
Modules of the 2024 Course

Topics covered No Lecture/Date
Introductory presentation; Basic of laser operation I: dispersion theory, atoms 1 11. 09. 2024
Basic of laser operation II: dispersion theory, atoms 2 18. 09. 2024
Laser systems I: 3 and 4 level lasers, gas lasers, solid state lasers, applications 3 25. 09. 2024
Laser systems II: semi-conductor lasers, external cavity lasers, applications 4 02. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (1) 5 09. 10. 2024
Noise characteristics of lasers: linewidth, coherence, phase and amplitude noise, OSA (2) 6 16. 10. 2024
Optical detection 7 30. 10. 2024
Optical fibers: light propagation in fibers, specialty fibers and dispersion (GVD) 8 06. 11. 2024
Ultrafast lasers I.: Passive mode locking and ultrafast lasers 9 13. 11. 2024
Ultrafast lasers II: mode locking, optical frequency combs / frequency metrology 10 20. 11. 2024
Ultrafast lasers III: pulse characterization, applications 11 27. 11. 2024
Nonlinear frequency conversion I: theory, frequency doubling, applications 12 04. 12. 2024
Nonlinear frequency conversion II: optical parametric amplification (OPA) 13 11. 12. 2024
Laboratory visits (lasers demo) 14 20. 12. 2024
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Week 10 content

Content of Week 10
Characterizing pulses using
autocorrelation technique
Mode locking via saturable absorbers
Frequency Metrology
Pulse propagation
Dual-Comb Spectroscopy
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Review: Kerr lens mode locking

Passive mode locking with Kerr lens effect

Laser medium = Kerr medium, n = n0 + n2I
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Mode locking: saturable absorber
Saturable absorber
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Mode locking: saturable absorber
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One Gaussian Pulse

EP (t) = E0e−Γt2+iω0t

Ẽp(ω) = E0

√
π

Γ
exp

(
− (ω − ω0)

2

4Γ

)
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Gaussian Pulse Train with Phase ‘Slip’
Per-pulse change of phase:

∆ϕ = β0L − ω0Trep

= β0L −
ω0L

vg

= ω0L

(
β0

ω0
−

1
vg

)
=

ω0L

c
(n0 − ng)

The group-index

ng = n0 + ω0
dn

dω

∣∣∣∣
ω0

Phase change per time:
the carrier-envelope offset frequency

ωCO =
∆ϕ

Trep
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Carrier Envelope Frequency
ET (t) =

∑N−1
m=0 EP (t − mTrep) e−iωCOt, ωCO = ∆ϕ

Trep

ẼT (ω) = FT
[
ET (t)

]
=
∑N−1

m=0
∫∞

−∞ EP (t − mTrep) e−iωCOte−iωtdt

Translation property:
unreadable (duality)

IT (ω) = IP (ω + ωCO)
1 − cos

(
2Nπ (ω + ωCO) /ωrep

)
1 − cos

(
2π (ω + ωCO) /ωrep

)
= ẼP (ω + ωCO)

1 − e−iNTrep(ω+ωCO)

1 − e−iTrep(ω+ωCO)

ωrep = 2π
Trep

IT (ω) = IP (ω + ωCO)
1−cos

(
2Nπ(ω+ωCO)/ωrep

)
1−cos

(
2π(ω+ωCO)/ωrep

)
limN→∞ IT (ω) = IP (ω + ωCO)

∑∞
m=−∞

δ
(

ω + ωCO − mωrep
)

A frequency comb with offset ωCO
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Reverse Quick Method
Starting from offset frequency comb:

ẼT (ω) = ẼP (ω)

∞∑
m=−∞

δ (ω + ωCO − mωrep)

FT of multiplication = convolution of FT:

ET (t) = FT
[
ẼP (ω)

]
# FT

 ∞∑
m=−∞

δ (ω + ωCO − mωrep)


FT of Dirac Comb = Dirac Comb:

= EP (t)#

 ∞∑
m=−∞

δ (t − mTrep) e−iωCOt


Convolution with Dirac Comb = “Replicating Property”

=

∞∑
m=−∞

EP (t − mTrep) e−im∆ϕ

Back to our original pulse-train
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Carrier Envelope Frequency

νCEO =
dΦ
dt

=
∆Φ
2πT

νm = mfrep + νCEO
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Carrier Envelope Frequency

Lasers: theory and modern applications November 19, 2024 12 / 44



Applications of ultra-short pulses: Optical Clocks
Optical atomic clocks (NIST, Boulder, Colorado)
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Counting the cycles of light

