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11.5 A cavity for a 6328-A He—Ne laser is 50 cm long with reflection coefficient

r1 = 1.0 for one mirror and r2 = 0.98 for the other. Losses other than

output coupling are very small and may be ignored. The output power of

the laser is measured to be about 10-mW on a single mode.

(a) What is the cavity photon number and what is the output rate of pho

tons?

(b) It has been written that ‘if the light from a thousand suns were to shine

in the sky, that would be the glory of the Mighty One.” Assume that

the sun is an ideal blackbody radiator at T = 6000 K. Estimate the flux

of photons in a frequency band of width ôv 10 MHz centered at 6328

A that can be obtained from 1000 suns. How does this compare with

the photon flux that can be obtained from He-Ne or other lasers?

11.6 Should the Lamb dip occur with any inhomogeneously broadened gain me

dium, or only the specific case of Doppler broadening?

11.7 Do you think that most lasers have a cavity bandwidth much larger or smaller

than the linewidth of the gain profile? Is any implicit assumption about this

made in our discussion related to Figure 11 . 13?

11.8 Derive Eq. (II .12.5) for the resonance frequencies of a Fabry—Perot etalon

for an arbitrary angle of incidence.

12 MULTIMODE AND
TRANSIENT OSCILLATION

12.1 INTRODUCTION

Thus far we have restricted our study of the laser to the case of continuous-wave,
single-mode operation. In this chapter we will consider time-dependent. transient
effects, including relaxation oscillations and Q switching. We will also extend our
single-mode theory somewhat to the case in which several or many cavity modes
can oscillate simultaneously. This allows us in particular to understand the impor
tant technique called mode locking, a way to obtain ultrashort pulses of light.

12.2 RATE EQUATIONS FOR INTENSITIES AND POPULATIONS

In the preceding two chapters we have found it convenient and instructive to de

scribe the strength of the cavity field either in terms of intensity I,, or photon num

ber q,,. In the present chapter it will be convenient to use the intensity description.
We will theretbre begin with a brief review of the appropriate equations coupling
the intensity and the laser level population densities N2 and N1.

In general the cavity intensity will vary both in time and space. We will con

tinue in this chapter to make the plane-wave approximation in which the intensity
is assumed to he unifOrm in any plane perpendicular to the cavity axis. Further

more we showed in Section 11.5 that, for the most common situation in which the

mirror retlectivities are large (say. >50%), the cavity intensity is approximately
unifOrm along the cavity axis if we ignore the rapidly varying sin2 k interference
term. So it is useful again to make the uniform-field approximation, but now to
include the time dependence of the cavity intensity. First we recall equation
(10.5.8):

= (gi,. -1
- rIr2)I.)

= 1
[g(v) — gil,. (12.2.1)
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For simplicity we will assume that the gain cell fills the entire space between the
mirrors. Then 1 = L and

= c[g(v)
— g,j J (12.2.2)
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Recall that I, = ± j) is the sum of the two traveling-wave intensities: in

the case of high mirror reflectivities. the two are approximately equal.

In terms of the cavity intensity we can write the population rate equations [cf.

(10.5.14) with F1 = F2 = 0 and A — “211

dN2

______

= —
— I’N + K7

di hv

c/N1 c.(r) I.
+I,1N+K1

di liv — -

where the rates F1, K. and K1 are, again, level decay and pumping rates. Since

N2 and N are populations per unit volume, the pumping rates have units of (vol

ume) (time). Equations (12.2.2) and (12.2.3) are coupled rate equations for

Ii,, N2, and N1. The coupling is through the gain coefficient

g(v) = (N2 — N1) S(v)
-

87r

o( ‘) (N2 — N1)

where we assume for simplicity that g2/g1 = 1.

The population rate equations (12.2.3) are easily modified to suit a particular

laser medium. We have already described such modifications in the case of the

stylized three- and four-level models. Further modilications are described in Chap

ter 13, where we consider specific population inversion mechanisms. Since we

will be describing in this chapter some rather general phenomena that transcend

specific inversion schemes, it will he adequate to use the simple rate equations

(12.2.3) for the laser level population densities.

For many purposes the rate equations (12.22) and (12.2.3) may be simplified

somewhat. One simplifying assumption is that N1 << N2, i.e.. that the lower laser

level population is negligible compared with the upper laser level population. This

would be the case in a four-level laser, where the lower level decays very rapidly

compared with the stimulated emission (absorption) rate. Then g(v) = u(v) N2,

and (12.2.2) and (12.2.3a) become

= LU(V) N2I, — cg,I
di

-- N I — F21N2 -f K2
di hv -

12.3 RELAXATION OSCILLATIONS

The coupled equations (12.2.5) for I,, and N2 are simple in appearance, but they

have no known general solution. However, it is easy to find the sieady-staie so-
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lutions which we denote I,, and N-,. These are obtained simply by replacing the left
sides of (12.2.5) by zero and solving the resulting algebraic equations, with the
result

-
/K F1 \

= liv — — ) (12.3.la)
\g, u(v)

= --

(12.3.lb)
-

(v)

These solutions may also be written in a different form to show explicitly how
N2 saturates with increasing I,. (Problem 12.1).

