of frequency) we mean one that involves the second as defined
by the cesium clock transition (Section 14.3); absolute frequencies are measured by
referencing them to the oscillations of this transition. Since optical frequencies
are ~10° times larger than that of the clock transition, measurements of absolute optical
frequencies require that a very large frequency gap must somehow be bridged from the
microwave to the optical.

Recall that the output of a mode-locked laser consists of a continuous, periodic
train of pulses (Figs. 6.9 and 6.10). The spectrum of the pulse train is a comb of frequen-
cies, such that the (angular-frequency) spacing w, between the “teeth” of the comb is
equal to 27/T, where T is the spacing in time between pulses [Fig. 6.8 and
Eq. (6.8.5b)]. w, depends on the length of the laser cavity and is in the radio-frequency
range, typically 10'=10°s™'. The frequency combs used in optical frequency metro-
logy are obtained from mode-locked lasers; for reasons discussed below, the comb
frequencies are

w, = nw, + wy, (14.7.20)

where wy, like w,, is very much smaller than an optical frequency; n is a positive integer,
typically ~10° (Section 6.8). This formula, as well as an expression for the “offset”
frequency wyp, will be derived below. We will also describe how w, can be measured.
A frequency comb acts as a “ruler” for the measurement of optical frequencies. To
determine the absolute frequency w; of a single-mode laser, for example, a measurement

X, Zhang, A. L. Lytle, T. Popmintchev, X. B. Zhou, H. C. Kapteyn, M. M. Murnane, and O. Cohen, Nature
Physics 3, 270 (2007).
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Figure 14.31 Frequency comb spectrum and position of optical frequency w; with respect to the
closest comb frequency nw,+ wo. Heterodyning results in beat notes determined by w; — nw,— wy.

can be made of the signal detected by a photodetector when the single-mode laser and
the mode-locked laser fields are superposed (heterodyned). As can be seen from
Fig. 14.31, the 1f signal will peak not only at the comb frequencies but also at beat fre-
quencies determined by the difference w; —nw,— wy between the laser frequency and
the nearest comb frequency (Problem 14.21). Since w, and w, are known, n can be deter-
mined if w; is known beforehand (e.g., by having measured the wavelength with a wave-
meter) to within + w,/4; this yields w;. If such information about w; is not known
beforehand, n can be determined by varying the comb spacing w, of the mode-locked
laser. The frequency comb “ruler” can be applied in other ways. For example, the
single-mode laser radiation can be frequency doubled, and the difference frequencies
w=w;—nw,—wy and w,=2w; —2nw,— w, between w; and w,; and the nth and
2nth comb lines can be measured by heterodyning. Again n can be determined if w;,
is known beforehand to within + w,/4, or by “dithering” w, if it is not. Then w; is
given in terms of the known quantities w,, w;, w, and n by the relation w,— w; =
w; —nw,. The measured frequencies are “absolute” when they are referenced to a fre-
quency standard, for example, when cycles per second are counted with a cesium
atomic clock. It is the fact that n is very large (~ 10°) that allows the “bridging of the
gap” between rf and optical frequencies.

Measurements of absolute optical transition frequencies have been made by locking
the frequency of a laser to a transition (Section 5.13) and then measuring the absolute
frequency of the laser by the frequency comb technique. Such methods have been
used to measure the 1S—2S transition of the hydrogen atom, for example, to a few
parts in 10'*. These ultra-high-precision techniques are valuable not only for spectro-
scopy and for applications including atomic clocks and navigation, but also for basic
research in quantum electrodynamics and in determining whether the fundamental
constants of nature might actually change over time.

To explain the form (14.7.20) of the frequency comb of a mode-locked laser, consider
the electric field E(¢) from the laser incident on a photodiode; E(f) is a sum of pulses
separated by a time 7 = 1/w,. Assuming the pulses are identical and described by an
electric field £(r) exp (—iw.t), where £(¢) is a pulse envelope and w, a carrier frequency,
we write

E(t)=> &t —mD)e =D, (14.7.21)



14.7 APPLICATIONS OF ULTRASHORT PULSES 715

where the summation is over a large number of integers m. The Fourier transform of this
field is
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where £(w) is the Fourier transform of the envelope of a single pulse. We have already
encountered the sum in the last line in Section 6.7. For the large number of summands
appropriate for a mode-locked laser, it consists of a series of peaks separated by 27/7,
i.e., a series of peaks at w, = 27m/T, where n is an integer and T is the pulse spacing.
So (14.7.22) merely tells us what we already know from Chapter 6 about mode-locked
pulse trains.

The assumption of identical pulses in a mode-locked train, however, is not valid when
the pulses are very short and therefore have a large bandwidth causing significant dis-
persion in the laser medium and optical elements. In this case the pulse envelope will
propagate within the laser cavity at a group velocity v, while the carrier wave at fre-
quency w, propagates at the phase velocity v, (Sections 8.3 and 8.4). This results in a
carrier-envelope phase difference that we denote by A¢. Now based on the “boun-
cing-ball” picture of the intracavity field of a mode-locked laser (Section 6.8), we
infer that each successive pulse from the laser has an additional carrier-envelope
phase difference A¢ over that of the preceding pulse, so aside from some overall
phase we can assign a carrier-envelope phase mA¢ to the mth pulse of the mode-
locked train. We therefore replace (14.7.21) by

E(t) =Y &t — mT)e o= eimse (14.7.23)

and (14.7.22) by
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Figure 14.32 A mode-locked pulse train in (a) the time domain and () the frequency domain. Pulse-
to-pulse carrier-envelope phase shifts A¢ in the time domain translate in the frequency domain to an
offset w, from integral multiples of the pulse repetition frequency w,. [After S. T. Cundiff and J. Ye,
Reviews of Modern Physics 75, 325 (2003).]

The only difference from (14.7.22) is that the peaks in the spectrum now occur at w, T +
Ap =2mmn:

w, = N, — A%j) = nw, + wp, (14.7.25)
with wg = —A¢/T =—(A¢/2m)w,. Equation (14.7.24) describes the pulse train in the
frequency domain, as opposed to the time-domain expression (14.7.23) (Fig. 14.32).

To use the frequency comb as a “ruler’” to measure optical frequencies, it is necessary
of course to have accurate values of w, and w,. Whereas w, can be measured from the
beat signal when the pulse train is incident on a photodiode, the measurement of the fre-
quency offset wy is not so straightforward. A common way of doing so is to frequency-
double the nth comb line (frequency w,) and measure the beat signal between its second
harmonic (2w,,) and the 2nth comb line (w,,):

2w, — wy, = 2(nw, + wy) — 2nw, + wy) = wy. (14.7.26)

Our simplified discussion ignores some critical issues in the actual implementation of
frequency combs.*> We have implicitly assumed in writing (14.7.26), for instance, that
the frequency comb from a mode-locked laser covers at least an octave of frequencies,
that is, that the highest frequencies in the comb are twice as large as the lowest. Although
a full octave is not strictly necessary, it is highly advantageous because it permits
straightforward determinations, as described, of both rf frequencies w, and wg; once
they are measured and stabilized, optical frequency metrology becomes a going concern.

