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LASER OSCILLATION: POWER AND FREQUENCY

A cavity fora 6328- A He-Ne laser is 50 cm long with reflection coefficient

r, = 1.0 for one mirror and r, = 0.98 for the other. Losses other than

output coupling are very small and may be ignored. The output power of

the laser is measured to be about 10-mW on a single mode.

(a) What is the cavity photon number and what is the output rate of pho-
tons?

(b) It has been written that *‘if the light from a thousand suns were to shine
in the sky, that would be the glory of the Mighty One.”” Assume that
the sun is an ideal blackbody radiator at 7 = 6000 K. Estimate the flux
of photons in a frequency band of width » ~ 10 MHz centered at 6328
A that can be obtained from 1000 suns. How does this compare with
the photon flux that can be obtained from He-Ne or other lasers?

Should the Lamb dip occur with any inhomogeneously broadened gain me-
dium, or only the specific case of Doppler broadening?

Do you think that most lasers have a cavity bandwidth much larger or smaller
than the linewidth of the gain profile? Is any implicit assumption about this
made in our discussion related to Figure 11.13?

Derive Eq. (11.12.5) for the resonance frequencies of a Fabry-Perot etalon
for an arbitrary angle of incidence.

12 MULTIMODE AND
TRANSIENT OSCILLATION

12.1 INTRODUCTION

Thus far we have restricted our study of the laser to the case of continuous-wave,
single-mode operation. In this chapter we will consider time-dependent, transient
effects, including relaxation oscillations and Q switching. We will also extend our
single-mode theory somewhat to the case in which several or many cavity modes
can oscillate simultaneously. This allows us in particular to understand the impor-
tant technique called mode locking, a way to obtain ultrashort pulses of light.

12.2 RATE EQUATIONS FOR INTENSITIES AND POPULATIONS

In the preceding two chapters we have found it convenient and instructive to de-
scribe the strength of the cavity field either in terms of intensity /, or photon num-
ber g,. In the present chapter it will be convenient to use the intensity description.
We will therefore begin with a brief review of the appropriate equations coupling
the intensity and the laser level population densities N, and N,.

In general the cavity intensity will vary both in time and space. We will con-
tinue in this chapter to make the plane-wave approximation in which the intensity
is assumed to be uniform in any plane perpendicular to the cavity axis. Further-
more we showed in Section 11.5 that, for the most common situation in which the
mirror reflectivities are large (say, >50%), the cavity intensity is approximately
uniform along the cavity axis if we ignore the rapidly varying sin® kz interference
term. So it is useful again to make the uniform-field approximation, but now to
include the time dependence of the cavity intensity. First we recall equation
(10.5.8):

dl cl

T R
= (st - 350 = nry,)

cl
:z[g(u) - gl (12.2.1)

For simplicity we will assume that the gain cell fills the entire space between the
mirrors. Then [ = L and

dl,

= cleg(») — gl1, (12.2.2)
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Recall that I, = 10" + 107 is the sum of the two traveling-wave intensities; in
the case of high mirror reflectivities, the two are approximately equal.

In terms of the cavity intensity we can write the population rate equations [cf.
(10.5.14) with T, = T, = 0and A — T';]

dN. glv)l,

_.tz - % ~ Ty N, + K, (12.2.3a)
dN g(v) 1,

_,;l = + 'y N, + K, (12.2.3b)

where the rates I's;, K5, and K, are, again, level decay and pumping rates. Since
N, and N, are populations per unit volume, the pumping rates have units of (vol-
ume) ! (time)'l. Equations (12.2.2) and (12.2.3) are coupled rate equations for
1,, N,, and N,. The coupling is through the gain coefficient

, NA
g(r) = o (Ny = Np) S()
T
= g(v) (N, — Ny) (12.2.4)
where we assume for simplicity that g,/g, = 1.

The population rate equations (12.2.3) are easily modified to suit a particular
laser medium. We have already described such modifications in the case of the
stylized three- and four-level models. Further modifications are described in Chap-
ter 13, where we consider specific population inversion mechanisms. Since we
will be describing in this chapter some rather general phenomena that transcend
specific inversion schemes, it will be adequate to use the simple rate equations
(12.2.3) for the laser level population densities.

For many purposes the rate equations (12.2.2) and (12.2.3) may be simplified
somewhat. One simplifying assumption is that N; << N, i.e., that the lower laser
level population is negligible compared with the upper laser level population. This
would be the case in a four-level laser, where the lower level decays very rapidly
compared with the stimulated emission {absorption) rate. Then g(v) = o(v) N,
and (12.2.2) and (12.2.3a) become

dl,
— = cg(p) Nod, — cgd, (12.2.5a)
dt
dN, o(v)
_— N,I, — Ty N, + K> (12.2.5b)
dt hy

12.3 RELAXATION OSCILLATIONS

The coupled equations (12.2.5) for /, and N, are simple in appearance, but they
have no known general solution. However, it is easy to find the steady-state so-
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lutions which we denote I, and XIZ. These are obtained simply by replacing the left

sidei% of (12.2.5) by zero and solving the resulting algebraic equations, with the
result ’

- K r

I, =} 22t ,
hy <gl 0(:/)) (12.3.1a)

N 8

N, = M_o(y) (12.3.11))

These solutions may also be written in a different form to show explicitly how
N, saturates with increasing /, (Problem 12.1).

It is possible to solve these equations approximately if the laser is operating
very near to steady state. In this case we write

I =1+ ¢ (12.3.2a)
N, = N, + 9 (12.3.2b)
and assume
le| << 1, (12.3.3a)
ln] << N, (12.3.3b)

This approximation allows the equations (12.2.5) to be linearized and solved. as
follows. o

Using (12.3.2) in (12.2.5a), we have

d - . — = ; -
- (I, + €)= co(Ny + ) (I, + €) — cg,(I, + ¢) (12.3.4)

which is the same (since dI,/dt = 0) as

de
dt

I

co(N, + 1) (I, + ¢) — cg, (I, + €)
= CG(NJ,, + Nze + niu + ne) - Cg,(?v + ¢€) (12.3.5)
Now ?V and NZ are such as to make the right sides of (12.2.5) vanish. In particular,
caN>1, — cgd, = 0 (12.3.6)
Using this relation in (12.3.5), we obtain the much simpler equation

de

o = con I, + cone (12.3.7)

R
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This is still nonlinear (becausc of the term 7n¢), but now the nonlinearity is very
small because it involves the product of the small quantities » and e. Near enough
to steady state [recall (12.3.3)], such second-order-small terms can be dropped
altogether without significant error. Thus we obtain the following linear cquation
for the time dependence of the departure of the cavity intensity from its steady-
state value:

d _
Zfi = (col,)n (12.3.8)

where the factor in parentheses is constant in time.

The same procedure can be applied to (12.2.5b). Again the product ne is very
small and can be dropped, and again the definitions of /, and N, can be used to
cancel some terms. The result is

dp & oK,
o Y

= ~——¢€ — 12.3.9
@ w g ( )

Equations (12.3.8) and (12.3.9) are still coupled to each other, but the_y are
now linear and easily solved. We use (12.3.8) to replace  in (12.3.9) by (col,) -
de /dr to get

ij + v% + whe =0 (12.3.10)
where we define
vy = 0Ky/3 (12.3.11)
and
wp = %;g‘fh (12.3.12)

The solution to (12.3.10) is easily found to be
e(t) = Ae "/ cos (wt + @) (12.3.13)

where 4 and ¢ are the initial amplitude and phase of e(r), and the frequency of
oscillation is given by

3
2

©= |}~ 3; (12.3.14)

For definiteness we assume w, > v/2, making w real. Thus, near to the steady
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state, the cavity intensity oscillates about the steady-state value 1,, and gradually
approaches I, at the (exponential) rate -y /2:

=1+ Ae " cos (w1 + ¢) (12.3.15)

This is called a relaxation oscillation. Similar behavior is observed in a wide va-
riety of nonlinear systems.

Although the relaxation-oscillation solution (12.3.13) is valid only if |e] <<
1, [recall (12.3.3)], the nature of the solution is of general importance. The critical
feature of the solution is that + is positive. This guarantees that the steady-state
solution 1, is a stable solution. That is, if some outside agent slightly disturbs the
laser while it is running in steady state, the effect of the disturbance decays to zero,
thus returning the laser to steady state again. If y were negative, a small disturb-
ance would grow, and the steady state would therefore be unstable, and thus of
very little practical significance.

We may write the period 7, and lifetime 7, of the relaxation oscillations as
(Problem 12.1)

27 27

== (12.3.16)
Wo \/(C/Tzl) (go — &)
and
1
7= — = & ) (12.3.17)
Y Ko

where g, is the small-signal gain and 7,, = I';,' is the lifetime of the upper laser
level. From (12.3.17) or (12.3.11) we see that the duration of the relaxation os-
cillations decreases with increasing pumping rate K, of the gain medium. Likewise
the period 7, of the relaxation oscillations should decrease with increased g,. These
predicted trends are consistent with many experimental observations.

It is possible to observe relaxation oscillations in the output intensity of a laser
after it is turned on and approaches a steady-state operation. Perturbations in the
pumping power can also cause relaxation oscillations to appear spontaneously. In
some cases, especially in solid-state lasers, the relaxation time 7, may be relatively
large, making relaxation oscillations readily apparent on an oscilloscope trace of
the laser output intensity.

As an example, consider a ruby laser with mirror reflectivities r; = 1.0, r, =
0.94, and a ruby rod of length [ = 5.0 cm. For such a laser g, = (1/21) (1 —
ry) = 0.006 cm ', so that cg, = 1.8 x 10%sec'. For ruby the upper level lifetime
Ty = 2 X 1077 sec. Assuming a pumping level such that go/g, = 2.0, we com-
pute from (12.3.16) and (12.3.17) the period and lifetime of relaxation oscilla-
tions:

T, =~ 21 psec (12.3.18)
7, = 2 msec (12.3.19)
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Relaxation-oscillation periods are often in the microsecond range, as in this ex-
ample. The damping time 7, is particularly large in ruby because of its unusually
long upper-level lifetime 7,;. Relaxation oscillations are therefore particularly pro-
nounced in ruby. The output of a continuously pumped ruby laser typically consists
of a series of irregular spikes, and this spiking behavior is vsually attributed to
relaxation oscillations being continuously excited by various mechanical and ther-
mal perturbations.

12.4 O SWITCHING

Q switching is a way of obtaining short, powerful pulses of laser radiation. Q refers
to the quality factor of the laser resonator, as discussed in Section 11.9; recall that
a high-Q cavity is one with low loss, whereas a “‘lossy’’ cavity will have a low
Q. The term Q switching therefore refers to an abrupt change in the cavity loss.
Specifically, it is a sudden switching of the cavity Q from a low value to a high
value, i.e., a sudden lowering of the cavity loss. In this section we will describe
how Q switching works, and in the following section how it is achieved in actual
lasers.