Figure 3: The NRC classical
chain for measuring
the optical transition
at 445 THz in a single
trapped strontium ion.
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Applications of frequency combs
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Measuring the carrier envelope frequency

fn = nfrep + f0

2fn − f2n = 2
(
nfrep + f0

)
−
(
2nfrep + f0

)
= f0
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Measuring the carrier envelope frequency
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Supercontinuum generation

Super-continuum generation can be modeled via a generalized Nonlinear Schrödinger equation.
dA
dz

+ α
2 A −

∑
k≥2

ik+1

k! βk
∂kA
∂T k = iγ

(
1 + iτ ∂

∂T

)
·
(

A(z, T )
∫∞

−∞ R (T ′)
∣∣A (z, T − T ′)

∣∣2 dT ′ + iΓR(z, T )

)
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Principle of an atomic clock
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Optical atomic clock: state of the art

A clockwork based on a mode-locked femtosecond
laser provides output pulses at a 1-gigahertz rate
that are phase-coherently locked to the optical
frequency. By comparison to a laser-cooled
calcium optical standard, an upper limit for
the fractional frequency instability of 7 · 10−15 is
measured in 1 second of averaging – a value
substantially better than that of the world’s best
microwave atomic clocks.

Fractional frequency instability:

σy(τ ) ≈
〈

∆νrms
ν0

〉
τ
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Atomic clocks

1999 – NIST-F1 begins operation with
an uncertainty of 1.7 · 10−15, or accuracy
to about one second in 20 million years,
making it one of the most accurate clocks ever
made (a distinction shared with similar
standards in France and Germany).

Three spheres are
necessary to find position
in two dimensions, four
are needed in three
dimensions.
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Best clocks to date

σy(τ ) ≈
〈

∆vrms
v0

〉
τ

Gravitational time dilation at the scale of daily life.
(A) As one of the clocks is raised, its rate increases
when compared to the clock rate at deeper gravitational
potential
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Autocorrelation techniques
How can a fast temporal profile of a few fs be measured?

Direct electronic means are too
slow

↓

All optical means
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Pulse characterization
Neglecting the spatial dependence for now, the pulse electric field is given by:

E(t) = Re
{√

I(t) exp︸︷︷︸
Intensity

{
i [

Carrier frequency︷︸︸︷
ω0 t − ϕ(t)︸︷︷︸

Phase

]
}}
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Chirped pulses
Ey = Re

(
E0e(−Γt2+iω0t)

)
Instantaneous frequency:

Ey = Re
(

E0e
[
−Γt2+i(ω0t−at2)

])
Instantaneous frequency:

The pulse is said to be “chirped”
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Pulse propagation through media

E0(ω) = e
−(ω−ω0)

2

4Γ E(ω, x) = E0(ω)e
±ik(ω)x, k(ω) =

nω

c

k(ω) = k (ω0) + k′ (ω − ω0) +
1
2k′′ (ω − ω0)

2 + . . .

E(ω, x) = exp
[

−ik (ω0) x − ikx (ω − ω0) −
(

1
4Γ

+
i

2k′′
)
(ω − ω0)

2
]

ε(t, x) = − 1
π2

∫ +∞

−∞
E(ω, x)eiωtdω

ε(t, x) =

√
Γ(x)

π
exp

iω0

(
t − x

νϕ (ω0)

)× exp

−Γ(x)

(
t − x

νg (ω0)

)2

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Pulse propagation through media

νϕ (ω0) =

(
ω

k

)
ω0

, νg (ω0) =

(
dω

dk

)
ω0

, 1
Γ(x)

=
1
Γ
+ 2ik′′x

νϕ =
c

n(ω)

νg =
dω

dk
=

1
dk/dω

,

dk

dω
=

1
c

(
n(ω) + ω

dn(ω)

dω

)

νg ≈ νϕ

(
1 − ω

n(ω)

dn(ω)

dω

)
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Group and phase velocity
Slowing of light pulses
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Group and phase velocity
Superluminal group velocity

νϕ =
c

n(ω)
νg =

dω

dk
=

1
dk/dω

,

dk

dω
=

1
c

(
n(ω) + ω

dn(ω)

dω

)

νg ≈ νϕ

(
1 − ω

n(ω)

dn(ω)

dω

)
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Energy propagation velocity

Energy propagation velocity

|Sω| = n

2µc
|Eω|2 = νguω

vE ≡ |Sω| /uω

Electron oscillator model:

m
(

r̈ + Γṙ + ω2
0r
)
= eE

νE =
c

nR + 2ωnI /Γ
=

νp

1 + 2ωnI /nRΓ

Lossless limit:

νE = c

nR +
ω2ω2

p/nR(
ω2

0 − ω2
)2

−1

=
c

nR + ω · dnR/dω
= vg
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Autocorrelation techniques
Example of pulse distortion by traveling through glass
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Autocorrelation techniques
What can give rise to chirped pulses?