“For a comprehensive discussion see, for instance, S. T. Cundiff and J. Ye, Reviews of Modern Physics 75,
325 (2003) and the many references therein.
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An unchirped, transform-limited Gaussian laser pulse of duration 7 has a FWHM
spectral width AQ) = (4 In 2)/7 [Eq. (8.5.22)]. For this width to span an octave around
the central frequency w,, we require AQ) = w,, or 7= (4In2)/w. = (41n2)/2 cycles,
i.e., the pulse would have to have a duration of roughly a single cycle or less. Because of
its extremely broad spectrum, the primary generator of frequency combs in optical fre-
quency metrology is the Ti: sapphire laser with Kerr lens mode locking and compen-
sation for group velocity dispersion (Fig. 11.25), but even the radiation from this
system does not usually span an octave. For this reason octave-spanning frequency
combs have been produced by spectrally broadening mode-locked pulses using self-
phase modulation in fibers.

Recall from Section 10.4 that a nonlinear refractive index causes spectral broadening
due to “self-chirping” or self-phase modulation. Group velocity dispersion of a short
pulse causes it to broaden in time, reducing the peak intensity and therefore the self-
phase modulation (Section 8.4). It has been found, however, that when a femtosecond
pulse propagates in a photonic crystal fiber (Section 11.14) in which the silica core is
surrounded by a particular arrangement of air holes, there is nearly zero group velocity
dispersion near the 800-nm central wavelength of Ti:sapphire. This allows mode-
locked pulses from a Ti:sapphire laser to propagate with little temporal broadening
while maintaining the high intensities needed for substantial self-phase modulation
and spectral broadening; more than an octave around 800 nm has been obtained in
this way.*® This is an example of supercontinuum generation in which a very broad
(“white light”) spectrum is created from the much narrower spectrum of a laser. Self-
focusing and other nonlinear phenomena in addition to self-phase modulation play a
role in determining the white-light pulses generated by a mode-locked pulse train, and
itis not at all obvious that successive pulses are strongly correlated in phase, as they must
be if they are to serve as a broadband frequency comb (Problem 14.21). Interference
experiments have demonstrated nevertheless that the supercontinuum white-light pulses
generated by mode-locked laser pulses of interest for optical frequency metrology can in
fact be phase-locked. In other words, supercontinuum generation can be used to convert
a phase-locked laser pulse train into an octave-spanning phase-locked train.

A crucial factor for optical frequency metrology is the stabilization of the frequencies
w, and wy against unpredictable fluctuations in the laser cavity length. A small fraction of
the mode-locked Ti : sapphire laser output, typically consisting of ~30-fs pulses, can be
used to measure w, (or a high harmonic of w,) with a photodiode and using a feedback
loop to adjust the cavity length and lock w, to a frequency referenced to an atomic clock
or a GPS-controlled quartz oscillator. For some purposes, such as measuring the differ-
ence in frequency between two lasers, locking of w, alone suffices, whereas for absolute
optical frequency measurements it is also necessary to lock w,. For this purpose the
pulse train is injected into the photonic crystal fiber to generate an octave-spanning fre-
quency comb, and part of the output from the fiber is used to measure w, as described
above [Eq. (14.7.26)]. One way of varying , in order to lock it is to swivel the laser
feedback mirror of the layout shown in Fig. 11.25. Since the spectrum of the laser radi-
ation with intracavity prisms is not uniform over the mirror, a swivel introduces a fre-
quency-dependent phase shift and results in a group delay and a change in A¢ and
therefore wy.

“D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, Science
288, 635 (2000).
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Locking w, and wy at particular frequencies allows the synthesis of a comb of optical
frequencies referenced to an atomic clock. Optical synthesizers providing ~500,000
absolute frequencies covering most of the optical and near-infrared spectrum, and
containing the femtosecond laser and all the other instrumentation needed for comb
generation in a unit occupying ~1 m?* on an optical bench, are now commercially avail-
able for absolute frequency measurements, high-precision spectroscopy, precise dis-
tance measurements, and other applications. It has been said that having such a
synthesizer is like having ~500,000 extremely stable and precisely tuned lasers all at
once. Optical synthesizers will likely be used to make optical clocks by locking a
laser to the extremely narrow resonance of a cold atom. Because of the much shorter
periods of optical cycles compared to microwaves, optical clocks will in turn result in
even more precise timekeeping than is now possible.

e Prior to frequency comb generators absolute optical frequencies were measured by
constructing long, complex “harmonic chains” to multiply the cesium clock frequency by harmo-
nic generation in crystals, electronic frequency mixing, and other techniques. Because of their
complexity and the large amount of laboratory space required, and because they could only be
used to measure a single optical frequency, only a few such harmonic chains were developed.
The frequency comb technique has revolutionized optical frequency metrology, and high-
harmonic generation might extend the range of frequency metrology to XUV and soft X-ray
frequencies.

Knowing that the spectrum of a mode-locked laser consists of a comb of frequencies, one
might wonder in hindsight why the idea of a frequency comb as a ruler for optical frequency
measurements was not put into practice until relatively recently. One reason, it seems, is that it
was not realized just how uniform the frequency combs are; frequency metrology requires that
the lines be “exactly” equally spaced [cf. Eq. (14.7.20)]. One might reasonably expect that dis-
persion effects in the laser would cause the mode spacing to vary slightly across the comb.
Experiments in the late 1990s, however, revealed—surprisingly—that the mode spacing in a
Kerr lens mode-locked laser with dispersion compensation (Fig. 11.25) is uniform and equal
to the pulse repetition frequency to at least one part in 10'7, even after the spectrum of the
pulse train is broadened by propagation in a fiber! Part of the 2005 Nobel Prize in Physics
was awarded to J. L. Hall and T. W. Hénsch “for their contributions to the development of
laser-based precision spectroscopy, including the optical frequency comb technique.” °

14.8 LASERS IN MEDICINE

Lasers continue to play a large role in medicine. Our brief overview will focus on some
qualitative aspects of laser—tissue interactions and on the growing importance of laser
science in medical imaging.