Suppose we pump a laser medium inside a very lossy cavity. Because the loss
is so large, laser action is precluded even if the upper level population N, is pumped
to a very high value. No field builds up by stimulated emission in the gain cell.
Obviously this means that the gain cannot be saturated, and if pumping is very
strong it can grow to a large, small-signal value. Suddenly we lower the loss to a
value permitting laser oscillation. We now have a small-signal gain much larger
than the threshold gain for oscillation.

What happens in this situation, of course, is that there is a rapid growth of
intensity inside the cavity. The intensity builds up quickly to a large value, re-
sulting in a large stimulated emission rate and therefore a rapid extraction of energy
from the gain cell. The result of the Q switching is therefore a short, intense pulse
of laser radiation, sometimes called a giant pulse. Pulses as short as 107 7-10"%
sec are routinely obtained by Q switching.

This qualitative explanation of @ switching may be substantiated by solving the
rate equations (12.2.5). For this purpose it is convenient to define the dimension-
less quantities

I

et 12.4.1

x chy N ( )
N,

= s 12.4.2

YEN ( )

where N, is the threshold population inversion density. The threshold gain is g, =
o(v) N,. Clearly y is the ratio of the population inversion to the threshold inver-
sion, or, equivalently, the ratio of gain g to threshold gain g,; and x is easily shown
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to be the ratio of the cavity photon density to the threshold population inversion
density (Problem 12.2).

In terms of x, v, and the dimensionless time variable

T = gt (12.4.3)

the equation (12.2.5a) for the cavity intensity takes the form (Problem 12.2)

dx

&;:(y“ 1)x

(12.4.4a)
We will assume that the duration of the “*giant pulse’” is short enough that pump-
ing and spontaneous decay of N, during this interval is negligible, and only stim-
ulated decay due to the intense pulse occurs. This assumption allows us to ignore
the second and third terms on the right side of the rate equation (12.2.5b), and to
write the simpler equation (Problem 12.2)

dy
— -—xy

o (12.4.4b)
The validity of this assumption can always be checked after a solution of equations
(12.4.4) has been obtained.

The result of a numerical integration of equations (12.4.4) is shown in Figure
12.1. The pumping level prior to Q switching is assumed to be such that y(0) =
2. We observe that the normalized intensity x grows until the population inversion
drops below threshold, at which point the intensity begins to decrease.

As a specific cxample consider the case of a 6943-A ruby laser, in which o

=~ 2.7 x 107% cm?. Suppose one of the mirrors is highly reflecting (r; = 1.0),
the other has a reflectivity r = 0.90, and the ruby rod has a length / = 5 cm. Then

g, = 1 (1 —r)=00lcm™' (12.4.5)
- 21
and cg, = 3 X 10 sec”'. From (12.4.3), therefore,
7=73x 10°r (¢ measured in seconds) (12.4.6)

The Q-switched pulse of Figure 12.1 has a width of about 7 = 4, corresponding
to an actual pulse duration of
[, = (3 x 10%) ' (4) = 13 nsec (12.4.7)

The variable x in Figure 12.1 has a peak value of about 0.3, corresponding to a
peak intensity of [Eq. (12.4.1)]
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T ! ‘

g

Figure 12.1 Solution of Egs. (12.4.4) for y(0) = 2 and x(0) = O.

() 8) oo

10° W /em?

i

Lew = (chv) N, (0.3)
(12.4.8)

u

as the reader may easily verify. This is a very large amount of powerw.much larger
than would be obtainable if the same laser were operated as a (?:ontmuous»wave
device (Problem 12.3). For a beam cross-sectional area of 0.1 cm” the total energy

in the Q-switched pulse is

encrgy = (Ipeak) (tp) (01 sz)
-1 (12.4.9)

¢ Equations (12.4.4) imply that, if x(0) = 0, then x and y rem'akin ﬁxeddra; their1 ;git(;iit

values. Physically, this is incorrect, and occurs only because in }:vm;;\g (1?. Vl;i lef o
: F ; issi mission has the effect of givi S

he effect of spontaneous emission. Spontaneous ¢ sion h ; ]

tbuet nonzero iﬁitial value, allowing it to grow from this initial value. In other words, spon

X > S ‘ initi th of
taneous emission provides the first few “‘seed’’ photons needed to initiate the grow

laser intensity by stimulated emission. s i
In obtaining the numerical results shown in Figure 12.1 a fourth-order Runge Kutta

~4

: - ) Wras

integration algorithm was used, with a step size Ar = 0.01. /;m m’ltlal va(liu;:ezli L(ilue e

) i sults for the pulse shape, duration, an )
assumed for x(0). The numerical resu sha : B s largs
i iti ) initi sumned for x. This is because x grows 1o values

insensitive to the (small) initial value assume: , ‘ e
compared with its initial value. Then the number of cavity photc?ns. becomes so large th

spontaneous emission is negligible compared with stlmulatei eguss;zr; e uten

i i sity reaches its peak, however, does

The value of 7 at which the pulse intensi ' ! "

the choice of x(0). If this aspect of the problem is of concern, therefore, one should includ
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properly the effect of spontaneous emission in the rate equations (12.4.4) as well as various
details of the Q switching.

The reader may wish to experiment with Eqgs. (12.4.4), or various other differential
equations that appear in this book and in the laser research literature. We include in Ap-

pendix 12.A both Basic and FORTRAN listings of the Runge-Kutta algorithm used to obtain
the results in Figure 12.1. o

12.5 METHODS OF Q SWITCHING

There are various ways to Q-switch a laser. The most popular ones switch the
cavity Q factor within a time interval that is short compared with the photon life-
time (cg,) ', allowing the gain to build up to a large value before the onset of
laser oscillation. We will discuss three common methods of Q switching.

Rotating Mirrors

One way to Q-switch is to have one of the cavity mirrors rotating about an axis
perpendicular to the cavity axis (Figure 12.2). The loss is then very large except
during the brief period when the mirrors are nearly parallel. A typical angular
velocity of the rotating mirror is about 10,000 revolutions per minute (rpm).

A similar mechanical method of Q switching involves a rotating chopper wheel.
In this method, however, the Q switching is effected relatively slowly, even for a
wheel velocity of 10,000 rpm. This is because lasing can begin before the shutter
fully exposes the gain cell to the cavity mirrors.

Electro-optical Switches

Electro-optical shutters can be used to control the cavity Q by means of an applied
voltage. To understand the operation of these switches, we must first describe the
electro-optical effect. In Section 2.9 we identified birefringence as a difference in
refractive indices for light of different linear polarizations. The electro-optical ef-
fect refers to birefringence that occurs in certain media when a voltage is applied.
One example is the Kerr effect, in which the degree of birefringence is proportional
to the square of the applied voltage. Another is the Pockels effect, in which the
birefringence is linearly proportional to the voltage. Kerr cells typically require
voltages in the 10-20 kilovolt range and Pockels cells somewhat less.

] o
g — Vi

Figure 12.2 A laser cavity with a rotating mirror for Q switching,
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Figure 12.3 Q switching with a Kerr cell. With the Kerr cell on the cavity loss is large,
but is suddenly lowered when the Kerr cell is switched off.

© switching can be effected by using a polarizer and an electro-optical cell, as
illustrated in Figure 12.3. The voltage and orientation of the Kerr cell are such
that the (linearly polarized) light passing through the polarizer is converted to cir-
cularly polarized light. After reflection off the cavity mirror this circularly polar-
ized light is converted by the Kerr cell to light linearly polarized orthogonally to
the polarizer axis. The presence of the Kerr cell thus prevents feedback, and the
cavity is in effect a very lossy one. If the voltage across the Kerr cell is switched
off, however, the cell is no longer birefringent. Then the cavity ¢ has suddenly
been increased, and a giant pulse develops.

Saturable Absorbers

Another way of Q switching is to place in the laser cavity a *‘shutter’” consisting
of a cell of absorbing material whose absorption coeflicient can be saturated (or
“‘bleached’’) by the laser radiation. Saturation can occur in both absorbing and
amplifying media. The absorption (or gain) coefficient decreases with increasing
intensity of resonant radiation, becoming nearly zero when the intensity is much
larger than a characteristic saturation intensity 7°* of the medium (recall
Fig. 10.8).

When the gain medium is first pumped, the gain threshold is very high. The
cavity loss is too large, because of the absorbing cell, to allow laser oscillation.
The medium can therefore be pumped to a high gain without generating significant
light intensity. Once the gain is high enough to overcome the loss, however, the
cavity intensity grows rapidly. This in turn rapidly saturates the absorption cell,
and the effective cavity loss drops abruptly. The whole process leads to a giant-
pulse output in a manner similar to that with a mechanical Q switch (Problem
12.4).

The use of a saturable absorber for Q switching is often called passive Q switch-
ing, in contrast to the active Q switching achieved mechanically or electro-opti-
cally as described above.

The passive Q switch is obviously simpler in terms of the necessary auxiliary
equipment than the two active Q switches we have described. It enjoys an addi-
tional advantage: a passive Q switch will often give an output pulse concentrated
mostly in a single mode. The reason for this is that it takes a finite time for the
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sturable absorber to become highly saturated and thus to raise the cavity Q. In

the meantime the cavity intensity originating from spontaneous-emission noise
builds up on different modes, and it grows to a greater degree on those modes with
the towest loss per pass. Since a photon can typically make several thousand round
irips between the cavity mirrors before the absorber saturates, even small differ-
nces in the losses of different modes become significant. The result is that only
the lowest-loss mode (or modes) appear in the O-switched pulse.

In the active Q switches, the switch to high @ is much more rapid, typically
occurring during only several tens of photon round trips in the cavity. Small dif-
ferences in mode losses per pass may then not be sufficient to discriminate among
different modes. The output frequency spectrum of a Q-switched ruby laser has
long been known to be narrower if a passive J switch is used instead of a rotating
mirror or a Kerr (or Pockels) cell.

12.6 MULTIMODE LASER OSCILLATION

in Section 11.12 we noted that a laser with a homogeneously broadened gain me-
dium tends to oscillate on a single longitudinal mode if the effect of spatial hole
burning is small. This expectation is borne out in collision-broadened gas lasers,
where atomic motion tends to smear out the effect of spatial hole burning. A similar
effect can occur in solid-state lasers in which there is a diffusion of excitation
among the atoms. In general, however, oscillation will occur on many longitudinal
modes, especially when the gain medium is pumped far above threshold, allowing
many modes under the gain curve to meet the threshold condition.