It is possible to solve these equations approximately if the laser is operating
very near to steady state. In this case we write

1,, = 1,, + r (l2.3.2a)

N = N2 + > (l2.3.2b)

<< i (12.3.3a)

<< N2 (12.3.3b)

This approximation allows the equations (12.2.5) to be linearized and solved, as
follows.

Using (12.3.2> in (l2.2.5a>, we have

(I + ) = cu(N, + ) (Ii, + r) — cg,(I,, + r) (12.3.4)

which is the same (since dI/di 0) as

= cu(N2 + ) (I,, + r) cg,(I, + c)

= cu(N, + N2r + + r) — cg,(I,, + r) (12.3.5)

Now 1,, and N2are such as to make the right sides of(12.2.5> vanish. In particular,

cu2I — cg,,, = 0 (12.3.6)

Using this relation in (12.3.5), we obtain the much simpler equation

= (1JJ,, + c€ (12.3.7)

and assume

(12.2. Ia)

l2.2.3h)

(12.2.4)

(12 .5a)

( l2.2.5h)
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This is still nonlinear (because of the term ijr) but now the nonlinearity is very

small because it involves the product of the small quantities i and r Near enough

to steady state [recall (12 3 3) such second ordcr small terms cm be dropped

altogether sithout significant error Thus we obtain the following linear equation

for the time dependence of the departure of the cavity intensity from its steady-

state value:

(1238)

where the factor in parentheses is constant in tirni,
The same procedure can be applied to (12 2 5h) Again the product ir is very

small and can he dropped, and again the definitions of I,, and N can be used to

cancel some terms. The result is

(12.3.9)

Equations (12.3.8) and (12.3.9) are still coupled to each other, but they are

now linear and easily solved. We use (12.3.8) to replace i in (12.3.9) by (ccl,)

de/dt to get

(12.3. 10)

where we define

-y = uK7/g, (12.3.11)

and

cug
= —l, (12.3.12)

hi’

The solution to (12.3.10) is easily found to be

= A e2 cos (wt + ) (12.3.13)

where A and are the initial amplitude and phase of (t), and the frequency of

oscillation is given by

= (12.3.14)
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state, the cavity intensity oscillates about the steady-state value I,, and gradually
approaches I,. at the (exponential) rate -y/2:

I, = I, + A e”2 cos (Wi + ) (12.3.15)

This is called a relaxation oscillation. Similar behavior is observed in a wide va
riety of nonlinear systems.

Although the relaxation-oscillation solution (12.3.13) is valid only if
I,, [recall (12.3.3)], the nature of the solution is of general importance. The critical
feature of the solution is that -y is positive. This guarantees that the steady-state
solution I, is a stable solution. That is, if some outside agent slightly disturbs the
laser while it is running in steady state, the effect of the disturbance decays to zero,
thus returning the laser to steady state again. If were negative, a small disturb
ance would grow, and the steady state would therefore be unstable, and thus of
very little practical significance.

We may write the period Tr and lifetime T, of the relaxation oscillations as
(Problem 12.1)

2ir 2ir
T = —

—_._ (12.3.16)
Wo /T21)(g0 — g,)

and

(12.3.17)

where go is the small-signal gain and m1 = F’ is the lifetime of the upper laser
level. From (12.3. 17) or (12.3. 11) we see that the duration of the relaxation os
cillations dccrcascs with inciLasing pumping rate K2 of thc gain medium Likewise
the period Tr of the relaxation oscillations should decrease with increased g0 These
predicted trends are consistent with many experimental obscrvations

It is possible to observe relaxation oscillations in the output intensity of i laser
after it is turncd on and appro iches a steady state operation Perturbations in the
pumping power can also cause relaxation oscillations to appear spontaneously. In
some cases, especially in solid-state lasers, the relaxation time r, may he relatively
large, making relaxation oscillations readily apparent on an oscilloscope trace of
the laser output intensity.

As an example, consider a ruby laser with mirror reflcctivities r1 1 .0. 1,

0.94, and a ruby rod of length / = 5.0 cm. For such a laser g0 (1/2/) (1 —

r2) = 0 006 cm ‘ so that 1 8 x l0 sec —‘ For mby the upper levcl lifetime
2 x 10 sec Assuming a pumping level such that ç0/g, = 2 0 we corn

pute from (12.3.16) and (12.3.17) the period and lifetime of relaxation oscilla
tions:

T, 21 sec (12.3.18)

For definiteness we assume > ‘/2, making w real. Thus, near to the steady Tr 2 rnsec (12.3.19)



370 MIJLTIMODE AND TRANSIENT OSCILLATION

Relaxation-oscillation periods are often in the microsecond range. as in this ex
ample. The damping time rr is particularly large in ruby because of its unusually
long upper-level lifetime 21 Relaxation oscillations are therefore particularly pro
nounced in ruby. The output of a continuously pumped ruby laser typically consists
of a series of irregular spikes, and this spiking behavior is usually attributed to
relaxation oscillations being continuously excited by various mechanical and ther
mal perturbations.

12.4 Q SWITCHING

Q switching is a way of obtaining short, powerful pulses of laser radiation. Q refers
to the quality factor of the laser resonator, as discussed in Section 11 .9; recall that
a high-Q cavity is one with low loss, whereas a “iossy” cavity will have a low

Q. The term Q switching therefore refers to an abrupt change in the cavity loss.
Specifically, it is a sudden switching of the cavity Q from a low value to a high
value, i.e., a sudden lowering of the cavity loss. In this section we will describe
how Q switching works, and in the following section how it is achieved in actual
lasers.