The first medical application of lasers was in ophthalmology, just a few years after the
first demonstrations of laser oscillation in the early 1960s. It was known for centuries that
visual loss can result from prolonged, direct viewing of the sun. This occurs due to a
burning and consequent scarring of the macula, the central part of the retina responsible
for acute vision (Fig. 14.33). It was suspected for some time that a localized burning and
scarring might actually be useful for the treatment of certain visual disorders, and in the
late 1940s G. Meyer-Schwickerath demonstrated that burns produced by white-light
sources such as the sun and xenon lamps could be used to connect the retina to its sub-
stratum tissue. The brightness of lasers made it immediately apparent that they could be
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Figure 14.33 The human eye.

used in ophthalmology. In particular, it was apparent that lasers could be used for photo-
coagulation of small areas of ocular tissue, and that this could be done with very short
exposure times. Furthermore the monochromaticity of laser radiation allows selective
coagulation of a particular tissue, since the photocoagulation process is initiated by
wavelength-dependent absorption of light. Laser therapy has not only replaced some
older surgical procedures for visual disorders but has also been used for conditions
where effective treatments were previously unavailable.

e For safety’s sake it must be remembered that even a low-power laser can damage the retina.
To estimate the intensity focused on the retina when the eye is in the direct path of a laser beam,
assume that the lens of the eye has a focal length of 2.3 cm and that the pupil diameter is 2 mm.
The diameter of the spot on the retina is f0, where 6 is the divergence angle of the laser beam. [See
Eq. (13.2.7) for this formula in the special case of a Gaussian beam.] The fraction of the laser
power entering the eye is equal to the square of the pupil diameter d divided by the square of
the laser beam diameter D. The intensity of the focused radiation at the retina is therefore

B dY 1 4Pwnd
I = Pwr (B) ’7T(f9)2/4 = DR (14.8.1)

Consider a green laser pointer with Pwr = 1 mW, beam diameter D = 1.5 mm, and divergence
angle 6 = 1.4 mrad. In this example 7 ~ 200 W/ cm?. This estimate assumes perfect transmittiv-
ity of the eye (not too bad an approximation in the visible) and direct viewing with the eye held
fixed and not blinking. But it illustrates the important point: Even very low-power lasers are
potentially hazardous.** A 100-W lightbulb would not create nearly such a hazard; it is the
small divergence angle 6 of a laser that makes the focused intensity so large. °

Laser therapies may be broadly classified as photoabsorptive or photodisruptive.
Photoabsorption results in electronic and vibrational excitation, breaking of molecular
bonds, and a rise in temperature. Large biological molecules, such as proteins, can
undergo conformational changes when the temperature is increased. The result is a
thermal denaturation in which certain biological functions are lost or impaired due,

“The retinal damage threshold in the case of continuous illumination can be as low as 2—3 W/cm®.
[A. M. Clarke, W. T. Ham, Jr., W. J. Geeraets, R. C. Williams, and H. A. Meuller, Archives of
Environmental Health 18, 424 (1969).]
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for instance, to changes in cell membranes. Such thermal denaturation is responsible for
effects such as inflammation and coagulation of tissue. Through a normal reparative
response it leads to a scar, which can serve to connect tissues such as the sensory and
pigmented layers of the retina. In other words, coagulation can “weld” disconnected
tissue back together. Coagulation can also occlude (close) and destroy blood vessels;
this is used in the treatment of diabetic retinopathy, in which fragile blood vessels may
appear on the retina. These abnormal vessels tend to break, and the hemorrhaging can
cause loss of vision. Since the pigmented cells behind the nerve-containing outer layer
of the retina absorb strongly in the blue-green, whereas the neural retina, lens, cornea,
and vitreous do not, the green argon ion laser is the primary tool for this procedure.

Photocoagulation begins with absorption of light, the primary absorbers of light in
the human eye being melanin, hemoglobin, and xanthophyll. The ocular medium
itself is transparent between about 380 and 1400 nm. At shorter wavelengths the lens
and cornea are absorbing, and at longer wavelengths the primary absorber is water.
Lasers allow a selective energy treatment in that the total energy of irradiation during
the exposure can be accurately controlled. This allows a trained ophthalmologist to pre-
select a certain energy that, based on experience, will produce a minimal degree of
coagulation. The energy can then be increased gradually until a desired degree of coagu-
lation has occurred, with minimal damage or side effects.

Exposure time is of course another very important consideration. For a given total
energy, the temperature rise of the irradiated tissue increases with decreasing pulse dur-
ation, since there is less time for thermal diffusion to the surrounding tissue. With short
pulses, therefore, the temperature rise can be quite large and can lead to vaporization at
the irradiated spot; the clinical manifestation of this vaporization is the appearance of gas
bubbles near the target. The vaporization can also generate pressure waves strong
enough to damage eye tissue.

In contrast to photocoagulation, photodisruptive laser therapies are nonthermal.
Photodisruption is initiated by ionization from the intense heat produced by a pulsed
laser at the target. The resulting plasma absorbs energy from the laser and becomes
very hot, expands rapidly, and produces a shock wave that can blast a hole in an
ocular membrane. Such a hole can be several times larger than the waist of the laser
beam at the focal point. In laser iridectomy for the treatment of glaucoma, a hole is
made in the iris to relieve the elevated intraocular pressure.

A common application of laser photodisruption of tissue is in treating the clouding of
the posterior capsule membrane behind the lens, an occasional complication of cataract
surgery. In this outpatient treatment, called posterior capsulotomy, a pulsed Nd: YAG
photodisruptor tears a hole in the clouded membrane, opening a path for clear vision.
This is done without damage to the retina by focusing the laser to a spot just behind
the lens. The divergence of the beam beyond the focus then results in a reduced intensity
at the retina. The attenuation of the beam by the plasma created also helps to reduce the
intensity at the retina.

Laser in situ keratomileusis (LASIK), introduced in the mid-1990s, has become the
most common surgical procedure for refractive correction. After a metal blade is used to
make a flap in the outer layer of the cornea, an ArF excimer laser (193 nm, ~10-ns
pulses, ~100-Hz pulse repetition rate) penetrates the inner part of the cornea and
breaks molecular bonds, allowing cells to escape in the form of a tiny “mushroom
cloud.” Following this ablative sculpting with the excimer laser, the flap is closed and
serves as a natural “bandage.” Most complications from LASIK are flap-related; in a
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recent innovation the flap is made with a mode-locked, femtosecond diode-pumped
Nd: YAG laser at 1.053 wm. The positions and focal depths of successive pulses on
the cornea are computer controlled, the pulses creating, by ionization and the formation
of an expanding plasma that results in bubbles in the corneal tissue, thousands of holes
(“cavitation bubbles”) of diameter ~2-3 wm. The pattern of holes defines the flap and
its thickness (~10? wm) and “hinge,” and the flap is then lifted prior to the application of
the sculpting excimer laser. The flap is created in a matter of seconds, and with the
programmed application of the femtosecond laser is done much more precisely than
is possible with a hand-held blade. The low-energy femtosecond pulses have no
effect on the intracorneal tissue until they reach their programmed depth; they do not
cause any temperature rise or shock waves.