Ruby lasers, for example, are predominantly homogeneously broadened. Due
to spatial hole burning, however, they generally oscillate multimode, especially
when strongly pumped. As the pumping rate is increased, furthermore, the power
associated with any particular mode tends to rise at a slower rate than the total
output power on all lasing modes.

Single-longitudinal-mode oscillation is generally precluded by spectral hole
burning in inhomogeneously broadened lasers, unless the laser cavity is very short
(Figure 11.12) or the pumping rate permits only one mode to reach threshold (Fig-
ure 12.4). He-Ne lasers, for example, usually oscillate on several longitudinal

gain
lasing mode

08§ [ = = = = = = g

—~  —c/2L frequency

Figure 12.4 A case in which several modes lie under the gain curve, but only one can lase.
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150 MHz

Ak

{a) (b}

Figure 12.5 Typical output spectra of a 1-m-long He-Ne laser for low (a) and high (b)
pumping (discharge current) levels.

modes in the absence of any mode selection mechanism (e.g., an etalon). Figure
12.5 shows the output spectrum of a typical, low-pressure, 6328-A He-Ne laser
having a mirror separation L = 1 m. Figure 12.5a is the result obtained at a rel-
atively low pumping level. Only one longitudinal mode is above threshold. As the
pumping level is raised by increasing the discharge current, however, several modes
under the 1700-MHz Doppler profile can oscillate (Figure 12.5b), and their fre-
quency spacing is near ¢/2L = 150 MHz, as expected.

A rigorous theory of laser oscillation must therefore describe the case in which
several or many modes oscillate simultaneously. In this case we cannot formulate
the theory in terms of a single cavity photon number or intensity. Instead we must
specify the photon number or intensity for each mode. The analysis is especially
complicated by spectral hole burning in the case of inhomogeneous broadening.

The rate equations (10.5.14), or their simplified version (12.2.5b), describe the
rate of change of the total number of atoms per unit volume in a particular atomic
level. They do not take account of the fact that different atoms may have different
line-center frequencies and therefore different stimulated-emission cross sections
o () for radiation of frequency ». That is, there is no account of inhomogeneous
line broadening. If there is inhomogeneous broadening, we must write separate
rate equations for different *‘spectral packets’” of atoms. Different spectral packets
will then saturate to different degrees (spectral hole burning), and the complica-
tions can be enormous in the multimode case. A proper description of this case
would, for our purposes, be inordinately lengthy.

In spite of these complexities, there are situations where the gain of a multi-
mode, inhomogeneously broadened laser saturates homogeneously in the sense
that every spectral packet saturates in the same manner. In this case a saturation
formula like (10.11.4) is applicable, and the total output power on all modes is
well described by the Rigrod-type analysis discussed in the preceding chapter. One
situation in which this is realized approximately is when the longitudinal mode
spacing ¢ /2L is small compared with the homogeneous linewidth 67, i.e., when
there are many longitudinal modes lying within the frequency interval é»,. Evi-
dence for the validity of this approximation may be found in the results of exper-
iments with a low-pressure 3.51-um He-Xe laser, which is highly inhomoge-
neously (Doppler) broadened.' The cavity mirrors were separated by over 10 m in

1. L. W. Casperson, IEEE Journal of Quantum Electronics QE-9, 250 (1973).
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order to permit the oscillation of a large number of longitudinal modes. The total
output power was described quite well by the Rigrod theory for a homogeneously
broadened laser. (Section 11.5)

There are other effects tending to ‘‘homogenize’” the gain saturation. In a gas
laser, for instance, collisions will change the z component of an atom’s velocity
;md tend to “*fill in’” a spectral hole. In other words, collisions act to preserve the
Maxwell-Boltzmann velocity distribution, and therefore the Doppler gain profile.
Collisions thus act in opposition to the spectral hole-burning effect of the field. At
high intensity levels the effective homogeneous linewidth is also increased due to
power broadening (Section 10.11).

12.7 PHASE-LOCKED OSCILLATORS

In a Q-switched laser the light pulse must make several passes through the gain
medium after the cavity Q is switched. Feedback is necessary in order to build up
a large field amplitude by stimulated emission. For some applications it is desirable
to have pulses of light even shorter than can be achieved by Q switching. Such
powerful, ultrashort pulses of light can be obtained by a technique known as mode
locking.

Whereas Q switching may involve either a single mode or many modes, mode
%()cking is a fundamentally multimode phenomenon. Specifically, mode locking
involves the “*locking”” together of the phases of many cavity longitudinal modes.
The purpose of this section is to consider a simple analog of a mode-locked laser.
We will consider the problem of adding the displacements of N harmonic oscilla-
tors with equally spaced frequencies. That is, we consider the sum of

x, (1) = xo sin (w,f + ¢g) (12.7.1)

where

N-1 N-1 N -1 N -1
7= s+ T2 T (1272)

In othel.“ words, th‘e amplitudes x, and phases ¢, of the oscillators are identical,
at.ld their frequencies w, are equally spaced by A and centered at w,, as shown in
Figure 12.6. The sum of the displacements (12.7.1) is

(N—13/2
chgﬁm:“zz%m@w+m (12.7.3)

(N—1y/
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Figure 12.6 A collection of N frequencies running from wy — TN =D Atow + (N
— 1) A as in Eq. (12.7.2).

Since sin x is the imaginary part of ¢, we may write this as

X(l‘) = X, Im (Z PUCHERN umr))
n

= x5 Im (e“‘“‘“”"w 2 e’“‘“) (12.7.4)
The general identity
(N%)ﬂ e = M (12.7_5)
—(N-1)/2 sin { y/2)

proved below allows us to write (12.7.4) as

X(1)

Il

xo Im (e”“’"’ +o0)

sin (NAt/2)>
sin (A1/2)

I

y sin (NA1/2)
xo sin (wot + dy) <m>

= Ay (1) xo sin (wot + ) (12.7.6)

The function Ay (¢) is plotted in Figure 12.7 for N = 3 and N = 7. In general
Ay (1) has equal maxima

Ay(r), . =N (12.7.7)

at values of r given by

t, = m <?§> =ml, m=0,+1, +2,... (12.7.8)

As N increases, the maxima of Ay (¢) become larger. They also become more

12.7 PHASE-LOCKED OSCILLATORS 379

A .z
70F *‘r"r” N=7
i
1
1 o3sp g
= , N=3
z :
Y oA N TR
Vo VYV, UV M
-35¢ at

Figure 12.7 The function Ay(t) = (sin § N Ar)/(sin 4 At) vs. At/

sharply peaked. A measure of their width is the time interval 7y indicated in Figure
12.7for N = 7:

2w T
™= AT N (12.7.9)

We have thus shown that the addition of N oscillators of equal amplitudes and
phases, and equally spaced frequencies (12.7.2), gives maximum total oscillation
amplitudes equal to N times the amplitude of a single oscillator. These maximum
amplitudes occur at intervals of time T [Eq. (12.7.8)]. For large N we have, loosely
speaking, a series of large-amplitude “‘spikes.”” The smaller the frequency spacing
A between the individual oscillators, the larger the time interval 7 = 27 /A be-
tween spikes, and conversely. The temporal duration of each spike is 7, = T/N,
so the spikes get sharper as N is increased.

We have assumed for simplicity that each oscillator has the same phase b [Eq.
(12.7.D)]. A more general kind of phase locking occurs when the phase differences
of the oscillators are constant but not necessarily zero:

b, = ¢y + na (12.7.10a)
or

pir — Gy = (12.7.10b)
In this case the sum of the oscillator displacements (12.7.3) is replaced by

X(t) = Z350 sin xp(w,t + ¢,)

(N—1)/2
= x4 Im el(w()1+<f);)) Z eln(At+a) (]2711)
~(1/2}N~1)
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and this may be evaluated to give the total displacement

(12.7.12)

sin N(At1 + «)/2
X(1) = xo sin (wol + o) (:‘i‘n ((m‘+ a))//Z >

having basically the same properties as (12.7.6) obtained with o = 0. (See also
Problem 12.5.)

» We prove (12.7.5) as follows. Let the sam be denoted Sy. For convenience we will first

evaluate Sy, 1.

+N/2
a

Sy = 4 & (12.7.13)

The first step is to shift the summation label by introducing

m=n+ N/2 (12.7.14)

so that

N

i(m—N/2)y

Syer= X Ny
m=0

N
— Ny /3 iy
= p iNy /2 Z P

m=0
N
= e M2 20 (M) (12.7.15)
m=0
The second step is to make use of the identity
N R A
% e b (12.7.16)
m=0 1 —x
Then we can write
AV DY
~iNy/2
SN+1:€‘}/ | — &

(N+DY/2 i N+ Dy /2 LN+ Dy/2
e«iNy/Z

iy —gv /D iv/3
72 e /T /2

_sin (N + 1)y/2
- siny/2

(12.7.17)
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Thus we have proved

_sin Ny/2

12.7.18
sin y/2 ( )

N

as claimed in (12.7.5). o

12.8 MODE LOCKING

What we have in the example of the preceding section is a simple model of a mode-
locked laser. The individual oscillators in the model play the role of individual
longitudinal-mode fields, while their frequency spacing A represents the mode (an-
gular) frequency separation 27 (¢/2L) = mc /L. The assumption of equal oscil-
lator phase differences « (“‘phase locking™”) in the model corresponds to the lock-
ing together of the phases of the different cavity modes.

Our oscillator model suggests that, if we can somehow manage to lock together
the phases of N longitudinal modes of a laser, then the light coming out of the
laser will consist of a train of pulses separated in time by T = 27 /A = 2L/c.
The temporal duration of each pulse in the train will be 7y = T/N = 2L /¢N. The
larger the number N of phase-locked modes, the greater the amplitude, and the
shorter the duration, of each individual pulse in the train. As we will see, this is
indeed the essence of the mode-locking technique for obtaining ultrashort, pow-
erful laser pulses.

The number of longitudinal modes that can simultaneously lase is determined
by the gain linewidth (FWHM) Ay, and the frequency separation ¢ /2L between
modes (cf. Figure 12.8). Under sufficiently strong pumping of the gain medium
we expect that approximately

Ay 2L
M= —% == Ay, 12.8.1
c/2L ¢ s ( )

longitudinal modes can oscillate simultaneously. The shortest pulse length we ex-
pect to achieve by mode locking is therefore

2L 1
n = = = 12.8.2
Tmin = v cM Ay, ( )
1 nc e e 1 e
*§(N~1)E T "““E +§(N-1)"E
i i i 1 ‘/\ i
Mrc
L

Figure 12.8 The distribution of N cavity mode frequencies as given by Eq. (12.8.7). The
situation is exactly the same as in Figure 12.7 for the case of N phase-locked oscillators.
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That is, the shortest pulse duration we can achieve by mode locking is (approxi-
mately) the reciprocal of the gain linewidth.