Suppose we pump a laser medium inside a very lossy cavity. Because the loss
is so large, laser action is precluded even if the upper level population N is pumped
to a very high value. No field builds up by stimulated emission in the gain cell.
Obviously this means that the gain cannot be saturated, and if pumping is vejy
strong it can grow to a large. small—signal value. Suddenly we lower the loss to a
value permitting laser oscillation. We now have a small-signal gain much larger
than the threshold gain for oscillation.

What happens in this situation, of course, is that there is a rapid growth of
intensity inside the cavity. The intensity builds up quickly to a large value, re
sulting in a large stimulated emission rate and therefore a rapid extraction of energy
from the gain cell. The result of the Q switching is therefore a short, intense pulse
of laser radiation, sometimes called a giant pulse. Pulses as short as 10 —l0
sec are routinely obtained by Q switching.

This qualitative explanation of Q switching may be substantiated by solving the
rate equations (12.2.5). For this purpose it is convenient to define the dimension
less quantities

I
x = , (12.4.1)

chL’ 1/,

y=— (12.4.2)

where N, is the threshold population inversion density. The threshold gain is g, =

u(v) N,. Clearly y is the ratio of the population inversion to the threshold inver
sion, or, equivalently, the ratio of gain g to threshold gain g1; andx is easily shown
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to be the ratio of the cavity photon density to the threshold population inversion

density (Problem 12.2).
In terms of x, y, and the dimensionless time variable

= cg1t (12.4.3)

the equation (12.2.5a) for the cavity intensity takes the form (Problem 12.2)

(y 1)x (12.4.4a)

We will assume that the duration of the “giant pulse” is short enough that pump

ing and spontaneous decay of N2 during this interval is negligible, and only stim

ulated decay due to the intense pulse occurs. This assumption allows us to ignore

the second and third terms on the right side of the rate equation (12.2.5b), and to

write the simpler equation (Problem 12.2)

= —x (l2.4.4b)
dT

The validity of this assumption can always be checked after a solution of equations

(12.4.4) has been obtained.
The result of a numerical integration of equations (12.4.4) is shown in Figure

12.1. The pumping level prior to Q switching is assumed to be such that v(0) =

2. We observe that the normalized intensity x grows until the population inversion

drops below threshold, at which point the intensity begins to decrease.

As a specific example. consider the case of a 6943-A ruby laser, in which

2.7 x lO20 cm2. Suppose one of the mirrors is highly reflecting (r1 1.0).

the other has a reflectivity r 0.90, and the ruby rod has a length I = 5 cm. Then

(1 — r) = 0.01 cm’

and cg, — 3 >< l0 sec ‘. From (12.4.3). therefore,

= 3 x l0 t (t measured in seconds) (12.4.6)

The Q-switched pulse of Figure 12.1 has a width of about T = 4, corresponding

to an actual pulse duration of

1, = (3 X l0)
1(4)

= 13 nsec (12.4.7)

The variable x in Figure 12.1 has a peak value of about 0.3, corresponding to a

peak intensity of [Eq. (12.4.1)1

V

N,

(12.4.5)



10 W/cm (12.4.8)

as the reader may easily verify. This is a very large amount of power—much larger

than would be obtainable if the same laser were operated as a continuous-wave

device (Problem 12.3>. For a beam cross-sectional area of 0.1 cm2 the total energy

in the Q-switched pulse is

energy (‘peat) (t1,) (0.1 cm2)

Equations (12.4.4) imply that, if x(0) = 0, then x and y remain fixed at their initial

values. Physically, this is incorrect, and occurs only because in writing (12.4.4) we left out

the effect of spontaneous emission. Spontaneous emission has the effect of giving x a small

but nonzero initial value, allowing it to grow from this initial value. In other words, spon

taneous emission provides the first few ‘seed” photons needed to initiate the growth of

laser intensity by stimulated emission.

In obtaining the numerical results shown in Figure 12.1 a fourth-order Runge—Kutta

integration algorithm was used, with a step size r 0.01. An initial value of was

assumed forx(0). The numerical results for the pulse shape. duration, and peak value are

insensitive to the (small> initial value assumed forx. This is becausex grows to values large

compared with its initial value. Then the number of cavity photons becomes so large that

spontaneous emission is negligible compared with stimulated emission.

The value of r at which the pulse intensity reaches its peak, however, does depend upon

the choice of x(0). If this aspect of the problem is of concern, therefore, one should include
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properly the effect of spontaneous emission in the rate equations (12.4.4) as well as various
details of the Q switching.

The reader may wish to experiment with Eqs. (12.4.4). or various other differential
equations that appear in this book and in the laser research literature. We include in Ap
pendix l2.A both BAsic and FORTRAN listings of the Runge-Kutta algorithm used to obtain
the itsults in Figure 12.1.

12.5 METHODS OF Q SWITCHiNG

There are various ways to Q-switch a laser, The most popular ones switch the
cavity Q factor within a time interval that is short compared with the photon life
time (cc,) -‘. allowing the gain to build up to a large value before the onset of
laser oscillation. We will discuss three common methods of Q switching.