For precise corneal sculpting, information about the aberrations in the patient’s eye
must be input to the software controlling the excimer laser pulses. This information
is obtained by wavefront sensing with an “aberrometer,” which is usually a Shack—
Hartmann sensor as described in Section 14.2. An eye-safe laser enters the eye and
the aberrations of the originally “flat” wavefront are measured after it propagates through
the cornea, vitreous, and lens and then reflects off the retina and makes a return pass
through the eye. As in adaptive optics, the displacements of spots focused onto a
CCD sensor by the lenslet array correspond to local phase gradients of the wavefront
incident on the array, which in turn are determined by the refractive imperfections in
the entire optical system of the eye (Fig. 14.34). The measured spot displacements
and a computer are used to control the excimer laser pulses that sculpt the cornea to
correct for these imperfections.

e There is still much to be learned about laser—tissue interactions. Given that living tissue is
about 80% water by weight, it might be expected, for example, that the effects of the UV excimer
laser pulses used in LASIK on living tissue can be understood in large part from how they affect
water. But there are important differences in the way these pulses interact with water and with
living tissue. One is that tissue elasticity limits the growth of cavitation bubbles, so that they
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Figure 14.34 An “aberrometer” for determining the aberrations of an eye using a Shack—Hartmann
wavefront sensor. The displacements of spots on the CCD array are a measure of the aberrations and are
used to control an excimer laser for the corneal sculpting needed for refractive correction. [After
L. N. Thibos, Journal of Refractive Surgery 16, S563 (2000).]
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are much smaller than in water; the photodisrupted regions of living tissues can be as small as a
few hundred nanometers. This is beneficial in that it allows greater cutting precision than might be
expected based on experiments with water.

As already noted, photodisruptive laser therapies rely on ionization and plasma formation. As
discussed in Section 10.10, this optical breakdown is an avalanche process that proceeds from the
presence or creation of a few electrons. In the optical breakdown of pure water these “seed” elec-
trons are created by multiphoton ionization, which requires high intensities. In many biological
tissues, however, there are large concentrations of a molecule (NADH) that is ionized by low-
intensity UV radiation, yielding the seed electrons necessary for plasma formation; such tissues
can be cut with lower laser intensities than tissues lacking this molecule.*’ o

The same properties of lasers—brightness, directionality, and monochromaticity—
used in eye surgery are employed in many other surgical procedures. Apart from opthal-
mology, laser surgery appears to be most well established in dermatology and gynecol-
ogy, but it is now commonly used in many other specialties. One of its advantages is that
blood loss is greatly reduced compared to surgeries with knives. Together with magni-
fication, this greatly facilitates the removal of tiny structures. In laryngeal surgery, for
example, a laser and an endoscope make possible a degree of precision difficult to
obtain by other procedures. In cancer surgery with lasers there is less danger than
with cold-knife surgery of dislodging cancer cells and worsening the malignancy.

The most ubiquitous laser in nonophthalmic surgery has been the CO, laser. This is
not surprising, given that water strongly absorbs at 10.6 pm; the absorption coefficient
of living tissue is roughly 200 cm™ " at 10.6 wm. Thus, CO, laser radiation interacts
strongly with living tissue, and a focused CO, laser beam can produce explosive boiling
of tissue fluids, resulting in an incision as the focal point is moved. Hand-held CO,
surgical lasers, which have for many years been commercially available, are used, for
instance, to remove arterial plaque during open-heart surgery.

Photodynamic therapy, which was invented in the early 1900s, came into widespread
use in the mid-1980s and is now performed mainly with red diode lasers or diode laser
arrays. This procedure begins with the injection into the bloodstream of a “precursor”
that results in a photosensitizer, a substance that absorbs light of a particular wavelength.
The targeted tissue is irradiated for several minutes with red laser light or LED radiation
transported by a fiber. When the photosensitizer molecules absorb the light, they make a
singlet—singlet transition and then undergo intersystem crossing to an excited,
metastable triplet state (Section 11.11). From this state the excitation energy can be
transferred to oxygen molecules in tissues, which in the process are excited from
the ground triplet state to an excited singlet state. Singlet oxygen happens to be very reac-
tive and, depending on the photosensitizer used, will react with and destroy undesirable
(e.g., cancerous) cells. Photodynamic therapy is usually confined to about a 1-cm
layer of tissue, the absorption depth of the light, and is therefore most effective
for the treatment of small tumors on the skin or on internal organs accessed with
optical fibers.

While the CO,, argon ion, Nd : YAG, and excimer lasers remain the primary medical
lasers, it is expected that diode-pumped fiber lasers, particularly because of their com-
pactness, will in the near future take on increased importance as commercial develop-
ment proceeds. Similarly, femtosecond lasers, including femtosecond fiber lasers, will

“SM. S. Hutson and X. Ma, Physical Review Letters 99, 158104 (2007).
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likely become more widely used in medicine, having already become effective and
commercially viable tools in ophthalmology.

Laser physics and optical science more generally have spawned many medical diag-
nostic tools such as fiber endoscopes and other instruments that continue to be developed
and improved. We will conclude this section with brief descriptions of two relatively
new imaging technologies. In each case we focus on the basic principles and refer the
reader to the specialized literature for details of clinical implementations.

e The imaging technique discussed below, based on spin-polarized gases, is basically a new
way of magnetic resonance imaging (MRI). It is perhaps useful therefore to review briefly
some basic principles of MRI.

As noted in Section 14.3, nuclei with an odd number of nucleons have spin. The nucleus of
interest for MRI is the hydrogen nucleus (proton)—hydrogen atoms make up about 60% of the
human body by number and about 10% by mass. The proton has spin %, and so in a static magnetic
field By = ByZ it has two allowed energy levels, E, and E_, corresponding to two different spin
orientations (“spin up” and “spin down’’) with respect to z, and the transition frequency between
these two levels is [Eq. (14.3.1)]

E,—E_
h

My8Bo _

= [(BuygBo) — (—mygBo)] /h = ; vBo. (14.8.2)

(JJP -

my and g are, respectively, the nuclear Bohr magneton and the proton g factor, and
v = 20 x 42.576 MHz/tesla is the gyromagnetic ratio of the proton; 7 relates the magnetic
dipole moment m and the angular momentum (spin) vector s: m = vy s, with |s| = &/2 for
spin % An extremely strong field By, as large as 1.5 T or more generated with liquid-helium-
cooled superconducting coils, is used in MRI; for By = 1.5 T, w, = 63.86 s ! The torque on
a magnetic dipole moment m in a magnetic field B is m x B, which gives the rate of change
of the angular momentum s, so that

d
7‘? — ym x B. (14.8.3)

This equation says that the magnetic moment m precesses about B, and that the precessional
frequency is w, = y|B|.

In a sample exposed to a magnetic field Byz and in thermal equilibrium at temperature 7, there
will be a net bulk magnetization Mz, i.e., an imbalance in the densities of spin-up and spin-down
protons:

Mo—p h e Bk _ p=Ec/ksT _p h h E.—E_
0= oYY X TE T g BT pY7tan 2T

h h’}/BQ
= Ppy~tanh
pY7an <2kBT)

~ 1 ¥’By
T P kT

(14.8.4)

for hyBo/2kpT < 1, where Pp is the proton density. For 7=300K and By=15T,
hyBy/2ksT = 5.1 x 107, implying that the thermal magnetization in MRI is very small.
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In MRI an 1f field propagating perpendicular to the direction Z of the static field, and having a
frequency close to w,, induces transitions between the levels £ and E_ via the interaction with
the proton spins of its time-dependent magnetic field B,. According to (14.8.3) such a field will
result in a component of the magnetization perpendicular to the axial direction Z, i.e., it causes
the magnetization M, to tilt away from the Z direction by some tipping angle ® and therefore
to precess about the strong static field Byz. This in turn results in a time-dependent magnetic
flux perpendicular to z that, from Faraday’s law of induction (V xE =—0B/dt), generates a
voltage in an induction “pick-up” coil. This voltage is the MRI signal.