As an example, consider the 6328- A He-Ne laser with a gain linewidth Ay, =
v, = 1700 MHz. For such a laser the shortest pulses obtainable by mode locking
are of duration

1 1

— = | ns 12.8.3
bvpy 1700 x 10° sec™ e ( )

In other words, for this laser, mode locking is not much of an improvement over
O switching for the production of short pulses. This is often true of gas lasers.
Their gain linewidths are so narrow that ultrashort (say, picosecond, 10712 sec
duration ) pulses cannot be obtained by mode locking.

On the other hand, consider a 6934- A ruby laser with Ay, = 10" sec™'. For
this laser mode-locked pulses of 107!" sec may be obtained.

Liquid dye lasers typically have broad gain profiles, with Ay, = 10" sec™' or
more. With such lasers mode-locked pulses in the picosecond range are routinely
obtained.

A basic understanding of mode-locked laser oscillation may be reached by ex-
tending only slightly our analysis of phase-locked oscillators. We associate with
the mth longitudinal mode an electric field

E,(z,t) = &, &,(2) sin(w,t + ¢,)

= §, &, sink,,z sin(w, ! + ¢,,) (12.8.4)
where
s ,
k,,,r:mz, m=1,2,3,... (12.8.5a)
and
rc
wm=kmc==m~l:~, m=1,2,3,... (12.8.5b)

For simplicity let us assume that the mode fields all have the same magnitude (&)
and polarization, so that we can do our calculations below with scalar quantities.
Furthermore let us consider, without much loss of generality, the simplest example
of phase locking, in which all ¢,, = 0. Then the total electric field in the cavity is
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E(z,t) = 2 E,(z, 1)
m

= &y 2 sin k,,z sin w,, (12.8.6)

where the summation is over all oscillating modes.

For a cavity 1 m long, mc/L = 9 x 10® Hz. For near-optical frequencies, of
course, the lasing frequencies w,, will be much larger; at a wavelength of 6000 A,
w=2mc/h = 3 X 10" Hz. The integer m in (12.8.5) will therefore typically be
in the millions. So let us write (12.8.5) as

k,=(M+n)x/L (12.8.7a)
w, = (M +n)wc/L (12.8.7b)

where M is a very large positive integer (M = 10°) and » runs from —3 (N — 1)
to +5 (N — 1), corresponding to a total of N ( << M) modes centered at the
frequency Mwc /L (Figure 12.8). Then (12.8.6) becomes
(N—-1)/2
e M +
& Y sin { nywz sin (M + n)ymer
~(N=1)/2 L L

I

E(z, 1)

[(S31

& Z <COS (M + n)'ﬁ'(Z - Ct) — cos (M + n)7r(z 4 Ct)>

n L L
(12.8.8)
for the total electric field in the laser cavity.
Now we proceed as in the preceding section. The sum
(N-1)/2
M —
COS( +n) w(z — o)
—(N=1)/2 L
(N—1)/2
= Re b M myw(z—c)/L
n=—(N—1)/2
= Re <eiMw(z~cl)/L sin WN(Z - Ct)/zL
sin w(z — ¢t)/2L
Mz (z — ct)\ sin aN(z — ct)/2L
= (ces )> - ( )/ (12.8.9)
L sin w(z — ct)/2L

where we have again used the identity (12.7.5). Similarly

R R



384 MULTIMODE AND TRANSIENT OSCILLATION

(M + n) w(z + ct) Mx(z + ct)\ sin wN(z + ct) /2L
2. cos = | cos :
n L L sin w(z + ct)/2L
(12.8.10)
From (12.8.8), then,
&g sin Nw(z — ¢t)/2L
E(z, t) = — ko(z — ct
(z.1) 2 (COS oz = e1) sin w(z — ct)/2L
sin Nw(z + ct)/2L
- k + ct 12.8.11
cos kol + c) =G e /2L ) (12.8.11)
where k, = TM /L.
The functions
in N + ct)/2L
A (2 1) = = m(zt o)/ (12.8.12)

sin w(z + ct)/2L

appearing in (12.8.11) have basically the same form—and effect—as the function
Ay (1) appearing in Eq. (12.7.6) for the phase-locked oscillator model. In partic-
ular, A$*’(z, t) has maxima occurring at
4+ c=m(2L), m=0, %1, £2,... (12.8.13)
If we put our attention on a fixed value of z inside the cavity, for instance, there
are pulses of peak amplitude N&,/2 appearing at time intervals of 2L /¢, each
pulse having a duration 7/N (Figure 12.9). If we fix our attention on the spatial
distribution of E(z, t) at a fixed time 7, we find pulses of amplitude N&,/2 with
spatial separation 2L, ecach pulse having a spatial extent of 2L /N (Figure 12.10).
In other words, the field (12.8.11) represents two trains of pulses, one moving
in the positive z direction and the other in the negative z direction. In the usual
situation in which output is obtained through one of the cavity mirrors, the laser
radiation appears as a single train of pulses of temporal separation and duration
2L/c and 2L/cN, respectively. All this confirms our conclusions deduced from
the phase-locked oscillator model.

2

e poe i

Meed 1L

Figure 12.9 A mode-locked pulse train as a function of time, observed at a fixed position z.
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N
; z

Figure 12.10 A mode-locked pulse train as a function of coordinate z, observed at a fixed
instant of time.

PO~

The fact that the pulses of a mode-locked train are separated in time by the
round-trip cavity transit time 2L /¢ suggests a *‘bouncing-ball’* picture of a mode-
Jocked laser: we can regard the mode locking as generating a pulse of duration
2L/cN, and this pulse keeps bouncing back and forth between the cavity mirrors.
Focusing our attention on a particular plane of constant z in the resonator, we
observe a train of identical pulses moving in either direction.

In most lasers the phases ¢, of the different modes will undergo random and
uncorrelated variations in time. In this case the total intensity is the sum of the
individual mode intensities. In mode-locked lasers, however, the mode phases are
correlated and the total intensity is not simply the sum of the individual mode
intensities. In fact the individual pulses in the mode-locked train have an intensity
N times larger than the sum of the individual mode intensities. The average power,
however, is essentially unaltered by mode-locking the laser (Problem 12.6).

e Before discussing how mode locking can be accomplished, it is worth noting that *‘phase
locking”” or *“‘synchronization’’ phenomena occur in many nonlinear oscillatory systems
besides lasers, and indeed these phenomena have been known for a very long time. C.
Huygens (1629-1695), for instance, observed that two pendulum clocks hung a few feet
apart on a thin wall tend to have their periods synchronized as a result of their small coupling
via the vibrations of the wall. Near the end of the nineteenth century Lord Rayleigh found
that two organ pipes of slightly different resonance frequencies will vibrate at the same
frequency when they are sufficiently close together.

The contractive pulsations of the heart’s muscle cells become phase-locked during the
development of the fetus. Fibrillation of the heart occurs when they get out of phase for
some reason, and results in death unless the heart can be shocked back into the normal
condition of cell synchronization. There are other biological examples of phase locking,
but detailed theoretical analyses are obviously extremely difficult or impossible for such
complex systems. Modern applications of synchronization principles are made in high-pre-
cision motors and control systems. ®

12.9 AM MODE LOCKING
The process by which phase or mode locking is forced upon a laser is fundamen-

tally a nonlinear one, and a rigorous analysis of it is complicated. We will therefore
rely largely on semiquantitative explanations.
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Consider again the scalar electric field

E,(z,t) = &, sin k,z sin (w,t + ¢,) (12.9.1)

associated with a longitudinal mode. Suppose that the amplitude &, is not constant
but rather is modulated periodically in time according to the formula

&, = &1 + € cos Qr) (12.9.2)

where Q is the modulation frequency and &, and € are constants. Thus we have an
amplitude-modulated field

E,(z. 1) = & (1 + € cos Qr) sin (w,t + ¢,,) sink,z  (12.9.3)
Since
cos Qr sin (w,t + ¢,) = Lsin (0,0 + ¢, + Q)
+ Lsin (@, + ¢, — Q1) (12.9.4)
we can write the field (12.9.3) as a sum of harmonically varying parts:
En(z, 1) = 8ofsin (w,t + ¢,) + % sin [(w, + D)t + 6]
+ % sin [(@, — Q)1 + 6,,]} sin k, 2 (12.9.5)

The frequency spectrum of the field (12.9.5) is shown in Figure 12.11. The
amplitude modulation of the field (12.9.1) of frequency w,, has generated side-
bands of frequency w,, + Q. These sidebands are displaced from the carrier fre-
quency w,, by precisely the modulation frequency {1 Sideband generation is a well-
known consequence of amplitude modulation.

In a laser the mode amplitudes &, are determined by the condition that the gain
equals the loss. If the loss (or gain) is periodically modulated at a frequency {2,
we expect the fields E,, (z, 1) associated with the various modes to be amplitude-
modulated (AM) with this frequency. In other words, we expect sidebands to be
generated about each mode frequency ,,, as in (12.9.5). In particular, if the mod-
ulation frequency € is equal to the mode frequency spacing
(12.9.6)

A= Wppy =™ Wy T WC/L
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Figure 12.11 Frequency spectrum of the ampli-
tude modulated ficld (12.9.5). The sidebands at
w, + 2 have amplitudes ¢ /2 times as large as the
carrier amplitude at w,. In this case ¢/2 < 1.

|

wy £ wn wn+8l

the sidebands associated with each mode match exactly the frequencies of the two
adjacent modes (Figure 12.12). In this case each mode becomes strongly coupled
to its nearest-neighbor modes, and it turns out that there is a tendency for the
modes to lock together in phase. Loss or gain modulation at the mode separation
frequency A is therefore one way of mode locking. Borrowing terminology from
radio engineering, we call this AM mode locking.

The dimensionless factor € appearing in (12.9.2) is called the modulation index.
It is usually small, but it must be large enough to couple the different modes suf-
ficiently strongly. This is analogous to the synchronization phenomenon observed
in the 17th century by Huygens with pendulum clocks. Their frequencies were
locked together when the clocks were mounted just a meter or so apart, but larger
separations weakened their coupling and destroyed the locking effect. If € is too
large, on the other hand, the locking effect is also weakened. This is analogous to
the distortion arising in AM radio electronic systems when the carrier wave is
“overmodulated,’” i.e., when ¢ > 1. (See also Problem 12.7.)

A heuristic way to understand why AM mode locking occurs in lasers is first
to suppose that lasing can occur only in brief intervals when the periodically mod-
ulated loss is at a minimum. These minima occur in time intervals of 7 = 27 /A
= 2L/c if the modulation frequency @ = A. Between these times of minimum
loss the loss is too large for laser oscillation. Thus we can have laser oscillation
only if it is possible to generate a train of short pulses separated in time by T. This
is possible if the modes lock together and act in unison, for then we generate a
mode-locked train of pulses separated by time 7. Thus mode locking has been
described as a kind of “‘survival of the fittest’” phenomenon.