Rotating Mirrors

One way to Q-switch is to have one of the cavity mirrors rotating about an axis
perpendicular to the cavity axis (Figure 12.2). The loss is then very large except
during the brief period when the mirrors are nearly parallel. A typical angular
velocity of the rotating mirror is about 10,000 revolutions per minute (rpm).

A similar mechanical method of Q switching involves a rotating chopper wheel.
In this method, however, the Q switching is effected relatively slowly, even for a
wheel velocity of 10,000 rpm. This is because lasing can begin before the shutter
fully exposes the gain cell to the cavity mirrors.

Electro-optical shutters can be used to control the cavity Q by means of an applied
voltage. To understand the operation of these switches, we must first describe the(12.4.9) electra-optical effect. In Section 2.9 we identified birefringence as a difference in
refractive indices for light of diffrent linear polarizations, The electro-optical ef
fect refers to birefringence that ocwrs in certain media when a voltage is apphed
One example is the Kerr effect, in which the degree of birefringence is proportional
to the square of the applied voltage. Another is the Poekels effect, in which the
birefringence is linearly proportional to the voltage. Kerr cells typically require
voltages in the 10-20 kilovolt range and Pockels cells somewhat less.
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Figure 12.1 Solution of Eqs. (12.4.4) fory(0) 2 and x(0) 0.
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Figure 12.2 A laser cavity with a rotating mirror for Q switching.
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Another way of Q switching is to place in the laser cavity a “shutter” consisting
of a cell of absorbing material whose absorption coefficient can be saturated (or
“bleached”) by the laser radiation. Saturation can occur in both absorbing and
amplifying media The absorption (or gain) coefficient decreases with increasing
intensity of resonant radiation, becoming nearly zero when the intensity is much
larger than a characteristic saturation intensity I’ of the medium (recall
Fig. 10.8).

When the gain medium is first pumped, the gain threshold is very high. The
cavity loss is too large, because of the absorbing cell, to allow laser oscillation.
The medium can therefore be pumped to a high gain without generating significant
light intensity. Once the gain is high enough to overcome the loss, however, the
cavity intensity grows rapidly. This in turn rapidly saturates the absorption cell,
and the effective cavity loss drops abruptly. The whole process leads to a giant-
pulse output in a manner similar to that with a mechanical Q switch (Problem

Figure 12.3 Q switching with a Kerr cell. With the Kerr cell on the cavity loss is 1ai
but is suddenly lowered when the Kerr cell is switched off.

ble absorber to become highly saturated and thus to raise the cavity Q. In
neantime the cavity intensity originating from spontaneous-emission noise
Es up on different modes, and it grows to a greater degree on those modes with

lowest loss per pass. Since a photon can typically make several thousand round
between the cavity mirrors before the absorber saturates, even small differ
i in the losses of different modes become significant. The result is that only
west-loss mode (or modes) appear in the Q-switched pulse.

In the active Q switches, the switch to high Q is much more rapid, typically
mning during only several tens of photon round trips in the cavity. Small dif
ences in mode losses per pass may then not be sufficient to discriminate among

Jerent modes. The output frequency spectrum of a Q-switched ruby laser has
rig been known to be narrower if a passive Q switch is used instead of a rotating
irror or a Kerr (or Pockels) cell.

Q switching can be effected by using a polarizer and an electro-optical cell,
illustrated in Figure 12.3. The voltage and orientation of the Kerr cell are su
that the (linearly polarized) light passing through the polarizer is converted to c_
cularly polarized light. After reflection off the cavity mirror this circularly polar
ized light is converted by the Kerr cell to light linearly polarized orthogonally t

the polarizer axis. The presence of the Kerr cell thus prevents feedback, and the
cavity is in effect a very lossy one. If the voltage across the Kerr cell is switched
off, however, the cell is no longer birefringent. Then the cavity Q has suddenly
been increased, and a giant pulse develops.

Saturable Absorbers

.6 MULTIMODE LASER OSCILLATION

n Section 11.12 we noted that a laser with a homogeneously broadened gain me-
urn tends to oscillate on a single longitudinal mode if the effect of spatial hole
g is small. This expectation is borne out in collision-broadened gas lasers,

where atomic motion tends to smear out the effect of spatial hole burning. A similar
t can occur in solid-state lasers in which there is a diffusion of excitation

among the atoms In general however, oscillation will occur on many longitudinal
modes especially when the gain medium is pumped far above threshold allowing
many modes under the gain curve to meet the threshold condition.

Ruby lasers, for example, are predominantly homogeneously broadened. Due
to spatial hole burning, however, they generally oscillate multimode, especially
when strongly pumped As the pumping rate is increased, furthermore the power
associated with any particular mode tends to rise at a slower rate than the total
output power on all lasing modes.

Single-longitudinal-mode oscillation is generally precluded by spectral hole
burning in inhoinogeneously broadened lasers, unless the laser cavity is very short
(Figure 11.12) or the pumping rate permits only one mode to reach threshold (Fig
ure 12.4). He—Ne lasers, for example, usually oscillate on several longitudinal

12.4).
The use of a saturable absorber for Q switching is often called passive Q switch

ing, in contrast to the active Q switching achieved mechanically or electro-opti
cally as described above.