δω(t) = ω(t) − ω0 = −ω0n2
2c

x
∂I(t)

∂t
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Autocorrelation

All optical Pulse characterization techniques are based on time to space transformations.
1 ps ↔ 300 µm in air

7.4.2 & 7.5 (Ruliere, “femtosecond laser pulses”)
How to measure characteristics of laser pulses

I1(τ ) =

∫ +∞

−∞
|E(t) + E(t − τ )|2dt

I1(τ ) ∝ 2
∫

I(t)dt + 2G(τ )
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Second order autocorrelation

I2(τ ) =

∫ +∞

−∞

∣∣∣∣{E(t)ei[ωt+Φ(t)] + E(t − τ )ei[ω(t−τ )+Φ(t−τ )]
}2
∣∣∣∣2 dt

I2(τ ) =

∫ +∞

−∞
|2E4 + 4E2(t)E2(t − τ )

+ 4E(t)E(t − τ )
[
E2(t) + E2(t − τ )

]
cos[ωτ + Φ(t) − Φ(t − τ )]

+ 2E2(t)E2(t − τ ) cos[2(ωτ + Φ(t) − Φ(t − τ ))]|dt

I2(τ = 0) = 24
∫

E4(t)dt

I2(τ → ∞) = 2
∫

E4(t)dt
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Second order autocorrelation

Fringes are spatially averaged (same
effect as fast sweep)

Lasers: theory and modern applications November 19, 2024 35 / 44



Second order autocorrelation

Second order intensity autocorrelation
(non-colinear)

Second order interferometric autocorrelation
(colinear)

Lasers: theory and modern applications November 19, 2024 36 / 44



Interferometric vs. Intensity 2nd Order Autocorr.

I2(τ ) =

∫ +∞

−∞

∣∣∣∣{E(t)ei[ωt+Φ(t)] + E(t − τ )ei[ω(t−τ )+Φ(t−τ )]
}2
∣∣∣∣2 dt

G2(τ ) =

∫ +∞
−∞ I(t)I(t − τ )dt∫ +∞

−∞ I2(t)dt
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Second-order Autocorrelation

Two ultrashort pulses (a) and (b) with their
respective intensity autocorrelation (c) and (d).
Because the intensity autocorrelation ignores
the temporal phase of pulse (b) that is due
to the instantaneous frequency sweep (chirp), both
pulses yield the same intensity autocorrelation.
The zero in this figure has been shifted to omit this
background.

Lasers: theory and modern applications November 19, 2024 38 / 44

http://en.wikipedia.org/wiki/Ultrashort_pulse
http://en.wikipedia.org/wiki/Chirp


Second-order Autocorrelation

Two ultrashort pulses (a) and (b) with their
respective interferometric 2nd order
autocorrelation (c) and (d). Because of the phase
present in pulse (b) due to an instantaneous
frequency sweep (chirp), the fringes
of the autocorrelation trace (d) wash out
in the wings. Note the ratio 8:1 (peak
to the wings), characteristic of interferometric
autocorrelation traces.
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Dual-Comb Spectroscopy (DCS)
Can we apply frequency comb for spectroscopy measurements?
Comb light could be coupled into conventional spectrometers. However, since the comb tooth spacing is
finer than the resolution of nearly all spectrometers. Its associated frequency resolution and accuracy
are lost! → Let’s apply Dual-Comb and transfer signal to RF domain!
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Dual-Comb Spectroscopy (DCS)

m = fr/∆fr

∆ν ≤ mfr/2 = f2
r / (2∆fr)

∆T =
∆fr

fr (fr + ∆fr)
≈ 1

mfr

The minimum time to resolve the RF comb teeth, and
therefore acquire a single spectrum, is simply 1

∆fr
.
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Dual-Comb Spectroscopy (DCS)
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Optical to microwave frequency division

δνCW/νCW = δfr/fr = δfµ/fµ
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Fiber laser mode locking
All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation
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