AM sidebands of modem

i
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i
i

i
1
b3
+
1
i

§
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W2 Wi { Wy Wrnet Wi 2

Figure 12.12 Longitudinal modes amplitude-modulated at the frequency A equal to their
spacing. For clarity the AM sidebands are indicated as dashed lines slightly dispaced from
the mode frequencies w,,.
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12.10 FM MODE LOCKING

We will now consider the case where the phase of the field (12.9.1) is periodically
modulated rather than the amplitude:

E,(z, 1) = &, sin k,z sin (w,! + ¢, + 6 cos Q1) (12.10.1)

The dimensionless constant 6 gives the amplitude of the modulation of frequency
Q. As in the case of amplitude modulation, this phase modulation gives rise to
sideband frequencies about the carrier frequency w,,. As we will now see, how-
ever, the phase modulation produces a whole series of sidebands.

The time-dependent part of (12.10.1) may be written as

sin (w,t + ¢, + & cos Q1) = sin (@, + ¢,,) cos (& cos Q1)

+ cos (wy,t + ¢,,) sin (6 cos 7) (12.10.2)

Now we make use of two mathematical identities:’
cos (x cos 8) = Jo(x) + 2 2 (—1) Lx(x) cos (2k0)  (12.10.3a)
k=1

and

where J,(x) is the Bessel function of the first kind of order n. The first few lowest-
order Bessel functions are plotted in Figure 12.13. These plots are all we will need

2. See, for example M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover,
New York, 1971), formulas 9.1.44 and 9.1.45.
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Figure 12.13 The first few lowest-order Bessel functions of the first kind, J,,(8).

12.10 FM MODE LOCKING 389

to know about them. The functions (12.10.3) appear in (12.10.2) with x = & and
§ = Qr. Thus

sin (w,,? + ¢, + 6 cos Q1)

i

sin (w,,t + <¢>m)<J0(6) +2 kil (=1) J,,(8) cos (2km)>

+ 2 cos (wpt + ) kz;ﬂ (=1)* Joe i1 (8) cos [(2k + 1) Q1]
= sin (w1 + ¢,)[/o(8) — 2J5(8) cos 201

+ J,(8) cos 4Qr — 2J4(8) cos 6Qr + -+ -]

+ 2 cos (w,t + ¢,)[J,(8) cos Qr — J5(8) cos 3Q1

+ J5(8) cos 5Qr — .. .] (12.10.4)

Using the identities

i

R

sin x cos y [sin (x + y) + sin (x ~ y)]

i

Y-

COS X COS ¥ [cos (x + y) + cos (x — y)]

therefore, we have

sin (w,f + ¢, + 6 cos Q1)
= Jo(8) sin (w,l + éy,)
+J,(8)fcos [(w, + Q)1 + ¢,,] + cos [(w, = Q)1 + 6,]}
— () {sin [(w, +20) ¢ + ¢,,] + sin [(w, = 20) ¢ + 6,]]
- 13(5){c05 [(wn +3Q) 1 + ¢,] + cos [(w, —3Q) 1+ ¢>m]}
+ 1y (8) {sin [(w, + 40) 1 + 8,] + sin [(w, —4Q) 1 + &,]]
+ J5(8){cos [(w, + 52) 1+ ¢,,] + cos [(, = 52) 1 + 6,,]}

(12.10.5)

after a simple rearrangement of terms in (12.10.4).

Whereas amplitude modulation produces one sideband on either side of the
carrier frequency w,,, phase modulation in general produces a whole series of pairs
of sidebands. If the ‘‘modulation index’’ & is somewhat less than unity, however,
we observe from (12.10.5) and Figure 12.13 that the first pair of sidebands

R =,
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Figure 12.14 Frequency spectrum of the function (12.10.5) for the modulation index (a)
§=1and (b) 6 = 5.

at w,, + Q is strongest. As the strength of the modulation increases, i.e., as &
increases, more sideband pairs become important. Figure 12.14 shows the fre-
quency spectrum of the function (12.10.5) for 6 = 1 and & = 5.

Again borrowing the terminology of radio engineering, we refer to this type of
modulation as frequency modulation (FM). As in the AM case, frequency modu-
lation at the mode separation frequency { = A = w¢ /L causes the sidebands
associated with each mode to be in resonance with the carrier frequencies of other
modes. This results in a strong coupling of these modes and a tendency for them
to lock together and produce a mode-locked train of pulses. This is called FM

mode locking.

e Information cannot be transmitted with a purely monochromatic wave. The basic idea of
radio communication is to modulate a monochromatic (carrier) wave in some way (AM or
FM), transmit it, then demodulate it at a receiver to recover the information contained in
the original modulation. In the AM case the sidebands imposed on the carrier wave are
displaced from the carrier by an amount equal to the modulation frequency, independently
of the modulation index €. In the FM case, on the other hand, the ““width’’ of the modu-
lation about the carrier is directly proportional to the corresponding index &, approximately
independently of the modulation frequency £2. This makes FM transmission less susceptible
to interference from extraneous sources (lightning, electric power generators, etc.) than AM
if its modulation index is large. At the same time, there is a disadvantage to FM in that the
amplifiers in the transmitter and receiver must have large bandwidths in order to pick up a
good portion of the sideband spectrum. A large bandwidth is most easily obtained at higher
carrier frequencies; this is analogous to the fact that the bandwidth of a laser cavity increases
with frequency if the cavity Q is held constant [Eq. (11 .9.21)], and explains why FM radio
stations broadcast at higher frequencies than AM stations (Problem 2.9). *

12.11 METHODS OF MODE LOCKING

Lasers can be mode-locked in a variety of ways. We will focus our attention on
three common and illustrative techniques.
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Acoustic Loss Modulation

This method is based on the diffraction of light by sound waves, i.e., on Brillouin
scatter?ng. A sound wave is basically a wave of density variation—and therefore
refractive index variation (recall Section 2.4)—in a material medium. As discussed
in Appendix 12.B, a sound wave can therefore act as a ‘‘diffraction grating’’ for
light. A sound wave of wavelength A diffracts light of wavelength N\ with diffrac-
tion angle 6 (Figure 12.19) satisfying (Eq. 12.B.3)

sin § = (12.11.1)

2nA,
where n is the refractive index of the medium.

{\ §tandmg sound wave in a medium may be represented by a refractive index
variation of the form

An(x, t) = a sin(w,t + 0) sin k,x (12.11.2)

The Periodic spatial modulation sin k.x of the refractive index gives rise to dif-
fraptlon at the angle 6 given by (12.11.1) with A, = 27 /k,. The temporal oscil-
lation at frequency w, means that the diffraction is most effective at times ¢ such
that sin (w,7 + 0) = +1, for at these times the **diffraction grating™* represented
by sin k,x has its largest amplitude ( +a). Thus the diffracting strength of the
standing acoustic wave varies harmonically in time with frequency 2 w,.

We can now understand how the diffraction of light by sound can be used to
periodically modulate the cavity loss in a laser, and thereby to achieve AM mode
locking. If a block of material having a standing acoustic wave is inside the cavity,
the diffractive loss associated with it will oscillate with frequency 2w,. If 2w, =
A = mc /L, the cavity loss is modulated at the mode frequency sefnarationj as
desired for mode locking. Since audible sound waves have frequencies roughly
from 20 Hz to 2 X 10" Hz, while the mode separations in a laser are typically
much larger, it is clear that ultrasonic acoustic modulation is required for mode
locking. This may be done by driving a block of quartz with a piezoelectric crystal.

Electro-optical Phase Modulation

This method is based on the electro-optical effect. Consider a linearly polarized
monochromatic wave propagating in the z direction in a medium with refractive
index n:

E(z, 1) = %8, cos {(wt — kz) = &8&, cos w(t - Ez) (12.11.3)
c

Suppose we have a Pockels-type electro-optical medium in which the refractive

P T TN
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index for light polarized in the x direction is linearly proportional to an applied
electric field E,:

n=ny, + BE, (12.11.4)

Therefore the electric field (12.11.3) in such an electro-optical medium in which
an external field E, is applied is

n
E(z, t) = %&, cos <wt S Re - @CE Eaz>

¢
A ny ‘
= &, cos w<t~7z>~¢] (12.11.5)
where
¢ =§8 .2z (12.11.6)
¢

After a distance [ of propagation in the medium the field has the phase

&

& (12.11.7)

where V = E_ I is the potential difference due to the field E,. Thus if an clectro-
optical cell is inserted in a laser cavity, the laser can be FM mode-locked by
varying the applied voltage V sinusoidally at the mode separation frequency A.

In general a linearly polarized electric field entering an electro-optical medium
can be decomposed into two orthogonally polarized components, cach of which
has a different refractive index. The two orthogonal polarization directions are
determined by the orientation of the cell and the applied field £,. In deriving
(12.11.7) we have assumed that the incident field is linearly polarized along one
of these directions. In the general case the field will have components in both
directions, and in a Pockels cell the two components will have different values of
8. This results in a phase difference between the two field components. If the cell
produces a total phase change of 90°, for example. the incident linearly polarized
field will be converted to a circularly polarized field., as in the case illustrated in
Figure 12.3 for a Kerr cell. That is, a cell containing an electro-optical material
can act as a quarter-wave plate. The advantage of using electro-optical media rather
than naturally birefringent materials, of course, is the switching and control ca-
pabilities one has through the adjustment of the bias voltage.
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Saturable Absorbers
As in the case of Q switching, a “passive”” AM mode locking may be achieved

throqgh the use of a saturable absorber. Assume for simplicity that the absorption
coeflicient a of the absorption cell saturates according to the formula

Ay

a—“—m (12.1].8)

for a homogeneously broadened line. It is also convenient (but not necessary) to
assume that the saturation intensity /" of the absorption line is very large com-
pared with the laser intensity /. Then (12.1 1.8) is approximated by

a = ay — ayl/I** (12.11.9)

Suppose first that there are two oscillating cavity modes, so that the total cavity
electric field is

E(z, 1) = & sink;zsin(w,1 + ¢,) + &, sink,z sin(wyf + ¢,)  (12.11.10)

and the cavity intensity is

]

1(z, 1) = cegE(z, t)2
= (:(:0{8% sin’k, z sin®(w, t + 1)
+ &3 sin’kz sin®(wyt + ¢y)
+ 28,8, sink,z sink, 2z sin (w1 + ¢,) sin(w,r + ¢,)}  (12.11.11)

Now the last term can be rewritten using the identity

2sin(w1 + ) sin(w,r + ¢,) = cos [(w, — wy) 1 + ¢, — b, |
—cos [(w + wy))t + ¢, + é, |
(12.11.12)
The frequencies @, w,, and w, + w, are very large compared with the mode

scparation frequency w; — w, = A. If we average the intensity (12.11.11) over a
few optical periods, therefore, we obtain

- (76() 2 . .
Iz, 1) = > [67 sin’k,z + &2 sin’kyz

+ 28,8y sink,z sin kyz cos (A1 + ¢, — ¢,)]  (12.11.13)

| |
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The intensity / has a time dependence that is simply a sinusoidal oscillation at
the mode beat frequency A. The absorption coefficient (12.11.9) averaged over a
few optical periods will therefore have this same time dependence. In other words,
if a saturable absorber described by (12.11.8) is placed inside the laser cavity, it
results in a cavity loss modulated at the mode separation frequency, and therefore
acts to mode-lock the laser. The argument may be extended to the case of N cavity
modes, and we conclude that mode-locked operation may be achieved by placing
a cell containing a saturable absorber inside the cavity.