The passive Q switch is obviously simpler in terms of the necessary auxiliary
equipment than the two active Q switches we have described. It enjoys an addi
tional advantage: a passive Q switch will often give an output pulse concentrated
mostly in a single mode. The reason for this is that it takes a finite time for the

mode

-i i—c/2L

Figure 12.4 A case in which several modes lie under the gain curve, but only one can lase.



(a) (b)

Figure 12.5 Typical output spectra of a 1-rn-long He—Ne laser for low (a) and high (b)

pumping (discharge current) levels.

modes in the absence of any mode selection mechanism (e.g., an etalon). Figure

12.5 shows the output spectrum of a typical, low-pressure, 6328-A He—Ne laser

having a mirror separation L 1 m. Figure l2.5a is the result obtained at a rel

atively low pumping level. Only one longitudinal mode is above threshold. As the

pumping level is raised by increasing the discharge current, however, several modes

under the 1700-MHz Doppler profile can oscillate (Figure 12.5b), and their fre

quency spacing is near c/2L = 150 MHz, as expected.

A rigorous theory of laser oscillation must therefore describe the case in which

several or many modes oscillate simultaneously. In this case we cannot formulate

the theory in terms of a single cavity photon number or intensity. Instead we must

specify the photon number or intensity for each mode. The analysis is especially

complicated by spectral hole burning in the case of inhomogeneous broadening.

The rate equations (10.5.14), or their simplified version (12.2.5b). describe the

rate of change of the total number of atoms per unit volume in a particular atomic

level. They do not take account of the fact that different atoms may have different

line-center frequencies and therefore different stimulated-emission cross sections

u ( i’) for radiation of frequency v. That is, there is no account of inhomogeneous

line broadening. If there is inhomogeneous broadening. we must write separate

rate equations for different ‘spectral packets” of atoms. Different spectral packets

will then saturate to different degrees (spectral hole burning), and the complica

tions can be CflOfOUS in the multimode case. A proper description of this case

would, for our purposes, be inordinately lengthy.

In spite of these complexities, there are situations where the gain of a multi

mode, inhomogeneously broadened laser saturates homogeneously in the sense

that every spectral packet saturates in the same manner. In this case saturation

formula like (10. II .4) is applicable, and the total output power on all modes is

well described by the Rigrod-type analysis discussed in the preceding chapter. One

situation in which this is realized approximately is when the longitudinal mode

spacing c/2L is small compared with the homogeneous linewidth 6i’, i.e., when

there are many longitudinal modes lying within the frequency interval v0. Evi

dence for the validity of this approximation may be found in the results of exper

iments with a low-pressure 3.5l-rm He—Xe laser, which is highly inhomoge

neously (Doppler) broadened.’ The cavity mirrors were separated by over 10 m in

I. C. W. Casperson. iEEE Journal of Quantum Electronics QE-9. 250 (1973>.
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order to permit the oscillation of a large number of longitudinal modes The total
output power was described quite well by the Rigrod theory for a homogeneous/v
broadened laser. (Section 11 .5)

There are other effects tending to “homogenize” the gain saturation. In a gas
laser for instancc collisions will change the z component of an atom s velocity
and tend to fill in a spectral hole In other words collisions act to preserve the
Maxwell—Boltzmann velocity distribution, and therefore the Doppler gain profile.
Collisions thus act in opposition to the spectral hole-burning effect of the field. At
high intensity levels the effective homogeneous linewidth is also increased due to
power broadening (Section 10.11).

12.7 PHASE-LOCKED OSCILLATORS

In a Q-switched laser the light pulse must make several passes through the gain
medium after the cavity Q is switched. Feedback is necessary in order to build up
a large field amplitude by stimulated emission. For some applications it is desirable
to have pulses of light even shorter than can be achieved by Q switching. Such
powerful. ultrashort pulses of light can be obtained by a technique known as mode
locking.

Whereas Q switching may involve either a single mode or many modes, mode
locking is a fundamentally multimode phenomenon. Specifically, mode locking
involves the “locking” together of the phases of many cavity longitudinal modes.
The purpose of this section is to consider a simple analog of a mode-locked laser.
We will consider the problem of adding the displacements of N harmonic oscilla
tors with equally spaced frequencies. That is, we consider the sum of

x,jt) = ..,,

sin (Lar + (12.7.1)

N-I N-i N-I N-I
= — —-__— + I

—- + 2, ...
——— (12.7.2)

2 2 2 2

In other words, the amplitudes x0 and phases () of the oscillators are identical.
and their frequencies are equally spaced by and centered at w0. as shown in
Figure 12.6. The sum of the displacements (12.7.1) is

(N— I /2

X(t) = Z Z x0 sin (w,,t + Ø,)
-, (N— /2
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AM

where

= U0 +

(12.7.3)
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7’T77
N7

-35,

Figure 12.7 The function A(i) = (sin ‘1; N t)/(sin 1) vs. t/’,r.
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- 0 +

Figure 12.6 A collection of N frequencies running from Wa — (N 11 . to WU + (N
— 1) as in Eq. (12.7.2).