Considered as a two-state system, the proton can be described by Bloch equations; in fact, as
noted in Section 9.5, the Bloch equations were first derived in the context of nuclear magnetic
resonance (NMR) theory. When relaxation processes are included, the NMR Bloch equations
take the form (9.5.3), where T, and T} are “longitudinal” and “transverse” relaxation times for
the damping of the components of the magnetization parallel and perpendicular to By, A =
w, — o, the Rabi frequency y = yB;, and wy = M. The “area” of the pulse By, i.e., the integral
over time of the Rabi frequency, Eq. (9.5.21), defines the tipping angle ®. A pulse with ® = 7,
for example, will cause a magnetic moment to make a 180° flip.

After the magnetization is “tipped” by the rf pulse, it relaxes back to its equilibrium value M.
The transverse (x, y) components, proportional to M, decay exponentially at a rate determined by
T} as well as by an “inhomogeneous broadening” time 75 due to spatial inhomogeneities in B,
and therefore different precessional frequencies of different spins; as was noted in Section 9.11 in
connection with the Ramsey method of separated fields, no one has solved the problem of making
a magnetic field that is uniform over a large region of space (in the case of MRI, a region very
roughly the size of a human body). The decay of the transverse components of the magnetization
results in an exponentially damped voltage signal in a pick-up coil, a so-called free induction
decay signal. The longitudinal (z) component of the magnetization increases after a tipping
pulse at the rate 1/Ty (<1/T}): M(r) = My[1 — exp (—¢/T})] [see Eq. (9.5.3c) with y =0,
w =M, and wy = My].

Spins in different tissues have different resonance frequencies w,, relaxation times 77, Té,
proton densities Pp, and magnetizations M, in a magnetic field. These are determined, for
instance, by different amounts of water (long relaxation times, ~1 s) and fat (short relaxation
times, ~ 10> ms). Thus, the gray matter of the brain has relaxation times 7} ~ 760 ms and
Tﬁ ~ 77 ms, whereas for the white matter 7; ~ 510 ms and Té ~ 67 ms.* They are distin-
guished by the different signals produced in a pick-up coil following the tipping rf pulses.
Various “pulse sequences” with different pulse areas, repetition rates, and other characteristics
have been devised to produce MRI signals; a commonly used pulse sequence for eliminating
T; effects is the spin echo sequence discovered by E. L. Hahn in the early 1950s.4

In MRI the voltage signals are converted to a spatial map (image) of proton densities using
magnetic field gradients. A “slice” of the sample is selected by a magnetic field gradient G,
along the z direction. Different slices of the sample along z have different precession frequencies
w, = (yBy + vG_z), and only one slice will be resonant with the rf field and produce a signal. The
thickness of the slice is determined by the bandwidth of the rf pulse, and can be changed by chan-
ging G.. This provides one (z) dimension of localization within the sample. A magnetic field gra-
dient G, orthogonal to z performs frequency encoding by causing different spins within a slice to
have slightly different precession frequencies: a spin with spatial coordinate x along this gradient
has a precession frequency w,(x) = y(By + G.x) and therefore oscillates as exp[ —iv(Bg +
G,x)t]. Aside from the rapidly varying factor exp(—ivy Bot), therefore, the magnetization of a

46 L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice Hall, Upper Saddle River,
NJ, 2005).

47A conceptually similar phenomenon—the photon echo—occurs for atomic transitions. See, for instance,
L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, (Dover, New York, 1987), Chapter 9.
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volume element at x oscillates as exp(—iy G,xt), and the signal at a pick-up coil from all the spins
along x is

S(t) = Kf Moy(x)e 0 dx, (14.8.5)
where « is a calibration constant. Defining k. = y G,t, we replace (14.8.5) by
s(ky) = [o Mo(x)e ™ dx. (14.8.6)
Inversion of this Fourier transform gives

Mo(x) = %T[ s(ky)e™ dk,. (14.8.7)

In other words, frequency encoding during the signal readout allows a computation of a one-
dimensional map [M(x)] of the magnetization in the selected slice of the sample. To obtain a
two-dimensional image of each slice, a third magnetic field gradient G, along the y direction is
applied prior to the frequency conversion and signal readout. G, has the same effect on the
spins as G, but it is turned off prior to the signal readout. This leaves spins at different points
along the y direction with different phases, similar to the way frequency encoding imparts differ-
ent frequencies. The effect of this phase encoding is to replace (14.8.7) by a two-dimensional
Fourier transform of the form

1 2 oo 00 ) !
Mo(x, y) = (—) J J s(ky, ky)e &Y g dk, (14.8.8)

27) ) o

giving the two-dimensional map My(x, y) for the selected slice: 256 frequency-encoding
sequences, each involving 256 phase-encoding steps, produce a 256 x 256 pixel array that is
converted to a gray-scale image on a film. o

Very detailed images of soft tissues are obtained by magnetic resonance imaging. For
porous tissues such as the lung and colon, however, the air-filled spaces do not have
enough protons to generate a meaningful magnetization signal. Larger magnetizations
could be realized by increasing the magnetic field strength B or by lowering the temp-
erature [Eq. (14.8.4)]. But current MRI scanners already use extremely strong magnetic
fields, and increasing B, further would increase the complexity and the cost beyond their
already high levels. And numerical estimates based on (14.8.4) indicate that the
temperatures required would freeze patients to death—not a viable option. A different
approach, based on the injection into porous tissue of a spin-polarized gas, was proposed
in 1994.* The idea is to spin-polarize a gas by optical pumping (Section 14.3) and then
inject it into a porous tissue; for the lungs, the patient simply inhales the spin-polarized
gas, whose atoms have their spins and therefore magnetic dipole moments aligned. The
degree of magnetization per particle is enormously larger than that implied by the
thermal-equilibrium expression (14.8.4) for the protons in tissues imaged by standard
MRI; this compensates for the low density of the gas, so that MRI as described above

“M. S. Albert, G. D. Cates, B. Drichuys, W. Happer, B. Saam, C. S. Springer, Jr., and A. Wishnia, Nature
370, 199 (1994).
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can be done with the “breathable magnets” of the spin-polarized gas. For lung imaging,
the patient inhales the spin-polarized gas before entering the MRI chamber.