This technique is commonly used in mode-locked solid-state and dye lasers,
which, as discussed in Section 12.8, are especially attractive in this regard.

e Although both Q switching and mode locking may be accomplished by inserting a cell
containing a saturable absorber into the laser cavity, there are somewhat different require-
ments for the absorber in the two cases.

In the case of mode locking the absorber should respond very quickly to any changes in
the cavity intensity. This was implied in our discussion above, where it was assumed that
the saturation behavior of the absorber is fixed according to (12. 11.8); there are no transient
terms showing how a changes from ay(1 + I;/I™) 7" 1o ag(1 + L/I™) “as I changes
from I, to I,. Rather, it was assumed that a reacts instantaneously to variations in /, or at
Jeast with a response time shorter than 2L /c. This requires the absorber to have a short
relaxation time, whereas a longer one would be tolerable for Q switching.

Similarly, it is desirable for Q switching that the saturation intensity of the absorber be
considerably smalier than that of the laser gain medium. This ensures a large, unsaturated
gain after the loss associated with the absorption cell is fully saturated, and allows the giant
pulse to build up. In the case of mode locking, however, a relatively large absorber satu-
ration intengity can still give rise to the required modulation. Our assumption [ << I’ in
(12.11.9) was made for convenience, not necessity.

Thus it is possible to Q-switch a laser with one absorption cell and mode-lock it with
another. Frequently, however, both effects are present with a saturable absorber, and a Q-
switched laser will show signs of mode locking. The output of such a Q-switched, mode-
locked laser is indicated in Figure 12.15.

2L
S

infensity —

time —=

Figure 12.15 Output intensity vs. time of a Q-switched, mode-locked laser. The dashed
curve is the envelope of the mode-locked pulse train. Each contributing mode viewed in-
dividually has the time dependence of the Q-switched envelope, but because the modes are
locked the total output is in the form of a group of pulses separated in time by 2L/c.
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12.12 AMPLIFICATION OF SHORT OPTICAL PULSES

In many applications it is necessary to amplify laser radiation by passing it through
a medium with a population inversion on a resonant transition. The amplifier is
often made of the same material, and pumped in the same way, as the gain cell
of the laser. The most important difference between the laser and the amplifier is
simply that the amplifier does not have a resonator with mirrors for feedback.
Radiation incident on the amplifier undergoes amplification by stimulated emission
and emerges at the other end with greater energy. A series of amplifiers may be
employed in tandem, and mirrors may be used to allow the beam to make several
passes through a single amplifier. In this section we will consider a pulse of ra-
diation making a single pass through an amplifier.

We will assume that the duration of the laser pulse is short compared with any
pumping or relaxation times, so that the changes in level populations in the am-
plifier are due mainly to stimulated emission and absorption. The rate equations
for the level population densities of the amplifying transition are then simply

8N2 o N

Sh= (N, =N (12.12.12)
aNl ¢4

=N =N (12.12.1b)

since pumping and relaxation processes do not affect N, and N, significantly during
the pulse; this condition for a *‘short’” pulse typically requires pulse lengths shorter
than about a nanosecond. Equations (12.12.1) may be combined to form a single
equation for the population difference N = N, — N;:

~ =2 NI (12.12.2)

We also write the (plane-wave) equation for the variation in space and time of the
intensity:
ar 141
Jeos—— + S —

5ot og, = oM (12.12.3)

Let us integrate both sides of (12.12.3) over time:

Sm <§—{+l?~{ dz~r NI d
et ea i t (12.12.4)
Here r = —oo and ¢t = +oo denote times long before and after the pulse has

“turned on”” at z, sothat I(z, 1 = —o0) = J(z,t = +o) = 0. Thus
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g %{dtzl(z, t=+4w) — [(z, t=—00) = 0 (12.12.5)
o O
and so (12.12.4) becomes
dé = g S Nz, t) I(z, t) dr (12.12.6)
dz —oo
where
¢(z) = S I(z, 1) dr (12.12.7)

is called the fluence, and is a measure of the total energy content of the pulse.
Note that the fluence has units of energy per unit area, and should not be confused
with the photon flux @ (number of photons per unit area and time) that was intro-
duced in Chapter 7 and used extensively in Chapter 10.

Equation (12.12.6) may be simplified by solving (12.12.2) for N(z, t):

20

N{z, 1) = N(z, —o0) exp <- ™ S‘m I(z, 1) dt’> (12.12.8)

where N(z, —oe) is the population inversion at z before the pulse has arrived.
Thus we find

d¢ Soo 2(7 S.’ : ,>
ol - e Iz, t')dt ) dt
dZ O'N(Z’ OO) — oo [(Z, t) exp < hV =3 ( ’ )

“ hd 2o S[ >1
= ;- —_— - Hz, 0')dr ) de
oN(z, —c) S~oo 20 dt ’exp< hy J-o (z ) ,
- w}-;—VN(Z’ —o0) exp<~~%g g 1(z, l)dt)w 1‘ (12.12.9)
. 14 — oo

Then use of (12.12.7) allows us to write

db  hy ) 206(z2) ‘
}E“?N(L’ “00){”1 exp( .
3 o)l
== N(z, - 1 - - (12.12.10)
y Me =) { o < bt )
where we define the saturation fluence
b = hv/20 (12.12.11)
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This is just the photon energy divided by twice the stimulated-emission cross sec-
tion.

The differential equation (12.12.10) may be written in terms of the ratio (z)
= d)(z)/(bgat:

do

;i; = go(l — 6;0)

(12.12.12)
where we have used the fact that the small-signal gain coefficient go(z, ~) =
oN(z, —o0). In many cases of interest the spatial variations of g, are small, and
we can take g, to be a constant in the differential equation (12.12.12) for the
fluence. Then this equation has the solution

0(z) = In[1 + e%*( — 1)] (12.12.13)

or

o = b In [1+ Go(exp (¢n/d0) — 1)]  (12.12.14)
where ¢, = ¢ (L) is the output fluence of an amplifier of length L with small-
signal total gain G, = e***, given the input fluence i = ¢(0) to the amplifier.
We can also write (12.12.14) in terms of the total gain G = ¢,/ b;,:

G:?i‘l‘i‘:x"ln[1+co(e’f~1)], x = S

in sat

(12.12.15)

It is important to note that this solution for the output fluence is independent of
the shape of the pulse as a function of time. As long as the pulse is confined, to a
good approximation, to a finite duration, and this duration is short compared with
any pumping and relaxation times, Eq. (12.12.15) gives us the output fluence as
a function of the small-signal gain, length, and saturation fluence of the amplifier.
In Figure 12.16 we plot G as a function of X, assuming a small-signal total gain
factor G, = 5000.

X = ¢, /b << 1, then (12.12.15) becomes

G=X "In(l+ GyX) (12.12.16)
If furthermore GoX << I, then In (1 + Gy,X) = GyX and we have the small-
signal limit on total gain

G = Gy = et (12.12.17)
If e = exp (¢yn/be) >> 1, on the other hand, then
G~ X ""In(Gye*) = X "In(exp (goL + X))
=X gL +X) =1+ gL/X (12.12.18a)
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Figure 12.16 Gain G(X) [Eq. (12.12.15)] for G, = 5000.

or

¢out = (j)in + (g()(ibsat)l‘ (121218‘3)

This result identifies gy, as the largest energy per unit volume tht can be ex-
tracted from the amplifier when ¢, is large compared with ¢,,.. This is analogous
to the result (11.3.8) for a cw laser, where gyl is the largest possible rateo of
energy extraction per unit volume. Using the fact that g, = oN and ¢y, = hv /20,
we can write (12.12.18) in the form

Nhv

L (12.12.19)
2

(bout = qsin +

This says that the largest extractable energy density corrc'?\_vponds to taking half a
photon, on average, from each excited atom of the amplifier. The reason for the
factor 5 is simply that in the limit of large i/ Do Under conm'deratlon,. the ami
plifier is well saturated, with the upper- and lower-level populations having equa
¢ S.

pro'tlzﬁli)sﬂzltlleeory of short-pulse amplification is often refe.rred to as the FrantzuNQd.
vik model,® and is useful in the design and interpretation of Shox’bpglse 'amphﬁ-
cation experiments. It is worth noting, however, that the model, which 1{; based
on the rate-equation approximation, does not account for coherent effects like 2 -
pulse formation (Section 8.2 and Problem 8.4).

3. L. M. Frantz and J. S. Nodvik, Journal of Applied Physics 24, 2346 (1963).
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2.13 AMPLIFIED SPONTANEOUS EMISSION

The theory of pulse propagation presented in the preceding section is used fre-
quently in the analysis of laser amplifiers. However, for high-gain systems this
theory ignores an important phenomenon: the amplifier can amplify not only the
input field from a laser oscillator (or another amplifier), but also the spontaneous
radiation emitted by the excited molecules of the amplifier itself. It is easy to see
that spontancously emitted photons at one end of an amplifier, which happen to
be directed along the amplifier axis, or close to that direction, can stimulate the
emission of more photons and lead to substantial output radiation at the other end
of the amplifier. This radiation, which appears regardless of whether there is any
input radiation, is called amplified spontaneous emission (ASE).

It is clear that ASE will have at least some properties resembling laser radiation.
In particular, it will be narrow-band in frequency and it will also be highly direc-
tional, simply because the amplifier is long and thin. For these reasons high-gain
systems emitting ASE are often referred to as “*mirrorless lasers.’’ Such mirrorless
lasing, also called “superradiance,”’ is well known in the 3.39 wm He-Ne laser,
and in high-gain excimer, dye, and semiconductor laser media.