Since sin .i is the imaginary part of e”, we may write this as

X( r) = im e’
+

= xo Im (e’t Z ( 12.7.4)

The general identity

(N-- I /2
- sin (Nv 2)

es” = (12.7.5)
(/2 Sin ( y/2)

proved below allows us to write (12.7.4) as

X(t) = x0 Im (e’°’
f-50) (N&/2)

\. sin (it/2)

/sin(Nt/2)
.r0 sin (w01 ± o)

\ sin (t2)

= AN (t) X() sin (e)t + ) (12.7.6)

The function AN (i’) is plotted in Figure 12.7 for N = 3 and N = 7. In general

AN(t) has equal maxima

AN (t) = N (12.7.7)

at values of I given by

trn = m
(a-)

mT, rn = 0, ± 1, ±2. . .
. (12.7.8)

As N increases, the maxima of AN (I) become larger. They also become more

27r T
= — =

N N

sharply peaked. A measure of their width is the time interval r indicated in Figure
12.7 forN = 7:

(12.7.9)

We have thus shown that the addition of N oscillators of equal amplitudes and
phases, and equally spaced frequencies (12.7.2), gives maximum total oscillation
amplitudes equal to N times the amplitude of a single oscillator. These maximum
amplitudes occur at intervals of time T [Eq. (12.7.8)1. For large N we have, loosely
speaking. a series of large-amplitude ‘spikes.” The smaller the frequency spacing

between the individual oscillators, the larger the time interval T = 2ir/ be
tween spikes, and conversely. The temporal duration of each spike is TN = T/N,
so the spikes get sharper as N is increased.

We have assumed for simplicity that each oscillator has the same phase [Eq.
(12.7.1)1. A more general kind of phase locking occurs when the phase differences
of the oscillators are constant but not necessarily zero:

(12.7. l0a)

( 12.7. lOb)

In this case the sum of the oscillator displacements (12.7.3) is replaced by

7 (N-- I (/2

.vIrn ( Z e”’ (12.7.11)
\ --(l/2+N -I( /

= + fla

—
= a

X(t) = X 5fl X(flt + n)



= ,

- 3 ,Iffl\

1 0

= Z (e)’”
rn 0

l ‘. e it.-’- i >v/2 ei(v
= e’’

— sin (N + 1)y/2

— sin /2

Thus we have proved

(12.7.12)
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and this may be evaluated to give the total displacement

7sinN(zt_+ cs)/2
X(t) = X0 sin (0t +

sin (r +a)/2,

having basically the same properties as (12.7.6) obtained with a = 0. (See also

Problem 12.5.)

• We prove (12.7.5) as follows. Let the sum be denoted SN. For convenience we will first

evaluate S

= (12.7.13)

The first step is to shift the summation label by introducing

in = n + N/2
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as claimed in (12.7.5).

sin Ny/2
Sv—

.sin vi..
(12.7.18)

SO that

SN e’’2

N

The second step is to make use of the identity

N I

z
I — x

12.8 MODE LOCKING

What we have in the example of the preceding section is a simple model of a mode-
locked laser. The individual oscillators in the model play the role of individual
longitudinal-mode fields, while their frequency spacing represents the mode (an
gular) frequency separation 27r(c/2L) = 7rc/L. The assumption of equal oscil
lator phase differences a (“phase locking”) in the model corresponds to the lock
ing together of the phases of the different cavity modes.

Our oscillator model suggests that, if we can somehow manage to lock together
the phases of N longitudinal modes of a laser, then the light coming out of the
laser will consist of a train of pulses separated in time by T = 2ir/ = 2L/c.
The temporal duration of each pulse in the train will be TV = T/N 2L/cN. The
larger the number N of phase-locked modes, the greater the amplitude, and the
shorter the duration, of each individual pulse in the train. As we will see, this is
indeed the essence of the mode-locking technique for obtaining ultrashort, pow
erful laser pulses.

The number of longitudinal modes that can simultaneously lase is determined
by the gain linewidth (FWHM) i’ and the frequency separation c/2L between
modes (cf. Figure 12.8). Under sufficiently strong pumping of the gain medium
we expect that approximately

(12.8.1)
c/2L c

longitudinal modes can oscillate simultaneously. The shortest pulse length we ex
pect to achieve by mode locking is therefore

TminTM__ (12.8.2)
cM ZPg

Then we can write
7

(12.7.14)

(12.7.15)

(12.7 16)

(12 7.17)

I — e’-

SN, = eN/2

—(N—l)
1rc
L L

Mirc
L

Figure 12.8 The distribution of N cavity mode frequencies as given by Eq. (12.8.7). The
situation is exactly the same as in Figure 12.7 for the case of N phase-locked oscillators.
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That is, the shortest pulse duration we can achieve by mode locking is (approxi

matelv) the reciprocal of the gain linewtdth.

As an example. consider the 6328-A He—Ne laser with a gain linewidth =

= 1700 MHz. For such a laser the shortest pulses obtainable by mode locking

are of duration

I I
= 1 nsec (12.8.3)

on0 1700 X l0 sec

In other words, for this laser, mode locking is not much of an improvement over

Q switching for the production of short pulses. This is often true of gas lasers.

Their gain linewidths are so narrow that ultrashort (say, picosecond. l0 (2 sec

duration) pulses cannot be obtained by mode locking.

On the other hand, consider a 6934-A ruby laser with 10’ sec ‘. For

this laser mode-locked pulses of 10 sec may be obtained.