Only certain atoms are suitable as breathable magnets. The atoms should have a
nuclear spin in order to have a nuclear magnetic moment, and this eliminates all atoms
with an even number of nucleons (Section 14.3). While alkali atoms are easy to spin-
polarize with resonant laser radiation, the fact that they react violently with water or
oxygen obviously rules them out. The spin-polarized atoms should have no toxic effects
and should have long spin relaxation times so that their magnetization is sufficiently
long-lived. They should not interact to form molecules that result in strong depolariz-
ation of the nuclear spins. Such considerations point to noble gases with nuclear spin
I =1, and *He and '*°Xe in particular. Aside from the “Donald Duck voice” effect of
helium, there are no adverse effects associated with it. Xenon, likewise, has for many
years been used as an anesthetic and poses no known health risks, and moreover the
small dosages of spin-polarized '**Xe that are sufficient for MRI reduce the anesthetic
effects. '*Xe has some advantages over *He in that it is more readily and inexpensively
available. Unlike *He, it occurs naturally at a concentration ~10"" in the atmosphere
and is a by-product, along with the more abundant '*'Xe, of the distillation of air for
the commercial production of O, and N».

Optical pumping of ground-state noble-gas atoms is generally impractical; for He, for
example, the transition from the ground level to the first excited level has a wavelength of
58 nm and cannot be accessed with available lasers. Helium has been spin-polarized by
exciting it to a metastable excited level in an electric discharge and then optically pump-
ing it with a laser at 1083 nm. Both *He and '**Xe are spin-polarized in large concen-
trations by spin-exchange collisions (Section 14.3) with optically pumped alkali atoms.
The most common way of doing this is to optically pump Rb atoms with 795 nm, cir-
cularly polarized laser radiation, usually obtained with a high-power (~100 W) diode
laser array. The electronic spin polarization of the Rb atoms is then transferred to the
*He or '“’Xe nuclei in collisions involving a magnetic hyperfine interaction. Since
the hyperfine interactions are weak, the exchange probability in a collision is small, and
it can take seconds or minutes for spin polarization of '**Xe nuclei by this method, and
hours to do so for *He. Spin relaxation of '#*Xe is sufficiently slow that the degree of
polarization is limited by the Rb polarization. On the other hand, *He has a larger mag-
netic moment than '**Xe (about three times larger), and thus far greater degrees of spin
polarization have been realized with it (~20—50% compared to ~10—30% for '*’Xe).
*He is found to produce sharper MRI images and has been used in most lung imaging
studies. '**Xe has one extremely attractive property in contrast to He: It dissolves
in blood and in many tissues. The circulation time of the blood in a human body
is ~15 s, whereas '*’Xe in the blood maintains its polarization for tens of seconds,
enough time for it to be used for brain imaging, for instance.

Unlike conventional MRI, where between rf sampling pulses the magnetization Mz
is restored by relaxation to thermal equilibrium in a time 7' typically ~1 s, in MRI with a
spin-polarized gas the magnetization is reduced with each successive sampling pulse
and can be restored only by adding more polarized gas. The pulse sequencing is also
different from conventional MRI; for example, 7r/2 pulses are not used in the spin-polar-
ized case because such a pulse would tip the Bloch vector into the xy plane and thereby
destroy the polarization with a single pulse. Typically ~100 pulses are used to produce
an image, each pulse having the same small area. For pulses with an area of 0.20 rad
(11.5°), for example, the magnetization after 100 sampling pulses is reduced by a
factor 1—[cos(0.20)]'®® = 0.87, assuming that no other processes act to reduce the
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magnetization during the pulse sequence. The fact that 100 rf pulses can be applied
without having to wait for the magnetization to be restored by slow relaxation processes
is important for lung imaging, for example, where a patient cannot be expected to hold
his breath for too long.

Another attractive feature of MRI with spin-polarized gases is that they do not require
the huge magnetic fields of conventional MRI systems. In the latter the magnetization is
proportional to By [Eq. (14.8.4)] and the voltage signal in a pick-up coil is, by Faraday’s
law of induction, proportional to the rate of change of the magnetization, that is, to
w,By = yB}; a large By is required to generate a large enough signal in the presence
of noise associated with amplifiers and resistances in the system, since the magnetization
is entirely thermal in origin and therefore small. When the magnetization is due to a spin-
polarized gas, however, the factor By on the right-hand side of (14.8.4) does not enter
into the determination of the signal since the magnetization of the gas is not thermally
equilibrated; the signal is then proportional to By, which only determines w,, not the
magnetization. It has been demonstrated that magnetic fields ~20 G can be used for
MRI with spin-polarized gases, so that the cost and other disadvantages of extremely
strong magnetic fields are avoidable.

Spin polarization of *He gas persists for several days in glass containers, and frozen
129X e maintains its polarization for comparable durations. Compact systems producing
spin-polarized gases for clinical lung imaging have been developed. A flask containing
He, N,, and a small amount of Rb is heated to vaporize the Rb. Circularly polarized
laser radiation optically pumps the Rb vapor and results after a few hours in the polar-
ization of most of the *He. The flask is then cooled to condense out the Rb, and the spin-
polarized *He gas is drawn into a plastic bag for later inhalation by a patient.

In the first MRI images demonstrated with spin-polarized '*Xe gas, a xenon
density of ~1.2 x 10" cm ™ filled the excised lung of a mouse,*® compared to the
~5 x 10** cm ™ proton concentrations of tissues imaged in conventional MRI. Since
this demonstration many other studies have been reported, and this new approach to
MRI imaging appears to be progressing rapidly toward widespread clinical use.*

Another novel imaging method is based on the connection between the bandwidth of
light and interference. As discussed in Section 13.11, the coherence length of light
decreases with increasing bandwidth; the larger the bandwidth, the smaller the arm sep-
aration has to be in a Michelson interferometer, for instance, in order to observe inter-
ference fringes. Femtosecond laser pulses, for example, have coherence lengths on
the order of microns, so that no interference fringes are observed in a Michelson inter-
ferometer if the arm separation exceeds, say, a few microns (Section 13.11). This is the
basis for optical coherence tomography (OCT), and the basic idea behind it is sketched
in Fig. 14.35.°°

“9Reviews with many references to research papers in both the physics and medical literature have been pub-
lished by T. Chupp and S. Swanson, Advances in Atomic, Molecular, and Optical Physics 45,41 (2001) and
S.J. Kadlecek, K. Emami, M. C. Fischer, M. Ishii, Y. Jiangsheng, J. M. Woodburn, M. NikKhah, V. Vahdat,
D. A. Lipson, J. E. Baumgardner, and R. R. Rizi, Progress in Nuclear Magnetic Spectroscopy 47, 187
(2005).