For a simple quantitative description of ASE, let us consider the steady-state
equation for the propagation of intensity in an amplifying medium characterized
by the gain coefficient g, namely

drl

=gl 13.1)
L8 (12.13.1)

If [(0) = 0, then this equation predicts that /(z) = 0 for all z. In other words, this
equation does not account for ASE. To include the possibility of ASE we add to
(12.13.1) the effect of spontaneous emission:

dl
2 = &t (AuNohw) (@/4) (12.13.2)

The added term is the contribution to dI /dz from spontaneous emission of photons
of energy hv by N, excited molecules per unit volume with spontaneous emission
rate A,,. Since spontaneous emission is (statistically) isotropic, we have included
a factor Q /4w, where Q is an appropriate solid angle; this factor accounts for the
fact that only a fraction Q/4x of spontaneously emitted photons are emitted in
directions for which amplification can occur. In the simplest approximation  is
taken to be 4/L”, where A is the cross-sectional area of the amplifier and L is its
length.

In the small-signal regime in which g and N, are independent of I, we have the
following solution of equation (12.13.2):
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o (Aul <Q/3. & (12.13.3)
47 g o

for exp(gz) >> 1. For simplicity we will assume that the lower-level population
of the amplifying transition is negligible, so that g = oN,, where o is the stimu-
lated emission cross section. For a homogeneously broadened transition having a
Lorentzian lineshape of full width at half-maximum Av we have

o= <)‘2A2‘> ( 2 > _ Ny (12.13.4)

87 7Av/)  4mPcAN

where AN = (c¢/v*)Av is the width in the emission wavelength A = ¢/». In this
case (12.13.3) becomes

I(z) = <“’;ng> N . (12.13.5)

for the growth of intensity with propagation in the amplifier.

The result (12.13.5) allows us to estimate the importance of ASE in high-gain
amplifiers. [In careful design analyses, of course, it is necessary to include gain
saturation, which has not been done in the derivation of (12.13.5).] ASE can be
detrimental to the performance of amplifier systems for two reasons. First, the
ASE can significantly deplete the upper-level population, thus diminishing the gain
available to the input signal to be amplified. Second, the ASE radiation can irra-
diate a target before the arrival of the amplified signal, and thus modify an exper-
iment in unintended ways.

ASE can be expected to deplete seriously the upper-level population of the
amplifying transition if it becomes comparable in magnitude to the saturation in-
tensity, /°, of the transition. Setting /(L) given by (12.13.5) equal to I*, we
have

(12.13.6)

)\51 sat 7
gL = log }

wh? QAN

for the gain-length product of the amplifier at which gain depletion due to ASE
may be an important consideration. It is clear from this formula (and (12.13.5))
that large-bore amplifiers, subtending large solid angles, are most susceptible to
ASE problems.

o Amplified spontaneous emission is sometimes described from the standpoint of an *‘ef-
fective noise input.”” This approach is based on (12.13.1) rather than (12.13.2). It begins
by noting that, since equation (12.13.1) gives I(z) = O forall z if /(0) = 0, some effective
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mput I(0) = ILg # 0 is necessary in order to obtain a nonvanishing /(z). An expression
for g is obtained by recalling that in a cavity of dimensions large compared with a wave-
length there are (871° /¢*) Av modes of the field per unit volume in the frequency interval
[v, v + Ar]. (Section 1.3) And according to the quantum theory of radiation each of these
modes has a zero-point energy 4#». There is therefore a zero-point field energy per unit
volume

8y’ 4mhv’\ cAN
po(v) = <—7rgu—>§thu = <—7LC§1-> %\2— (12.13.7)
o )? :

in the wavelength interval [A, A + AN]. Clearly we should take AN to be on the order of
the spectral width of the laser transition. For our purposes we replace AN in (12.13.7) by
wAN, where AN is the transition linewidth (FWHM). Then the ‘‘quantum noise’’ intensity
at the laser transition wavelength X is given by

he*Q
lc(f = C,D(,(V)ﬂ/47r = <7T>\(5 >A}\ (12138)

where we have inserted the factor /4 to account for the fact that only those modes within
the solid angle © appropriate to the amplifier can act as effective noise sources. Thus, from
(12.13.1y,

; he’( )
1(2) = Lye® = (")\‘5 )AM’-‘ (12.13.9)

which reproduces (12.13.5), and thus validates the approach to ASE based on an effective
noise input. ®

ASE radiation can have spatial coherence comparable to true laser radiation,
but it generally lacks the same degree of temporal coherence. (See Chapter 15 for
a discussion of spatial and temporal coherence.) The latter property is understand-
able from the fact that ASE is basically amplified ‘‘noise.’” The bandwidth of ASE
is typically a few times smaller than the gain linewidth Avp.

12.14 ULTRASHORT LIGHT PULSES

With mode-locked lasers it is possible to produce ultrashort, extremely intense
puises of radiation. Mode-locked lasers using saturable absorbers are used to pro-
duce, rather routinely, picosecond pulses with peak powers in some cases exceed-
ing 10"' W (100 GW). There are techniques for producing even shorter light pulses.

There are many scientific and technological applications of these ultrashort light
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pulses. For instance, they can be used to study extremely fast photoprocesses in
molecules and semiconductors. Especially promising applications may be possible
in biological systems, where it has already been determined that certain funda-
mental chemical reactions occur on picosecond time scales. Intense laser pulses
have also been of interest in connection with laser isotope separation and controlled
thermonuclear fusion, and it seems safe to say that many new applications will be
developed in the future. Not surprisingly, therefore, an entire field of research has
grown up around the generation of ultrashort light pulses. Although it is well be-
yond our scope in this book to discuss in detail these developments, we will men-
tion briefly some techniques in use.

One of these is the colliding-pulse laser. This is a mode-locked, three-mirror
ring laser with two counter-circulating pulse trains (Figure 12.17). Pulses in each
direction pass through a very thin (about 10 pm) jet of a saturable absorbing dye.
The absorption coeflicient of the absorber is smallest when the intensity is largest.
Therefore the cavity loss is least when the counter-circulating pulses collide and
overlap within the thin dye jet. The thinness of the absorber forces the pulses to
overlap within a very short distance and thus over a very short time interval (7 ~
10 pm/c ~ 3 x 107" sec).

Another technique involves chirping, by which an ultrashort pulse from a laser
can be further compressed. A chirped pulse is one in which the carrier frequency
® has a small time dependence. In particular, it has a linear time dependence of
the form w = w, + B. A pulse can be deliberately chirped by passing it through
a medium with a nonlinear refractive index, i.e., a medium in which the refractive
index depends upon the electric field (Chapter 17). The chirping results in a spec-
tral broadening of the pulse, i.e., it extends the range of frequency components
contained in the pulse. A chirped pulse can be compressed by passing it through
a dispersive (i.e., frequency-dependent) delay line. If the higher-frequency com-
ponents of the pulse travel more slowly than the lower-frequency components, the
delay line is designed to make them catch up with the lower frequencies on the
leading temporal edge of the pulse. By broadening the spectral width of the pulse
by chirping, therefore, it is possible to narrow it in time.

saturable ﬁ

obsorber

gain
celi

(a) {b)

Figure 12.17 (a) A colliding-pulse ring laser with countercirculating pulses. (b) The low-
est-loss condition is for the colliding pulses to synchronize and overlap inside the thin

saturable absorber.
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Optical pulses shorter than 10 fs (1 femtosecond = 107! sec) have been

achieved by compressing in thi . o
laser. P g in this way ultrashort pulses from a colliding-pulse dye

APPENDIX 12.A° RUNGE-KUTTA FORTRAN AND
BASIC PROGRAMS

The Runge-Kutta algorithm is an easily implemented and frequently used method

for the numerical integration of ordi i i i
‘ ordinary differential equations. For irst-
differential equation ! » the firorder

dy
ZL;-F(x,y) (12.A.1)
the fourth-order Runge-Kutta algorithm for y(x + h)is
ylx + h) = y(x) + Lk, + 2k, + 2k; + ky) (12.A.2)
where
kl = kF(X’ y)
ky = hF(x -+ é y + ﬁ
277 2
h 2
k3 = hF(‘{ + 5,)’ + %)
ky = hF(x + h, y + ky) (12.A.3)

'I:he form of (12.A.2) and (1-2.A‘3) is such as to duplicate the Taylor series for
y(x + h)upto fourth order in the step size #. The method is easily extended to
systems of equations, as in the example below.

”I“hel Runge-Kutta methqd 1s described in detail in many textbooks on mathe-
matical methods and numerical analysis. For the reader’s convenience we list here

a FORTRAN pro - : ,
(12.4.4): program for the Runge-Kutta integration of the two coupled equations

PROGRAM MAIN
DIMENSION Y(2), DY(2), W(2,5)

C WIS A WORK ARRAY USED IN SUBROUTINE RUNG

T=0,

Y(1) = 1.LE-3
Y(2) =20
DT = .01
NSTEP = 1000
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forward by DT. In the Way our program is set up, therefore, the final values of Y
DO 1IN = 1, NSTEP after the last call to RUNG are Y(1) = X(tmax) and Y(2) = y(t,,. ), where Loax =
CALL RUNG(2,Y,DY,T,DT,W) NSTEP#DT. In general the intermediate values of Y can be stored in arrays for
1 CONTINUE ;
PRINT 100,T,Y(1),Y(2) plomgg PUTPOSCS- : s -
TGE16.7) Subroutine DERIV simply defines the derivatives. In our example DY(1) =
100 gfr)(‘)‘}‘;’“\ ~ dx/dr and DY (2) = dy/dr. Subroutine RUNG does a fourth-order Runge-Kutta
END integration, using the derivatives defined in DERIV. N is the number of (first-
SUBROUTINE DERIV (T,Y,DY) order) simultaneous differential equations to be solved; in our example N = 2. W
DIMENSION Y(2),.DY(2) is a work array that must be dimensioned N by 5. Only the MAIN and DERIV
DY(1)=(Y(2)—1.)%Y(1) routines in our example depend on the specific problem, the RUNG subroutine
DY(2)=—-Y(1)*Y(2) being a “‘canned”’ routine, usable as it stands in every problem.
RETURN It may be worth noting that RUNG can also be used to solve higher-order dif-
S G(N,Y,DY,T,DT,W) ferential equations of mixed order. For example, to solve the system
SUBROUTINE RUN > LDY DT,
C  NIS THE NUMBER OF EQUATIONS d%x dx
DIMENSION Y(N),DY(N),W(N,5) 5 +x=0 x(0)= <—~> = ] (12.A.4)
DO 101= 1,N ar dt/) im0
10 W{J,hH=YD
CALL DERIV(T,Y,DY) using RUNG, we let Y(1) = x, Y(2) = dx/dt. Then (12.A.4) is equivalent to the
DO 20J=1,N two first-order equations
20 W(I,2)=DY()=DT
ggzgi{"‘?g DY() = Y©2), DYQ) = ~Y(1) (12.A.5)
“ ‘33)33 . :rlfiiwu . with initial values Y(1) = Y(2) = 1.
CALL DEizIV(Z Y’DY) RUNG can be used as it stands to solve complex as well as real systems of
DO 40 J=1.N ' equations. One simply writes the equations of DERIV in complex form and de-
40 W(Q.I1+1)=DY()*DT clares the appropriate variables COMPLEX.
7=T+DT It is easy to convert the FORTRAN program above to a BASIC program. We list
DO 50 I=1,N below a BASIC program suitable for use on many personal computers. The program
50 Y()=WQ3I,)+W(J.4) is set up specifically to solve an autonomous set of equations of the type shown in
CALL DERIV(Z,Y,DY) Egs. (12.4.4), where the right sides do not depend explicitly on the independent
DO 60 J=1,N o1 variable, but it can easily be modified to solve nonautonomous systems.
60 W({,5)=DY(J)*
DO70J=1,N .
70 YD) =W(J,D)+(W({J,2)+2.5(W(J,3)+W(J,4) +W(J,5))/6. 218 ?% Y(2), DY(2), W(2,5)
RETURN 40 REM N IS THE NUMBER OF EQUATIONS
END 50 Y(1)=.001
) o ) 60 Y(2)=2
The dependent variables are stored in the array Y In this case [Eqs- (1:2-4-3?% 70 DT= 01
Y(1) = x and Y(2) = y. T is the independent variable (7), and the f"ei’bS‘Zf . 80 NSTEP=1000
[denoted by h in (12.A.3)] is taken to be 0.01. In geperal DT should be taken 90 FOR K=1 TO NSTEP
small enough to give an accurate solution of the equations, but not so srqall that 100 GOSUB 1000
the program is unnecessarily time-consuming. The accuracy of the? solgtxgn can 110 NEXT K
always be checked by halving the step size and noting whether there is a significant 120 PRINT T, Y(1), Y(2)
change in the computed solution. . 300 REM DERIV
NSTEP is the number of integration steps. Each call to RUNG moves time 5100 DY(1)=(Y(2)- h*Y(1)