Liquid dye lasers typically have broad gain profiles, with Vg 1012 sec’ or

more. With such lasers mode-locked pulses in the picosecond range are routinely

obtained.
A basic understanding of mode-locked laser oscillation may be reached by ex

tending only slightly our analysis of phase-locked oscillators. We associate with

the mth longitudinal mode an electric field

Em(Z. t) = ni 8m(Z) 5jfl(mt + /m)

= rn sink,,,z 5fl(rnt + m) (12.8.4)

where

and
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E(. i) = Z E,(. i)

g0 sin k,,, sin t (12.8.6)

where the summation is over all oscillating modes.
For a cavity I m long. irc/L 9 x 108 Hz. For near-optical frequencies, of

course, the lasing frequencies w,,, will be much larger; at a wavelength of 6000 A,
= 27rc/X 3 x l0’ Hz. The integer in in (12.8.5) will therefore typically be

in the millions. So let us write (12.8.5) as

k,, = (M + n) ir/L (l2.8.7a)

= (M + n) rc/L (12.8.7b)

where M is a very large positive integer (M 106) and ii runs from — (N — 1)
to + (N — 1), corresponding to a total of N (< M) modes centered at the
frequency Mirc/L (Figure 12.8). Then (12.8.6) becomes

N-i(/2
. (M + n)z . (M + nfrct

E(, t) = sin sin
—(N I/2 L L

/ (M + n)(z — ci) (M + nfr(z + ci)
= 2

— L
— cos

L

(12.8.8)

for the total electric field in the laser cavity.
Now we proceed as in the preceding section. The sum

(N—/2
(34 + n) ir(z — ci)

Z cos—- -

____

(N — 11/2 L

(N— l)/2

= Re Z enM0/

n = —(N— (1/2

= Re (‘e1Muu’
sin irN(z — ct)/2L

sin 7r(z — ct)/2L

= (‘cos _iz —ct)’\ sin irN(z —ct)/2L
(12.8.9)

L J sin ir(z — ct)/2L

where we have again used the identity (12.7.5). Similarly

k,,, ,n , in = I, 2. 3 ( l2.8.5a)

c, = k,c = in , in = 1.2. 3, ... (l2.8.5b)

For simplicity let us assume that the mode fields all have the same magnitude ()
and polarization, so that we can do our calculations below with scalar quantities.

Furthermore let us consider, without much loss of generality, the simplest example

of phase locking, in which all ,,, = 0. Then the total electric field in the cavity is
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cN

z

—“-f
±442L A A

(M + n) ir(z + Ct) 7 Mir(z + ct) sin irN(z + ct)/2L
cos =lcos

L L / sin ir(z ± ci)/2L

(12.8.10)

From (12.8.8), then,

8 / sin Nr(z ct)/2L
L(z,t)=——lcosk0—ct)—.

sin r(z —

sin N7r(z + ct)/2L\
— cos k0(z + Ct) .

—

(12.8.11)
sin 7r(z + ct)/2L /

where k0 = irM/L.
The functions

A(z t)
= sin N(z ± ct)/2L

(128 12)
sin ir( ± ct)/2L

appearing in (12.8.11) have basically the same form—and effect—as the function

A1.., (t) appearing in Eq (12 7 6) for tht. phase locked oscillator modcl In p irtic

ular A-(z t) has maxima occurnng at

z ± ci = m(2L). in = 0, ±1, ±2, . . . (12.8.13)

If we put our attention on a fixed value of z inside thc cavity for instance thcre

are pulses of peak amplitude N)/2 appearing at timc intervals of 2L/c cach

pulsc having a duntion 7/N (Figure 12 9) If we fix our attention on the spatial

distribution of E(z. t) at a fixed time t, we find pulses of amplitude N/2 with

spati il separation 2L each pulse haing a spati ii extcnt of 21/N (Figure 12 10)

In othcr words the ticld (12 8 11) rcpresents two truns ol pulses one moving

in the positive z direction and the other in the negative z direction In the usual

situ mon in which output is obtained through on of thc cavity mirrors the I iser

radiation appears as a single train of pulses of temporal separation and duration

2L/c and 2L/cN, respectively. All this confirms our conclusions deduced from

the phase-locked oscillator model.

A A

I

Figure 12.10 A mode-locked pulse train as a function of coordinate z, observed at a fixed

instant of time.

The fact that the pulses of a mode-locked train are separated in time by the

round-trip cavity transit time 2L/c suggests a “bouncing-ball” picture of a mode-

locked laser: we can regard the mode locking as generating a pulse of duration

2L/cN. and this pulse keeps bouncing hack and forth between the cavity mirrors.

Focusing our attention on a particular plane of constant z in the resonator, we

observe a train of identical pulses moving in either direction.

In most lasers the phases of the different modes will undergo random and

uncorrelated variations in time. In this case the total intensity is the sum of the

individual mode intensities. In mode-locked lasers, however, the mode phases are

correlated and the total intensity is not simply the sum of the individual mode

intensities. In fact the individual pulses in the mode-locked train have an intensity

N times larger than the sum of the individual mode intensities. The average power,

however, is essentially unaltered by mode-locking the laser (Problem 12.6).