3D, Huang, E. A Swanson, C. P Lin, J. S Schuman, W. G Stinson, W. Chang, M. R Hee, T. Flotte,
K. Gregory, C. A Puliafito, and J.G. Fujimoto, Science 254, 1178 (1991). A review of optical coherence
tomography “from bench to bedside” is given by A. M. Zysk, F. T Nguyen, A. L. Oldenburg, D. L.
Marks, and S. A. Boppart, Journal of Biomedical Optics 12, 051403 (2007).
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Figure 14.35 Simplified illustration of optical coherence tomography. Light from a broadband
source (short coherence length) enters a Michelson interferometer, one arm of which contains a
sample S (e.g., aretina or a fingertip). Interference fringes are observed only for path separations, deter-
mined by the topography of S, that differ by less than the coherence length. This allows depth resolution
of the sample, while the camera provides two-dimensional profiling, so that three-dimensional imaging
of S with micron-scale resolution is achieved if the coherence length of the light source is on the order
of a micron.

The broadband source in OCT is typically “superfluorescent” (mirrorless) diode laser
radiation transported by a fiber, but femtosecond lasers and supercontinuum radiation in
fibers are also used in order to obtain extremely small coherence lengths. Compared to
imaging techniques such as MRI and X-ray computed tomography (CT), OCT has a
much smaller imaging depth (typically a few millimeters) but offers greater resolution
of fine structure. Because the light source is nonionizing, it allows long exposure
times that are not possible with X rays. Commercially available OCT systems are com-
pact and less complex than MRIs or CTs, and their clinical utility has been demonstrated
in oncology, opthalmology, dermatology, and other areas.

149 REMARKS

Lasers have made possible the most accurate determination of several physical quan-
tities, the smallest measured time intervals, the most accurate clocks, the lowest tempera-
tures ever realized, and some of the highest powers ever generated. They have been used
to determine distances between Earth and the moon to an accuracy of a few centimeters
and to enable ground-based telescopes to produce images comparable in quality to those
of a space telescope; to determine concentrations of atmospheric constituents in the
atmosphere as well as temperature, density, and wind profiles; to produce ultracold
gases and a state of matter in which large numbers of atoms are described by a single
quantum state and in which the interference of atom waves can be observed and put
to practical use; to time-resolve chemical and biological processes; to determine our gro-
cery bills, print what we read, record our music, and cut and weld materials used in many
other aspects of everyday life. Their importance in medicine continues to grow and they
are an integral part of modern communications and the Internet. The list of applications
has no foreseeable end.
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The operating principle of every laser is, of course, stimulated emission of radiation.
As discussed in Section 3.6, it was Einstein who first realized that matter can radiate by
stimulated emission as well as by spontaneous emission. But no one at the time seems to
have imagined the possibility of radiation amplifiers and oscillators, much less their
widespread use decades later. While some applications could be confidently predicted
when the first lasers were constructed in the early 1960s, many others were not foreseen
by even the most imaginative scientists and engineers. The reader might find it interest-
ing to think about which laser applications were the most unpredictable, and to speculate
on directions future applications might take.

PROBLEMS

14.1. (a) Using Eqgs. (3.7.5) for the case in which the level populations of a two-level
atom change by absorption and stimulated and spontaneous emission in a
narrowband field, show that the upper-state probability p(t) changes accord-
ing to the equation

p(t) = —Ayp(t) + ?I(t)
1%

if the lower-state probability =21.

(b) Assuming that the laser pulse duration is long compared to the radiative life-
time, derive Eq. (14.1.3).

14.2. (a) Verify the approximation (14.1.21) for Rayleigh backscattering at frequen-
cies roughly in the visible range.

(b) Verify Eq. (14.1.22) for the number of backscattered photons for the
assumed lidar system parameters.

14.3. Show that the sodium density at different altitudes in the mesosphere can
be determined from the ratio of sodium and Rayleigh photocounts as in
Eq. (14.1.26). What assumptions are implicit in this equation?

14.4. (a) Estimate the maximum photon flux (number of photons per unit area per unit
time) at ground level that can be obtained when the 589-nm D; line of meso-
spheric sodium is uniformly irradiated with resonant radiation having a 1-m?
spot size at the mesosphere.

(b) What would be the apparent magnitude of a guide star that produces this
photon flux?

(c) Approximately what fraction of quasi-monochromatic 589-nm laser radi-
ation propagated from ground is absorbed by the mesospheric sodium
layer? (Assume that the laser power is sufficiently low that saturation effects
are negligible.)

(d) Why should the saturation formula (14.2.5) be applicable? Shouldn’t the
absorption or gain coefficient for a Doppler-broadened transition saturate
according to the formula (4.14.7)?

14.5. (a) The reflector placed on the moon by Apollo 11 astronauts consists of 100
corner cubes, each about 1.5 inches across. Estimate the diameter at Earth
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(b)

of the return ruby laser pulses. (A corner cube consists of three reflecting
edges intersecting at right angles. Any incident ray is reflected parallel to
itself.)

The laser pulses from a police lidar gun have a beam divergence angle of
3 mrad. Estimate the diameter of these pulses at a distance of 300 m from
the policeman. Can you think of ways to thwart this type of “radar”?

14.6. Show that the matrix element for an electric dipole transition in which light is
absorbed and an atom goes from a state 1 with magnetic quantum number m
to a state 2 with magnetic quantum number m' is given by (14.3.3), and that
the reverse, stimulated emission transition is given by the complex conjugate
of (14.3.3).

14.7. (a)

(b)

14.8. (a)

(b)

()

(@)
14.9. (a)

Show that a detector placed along the x axis, and responding to an average
over times long compared to w, ' of the power radiated by the electric dipole
(14.3.15), will record an intensity with the time dependence (14.3.16) if it is
behind a polarizer oriented at an angle ¢ with respect to the z axis.

Suppose that the atoms are excited by linearly polarized light as in Fig. 14.12
and that the detector records the time-integrated intensity

!
J OCJ dio 1(1)
with £ > 1/+. Show that 7 is proportional to

1 ycos2¢  2wisin2¢
2y Y44l y:4dor’

Plot this signal vs. w; for (i) ¢ = 0, (ii) ¢ = 7/4, (iii) ¢ = 7/2, and (iv) ¢ =
37r/4. What experimental situation does this signal describe? Compare your
results with the corresponding experimental results shown in Fig. 14.36.

Show that optical pumping with circularly polarized light results in complete
transparency in the case of the sodium D, line in the absence of any spin
relaxation effects.

Calculate the electric dipole matrix element (F'm’|d,—|Fm) for the tran-
sition 3P3 » (F =3, m = 3) — 3S, »(F =2, M = 2) of sodium. (You will
have to look up the values of the 3j and 6j symbols for the set of quantum
numbers /=3, m' =3, F=2,m=2,J =3 J=411=3)

Confirm that the saturation intensity for this transition in the case of pure
radiative broadening is 6.3 mW/ cm?, as stated in Section 4.11.

Verify Eq. (14.4.5).