R I —————.,
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520 DY(Q)=-Y(1)*Y(2)
530  RETURN

1000 REM INTEG

1010 FORIJI=1TON

1020 W(JI,H=Y(W)

1030 NEXTJ

1040  GOSUB 500

1050 FORJ=1TON

1060  W(J,2)=DT*DY()
1070  NEXTJ

1080 FORI1=2TO3

1090 FORIJ=1TON

1100 Y =W{J,H)+W({J,D/2
1110 NEXTJ

1120  GOSUB 500

1130  FORJ=1TON
1140  W(,I+D)=DT*DY()
1150  NEXTJ

1160 NEXTI

1170 FORJ=1TON

1180  Y(=W{J,H+W(J.4)
1190 NEXTJ

1200  GOSUB 500

1210 FORI=1TON

1220 W(,5)=DT*DY(J)
1230 NEXTJ ox

J=1T | 7

‘égg };’%I):W(J,l)+(W(J,2)+2*(W(J,3)+W(J,4))+W(J,S))/6
1260  NEXTJ

1270  T=T+DT

1280  RETURN

5 SOUND
APPENDIX 12.B DIFFRACTION OF LIGHT BY SOU!

aves ¢t erstood by analogy with the
i dif’fracmm Ot: ]i'gfkl)t bcy S:::Iid 1\{/1?; Z*t:;‘z ct:? : r;?ystal are spagcd ina regéulaé
diffraction of X'Tdyien)zlyrtyl;ey scatter radiation cooperatively, V\flth wellfie \net'
pijf?rélﬁixﬁf gft:\(ieen the fields scattered by diffe;en; at()ms.e;l;hiij ;e:;;ii;ynl ;lclae y
berin L i irections, and the process 1
‘efi‘“g 0“_13’ ’i?‘Ce*mn;OV;%I‘I;S;?:;;?;’I{?;;?Z’I?Z.18 sholz’vs a wav_e.incifiéﬂf Uplo n
difiracig ,lfllﬁte?' nes %e;)arated by a distance d. The allowed diffraction ang e?
e C'rysmbp ‘:hex éondition of constructive interference of the f.ield? :ZS
?{e td:it’?négflddigerem planes. As shown in the figure, these diffraction ang

ecte

satisfy the Bragg diffraction formula

.B.1
2d sin 0 = mA, m=1,2,3,... (12 )
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Figure 12.18 Diffraction of a plane wave by a stack of crystal planes. Constructive inter-
ference of the two rays JO and I'0" occurs when their path difference AB + BC is equal

to an integral multiple m of the wavelength A. This gives the Bragg diffraction formula
2d sin § = m\ for the allowed diffraction angles 6. A more complete analysis shows that
these angles give the only directions in which scattering occurs.

where X is the wavelength of radiation and d is the separation distance between
adjacent crystal planes.

* Since d is on the order of 1 A in actual crystals, only wavelengths in the X-ray region
can satisfy (12.B.1) and the requirement |sin @] < 1. The measurement of X-ray diffraction
tructure. Indeed the use of crystals as “*dif-

the most important techniques of modern

technique was originally suggested by Max

e question of whether X-rays were particles

1 of radiation by sound waves in 1922, and

Debye and F.W. Sears.

angles thus provides information about crystal s
fraction gratings™® for X-rays has been one of
science for probing the structure of matter. This
von Laue. The idea arose in connection with th
or waves. L. Brillouin predicted the diffractio
it was first observed ten years later by P. W,

The refractive-index variation associated with a sound wave of wavelength A,
has a spatial dependence of the form

An(x) = a sin k,x (12.B.2)

where k; = 27 /), and « depends on material constants of the medium and the

intensity of the sound wave. Equation (12.B.2) arises from the fact that a sound

wave is basically a wave of density variation. Figure 12.19 shows an i
of understanding the diffraction of li

ght by a sound wave. We regard the planes of
constant x where (12.B.2) is a maximum as “‘crystal”’ planes which, because of
their regular spacing X, will diffract light only in certain well-defined directions.

Indeed it turns out that the diffraction angles are given by the Bragg formula
(12.B.1) with d = Aoand m = |:

ntuitive way

2\ sin 6 = \/n (12.B.3)

We have included the effect of the refractive index n of the medium.

The important difference between (12.B.1) and ( 12.B.3) is that there are no
higher-order diffraction angles corresponding to m > 1 in (12.B.3). This differ-
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diffracted light
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Figure 12.19 Intuitive picture of diffraction of light by sound as diffraction from a fictitious
set of “‘crystals’” planes defined by the intensity maxima of the sound.

ence arises from the fact that the **diffraction grating”” associated with the ‘sound
wave indicated in Figure 12.19 is really a spatially continuous one, not a discrete
set of crystal planes with nothing in between.

Equation (12.B.3) gives only the diffraction angle. It do.es noF th11 us the st‘reng.th
with which the sound wave diffracts light, i.c., the fraction of light intensity dif-
fracted after a given distance of propagation. This is determined by a and the
wavelength of the light.*

PROBLEMS

12.1 (a) Write the steady-state solutions of equations (12.2.5) in such a way as
to show the saturation of N, with increasing /,.
(b) Verify the equations (12.3.16) and (12.3.17) for the period and life-
time of relaxation oscillations.

12.2  (a) Show that the quantity x defined in Eq. (12.4.1) is the cayity pho}on
number density divided by the threshold population inversion density.

(b) Show that Egs. (12.2.5) may be written as (12.4.4) when the change
of variables (12.4.1)-(12.4.3) is made.

12.3 (a) Why is it that so much more power can be obtained from a Q-switched
laser than in ordinary continuous-wave operation?
(b) Suppose a Q-switched laser using a rotating mirror or a saturable ab-
sorber is pumped continuously. How do you expect the laser to be-
have?

12.4  Set up the equations for x and y [Eqs. (12.4.1) and (12.4.2)] in the case

4. See, for example, R. Adler, “"The Interaction between Light and Sound,”” JEEE Spectrum, May
1967, p. 42.

12.5

i2.6

12.7

12.8

12.9

12.10
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where Q switching is done with a saturable absorber with absorption coef-
ficient a = a, (1 + 1/I'*") " If you have access to a computer, solve
these equations numerically using, for example, the Runge-Kutta algo-
rithm of Appendix 12.A. You will have to assume values of the small-
signal absorption coefficient a, and the saturation intensity 7** of the ab-
sorber. Determine how x and y depend on the choice of a, and /.

(@) Suppose we have N oscillators whose frequencies are given by (12.7.2)
and whose phases ¢, are fixed but not “‘locked” according to
(12.7.10). Discuss the properties of the sum X(r) of the oscillator
displacements in this case. Can the maximum value of X (1) be as large
as in the phase-locked case?

(b)*Suppose that the phases ¢, are randomly chosen from an ensemble and
are completely uncorrelated, so that ("®" %y =§  where ¢ - -+ )
indicates an ensemble average. Then compute { X(£)) and ( X*(1)).

(@) Show that cach pulse of a mode-locked pulse train has an intensity N
times larger than the sum of the intensities of the individual modes
constituting it.

(b) Show that the average intensity of a mode-locked pulse train is equal
to the sum of the intensities of the individual modes constituting it.

Make a plot of the time-dependent factor in the brackets in Eq. (12.9.5),
choosing ¢,, = 0, @ = w,,/10, and (a) e =3, (b)e = 1, (¢) € = 5.

Consider the 6328- A He-Ne laser.

(a) Estimate the shortest pulse that can, be obtained by mode-locking such
a laser.

(b) What is the duration of each pulse of the mode-locked train if the gain
tube has length / = 10 ¢cm and the mirror separation L = 40 cm?

(¢) What is the separation between the mode-locked pulses in part (b)?

(d) Why do liquid dye and solid-state lasers produce much shorter mode-
locked pulses than typical gas lasers?

(@) Estimate the average power, in watts, expended by a normal human
adult. Assume that a “‘normal human adult’” consumes 2500 dietitian’s
calories (2500 x 4185 J) per day, and that his output energy just bal-
ances his input energy.

(b) Estimate the intensity at a distance of | m from a 60-W light bulb.

(¢) Estimate the average electrical power used to operate a typical house
in your area.

It is possible to “*dump’” the cavity of a pulsed laser by making the reflec-
tivity of the output mirror effectively zero at the moment of peak intensity.
What is the advantage of “‘cavity dumping’’ in this way?




	DOC
	DOC-1
	DOC-2
	DOC-3
	DOC-4
	DOC-5
	DOC-6
	DOC-7
	DOC-8
	DOC-9
	DOC-10
	DOC-11
	DOC-12
	DOC-13
	DOC-14
	DOC-15
	DOC-16
	DOC-17
	DOC-18
	DOC-19
	DOC-20
	DOC-21
	DOC-22