An atom has a transition frequency vy = (E, — E1)/h, where 1 and 2 refer to
the ground level and first excited level, respectively, and it is moving with
velocity v away from a source of radiation of frequency v. Using conservation
of energy and linear momentum, and assuming that line broadening is
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Figure 14.36 Time-integrated Hanle signals from mercury atoms for polarizer angles (a) ¢ = 0,
b) o=m/4, (¢) ¢=m/2, and (d) ¢ =3w/4. (See Problem 14.7.) [From B. P. Kibble and
G. W. Series, Proceedings of the Physical Society of London 78, 70 (1961).]

(b)

(o

negligible, show that the atom will absorb a photon of frequency v

provided that
v
v =1y (1 + —) .
c

Assume that v < ¢, so that relativistic effects may be ignored.
Show that there is a recoil shift

hv%
2Mc?

V—1Vy)—=

in the absorption frequency, where M is the atomic mass.

Derive an expression for the recoil shift in the case of two-photon absorption.
Calculate the recoil shift in the case of the 1S—2S two-photon transition
in atomic hydrogen, and compare your answer with the measured recoil
shift of 6.7 MHz reported by D. G. Fried, T. C. Killian, L. Willmann,
D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Physical Review
Letters 81, 3811 (1998).
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14.10.

14.11.

14.12.

14.13.

14.14.

14.15.

14.16.
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(d) Estimate the critical temperature for Bose—Einstein condensation of atomic
hydrogen at a density of 1.8 x 10°° atoms/m”.

Derive the formula (14.4.42) for the potential energy function for the dipole
force. [Note: You might use the fact that the dipole force in (14.4.36) applies
even under conditions where the polarizability can be saturated. You could
also proceed as in the derivation of the light shift (14.4.22).]

(a) Show that the superposition of an upward-propagating laser beam of
frequency v + Av and a downward-propagating laser beam of frequency
v — Av results in a “moving standing wave” with upward velocity AAv
(A=c/v).

(b) Estimate the length traveled and the time taken for a cesium atom in an
atomic fountain to reach its apogee and return to its original position after
being launched by a moving standing wave with A = 852 nm (Fig. 14.18)
and Av = 1.6 MHz.

(a) Compare the optical trapping force to the magnetic force acting on atoms in a
MOT, and show that the optical force is dominant for atoms at a distance of a
wavelength or more from the center of the trap.

(b) Use Eq. (14.5.9) to estimate the size of the cloud of sodium atoms trapped in
a MOT.

(c) Estimate the zero-point energy of a sodium atom in a magnetic trap with
B =10 G/cm.

A sodium atom in a MOT with a magnetic field gradient of 30 G/cm and coun-
ter-propagating laser fields of intensity 1 mW /cm?, detuned from the D, tran-
sition by 30 MHz, is displaced from the center of the trap. Estimate the time it
takes for the atom to move to the center of the trap.

Suppose that sodium atoms are in an optical lattice formed by a laser of intensity
4 mW /cm? detuned by 60 GHz from the D, line. Show that the peak value of the
light-shift potential energy function is about 10 times the sodium recoil energy.
[J. H. Denschlag, J. E. Simsarian, H. Hiffner, C. McKenzie, A. Browaeys,
D. Cho, K. Helmerson, S. L. Rolston, and W. D. Phillips, Journal of Physics
B: Atomic, Molecular and Optical Physics 35, 3095 (2002).]

(a) Derive the expression (14.5.13) for the (cycle-averaged) force of radiation
pressure on a dielectric sphere with a radius small compared to the radiation
wavelength. (Hint: Show that this force is equal to n,P/c, where P is the
Rayleigh-scattered power.)

(b) A focused laser beam is to be used to balance the force of gravity on a latex
sphere of diameter 5 wm. Assuming that latex has a density of 1.05 g/cm’
and a refractive index of 1.6 at the laser wavelength, estimate the laser inten-
sity and power required when the sphere is to be held in air, assuming a
Gaussian laser beam focused to a spot of diameter 10 wm. Repeat these
estimates when the latex sphere is in water.

(a) Estimate the critical temperature for Bose—Einstein condensation of liquid
“He, for which the density is 2.2 x 10*® atoms/m”.
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Calculate the recoil temperature 7, for the laser cooling of 87Rb atoms at
the 780 nm transition.

Calculate the recoil temperature for hydrogen atoms at the 122-nm Lyman-«
transition, and compare it with the critical temperature obtained in Problem
14.9 for BEC in hydrogen.

Assuming a wave function of the form (14.7.6), and probability amplitudes
a,(t) = a,(0)exp (—iE,t/h ), derive an expression for the expectation value
of the interatomic separation R. Compare your formula to that obtained if
there is no “off-diagonal coherence,” that is, if collisions or other “decoher-
ence” effects cause the quantities a;; (f)a,/ (1) to decay rapidly in time for v # v'.

Explain how signals such as that shown in Fig. 14.23 can be used to obtain
values for vibrational and rotational constants of a molecule.

Our simplified analysis of the time resolution of molecular vibrations with
femtosecond pump and probe pulses in Section 14.7 assumes a single mol-
ecule. Under what conditions can we apply such a single-molecule theory to
an ensemble of molecules in order to interpret experimental data such as
shown in Fig. 14.23?

Use Eq. (3.14.6) and the formula n*(w) — 1=©W /&0)a(w) for the refractive
index to obtain

e fi
J J

for the polarizability of an atom in state i, where the summmation is over
all states j connected to state i by oscillator strengths f; and transition
frequencies w;.

What modifications reduce this expression to the approximation (14.4.23)?
Show that the light shift obtained using the polarizability derived in part
(a) reduces to the ponderomotive energy U, [Eq. (14.7.11)] in the limit in
which the field frequency w is much greater than any of the transition
frequencies ;.

Show that the times #; at which the electron returns to the ion in the model
presented in Section 14.7 are given by solutions of the equation

cos 0 — cos 6; + (0 — 0;)sin 6; = 0,

where ;= wiyand 6; = wt;, t; being a time at which ionization occurs. Show
also that the electron’s kinetic energy when it reaches the ion is E(t5 ;) =
2U,(sin 6 — sin 6%, where U, is the ponderomotive energy.

Solve numerically for E(t;, ;) for 6; between 0 and 77/2 and verify the results
plotted in Fig. 14.27. In particular, verify that the maximum value of E(%, ;)
is 3.170,,.

What is the probability that an electron will recollide with its parent during
the first cycle of the laser field following ionization?

How are the predictions of the model changed when the laser radiation is
circularly polarized?
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(e) Using the Bohr model, compare the amplitude of the electron’s quivering in
the field to the size of an atom when the Keldysh parameter vy given by
(14.7.13) is less than 1.

14.20. Estimate the tunneling ionization rate for a hydrogen atom in (a) a linearly polar-
ized field of intensity 3 x 10'°W / cm?” and (b) a circularly polarized field of the
same intensity.

14.21. (a) Describe the spectrum obtained by the heterodyning of a single-mode laser
with a mode-locked laser, assuming the two fields have frequencies as indi-
cated in Fig. 14.31.
(b) Explain why there must be phase coherence among pulses equally spaced in
time if the pulse train is to serve as a comb for optical frequency metrology.