• Before discussing how mode locking can be accomplished. it is worth noting that “phase

locking’’ or ‘synchronization” phenomena occur in many nonlinear oscillatory systems

besides lasers, and indeed these phenomena have been known for a very long time. C.

Huygens (1629—1695), for instance, observed that two pendulum clocks hung a few feet

apart on a thin wall tend to have their periods synchronized as a result of their small coupling

via the vibrations of the wall. Near the end of the nineteenth century Lord Rayleigh found

that two organ pipes of slightly diWerent resonance frequencies will vibrate at the same

frequency when they are sufficiently close together.

The contractive pulsations of the heart’s muscle cells become phase-locked during the

development of the fetus. Fibrillation of the heart occurs when they get out of phase for

some reason, and results in death unless the heart can he shocked back into the normal

condition of cell synchronization. There are other biological examples of phase locking,

but detailed theoretical analyses are obviously extremely difficult or impossible for such

complex systems. Modem applications of synchronization pnnciples are made in high-pre

cision motors and control systems. •

12.9 AM MODE LOCKING

The process by which phase or mode locking is forced upon a laser is fundamen

tally a nonlinear one. and a rigorous analysis of it is complicated. We will therefore

rely largely on semiquantitative explanations.
Figure 12.9 A mode-locked pulse train as a function of time, observed at a fixed posiiion z.
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Consider again the scalar electric field

E,,,(z. t) = 8. sin k,,,z sin (w,,,i + ) (12.9.1)

associated with a longitudinal mode. Suppose that the amplitude E,1, is not constant

but rather is modulated periodically in time according to the formula

g0(1 + rcos(2t) (12.9.2)

where Il is the modulation frequency and 8 and r are constants. Thus we have an

amplitude-modulated field

E,Jz. t) = g0( 1 + r cos t) sin (WmI + ,,,) sin k,z (12.9.3)

cos Qr sin (&,Ht + ) = sin (w,,,t + 4 + c2t)

+ sin (w,,t + — Qt)

we can write the field (12.9.3) as a sum of harmonically varying parts:

E,(z, t) = 80{sm (,t + 4m) + sin [(‘m + c])t + m1

+ sin [(.cm — ) r + ,,, } sin km Z

The frequency spectrum of the field (12.9.5) is shown in Figure 12.11. The

amplitude modulation of the field (12.9.1) of frequency c,,, has generated side-

bands of frequency c, ± 2. These sidebands are displaced from the carrier fre

quencv w, by precisely the modulation frequency 2. Sideband generation is a well-

known consequence of amplitude modulation.

In a laser the mode amplitudes 8m are determined by the condition that the gain

equals the loss. If the loss (or gain) is periodically modulated at a frequency Q,

we expect the fields Em(Z, t) associated with the various modes to be amplitude-

modulated (AM) with this frequency. In other words, we expect sidebands to be

generated about each mode frequency Wm, as in (12.9.5). In particular. if the mod

ulation frequency is equal to the mode frequency spacing

= m ,,, = 7rc/L

Figure 12.11 Frequency spectrum of the ampli
tude modulated field (12.9.5). The sidebands at

± t2 have amplitudes /2 times as large as the
W carrier amplitude at w,. In this case E/2 < 1.

the sidebands associated with each mode match exactly the frequencies of the two
adjacent modes (Figure 12.12). In this case each mode becomes strongly coupled
to its nearest-neighbor modes, and it turns out that there is a tendency for the
modes to lock together in phase. Loss or gain modulation at the mode separation
frequency is therefore one way of mode locking. Borrowing terminology from
radio engineering, we call this AM tnode locking.

The dimensionless factor r appearing in (12.9.2) is called the modulation index.
It is usually small. but it must be large enough to couple the different modes suf
ficiently strongly. This is analogous to the synchronization phenomenon observed
in the 17th century by Huygens with pendulum clocks. Their frequencies were

locked together when the clocks were mounted just a meter or so apart, but larger
separations weakened their coupling and destroyed the locking effect. If r is too

large, on the other hand, the locking effect is also weakened. This is analogous to

the distortion arising in AM radio electronic systems when the carrier wave is
“overmodulated,” i.e., when € > 1. (See also Problem 12.7.)

A heuristic way to understand why AM mode locking occurs in lasers is first
to suppose that lasing can occur only in brief intervals when the periodically mod
ulated loss is at a minimum. These minima occur in time intervals of T = 2ir/

= 2L/c if the modulation frequency 2 = . Between these times of minimum
loss the loss is too large for laser oscillation. Thus we can have laser oscillation

only if it is possible to generate a train of short pulses separated in time by T. This
is possible if the modes lock together and act in unison, for then we generate a
mode-locked train of pulses separated by time T. Thus mode locking has been
described as a kind of ‘survival of the fittest” phenomenon.

Wm_2 n-1 fUm Wm.t Wm+2

Figure 12.12 Longitudinal modes amplitude-modulated at the frequency equal to their
spacing. For clarity the AM sidchands are indicated as (lashed lines slightly dispaced from
the mode frequencies

Since

(12.9.4)

(12.9.5)

(12.9.6)

AM sidebands of modem

h/H:
‘I

II ‘I
III

I III II Iii II
*11 III II ii, II,
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12.10 FM MODE LOCKING

We will now consider the case where the phase of the field (12.9. 1) is periodically

modulated rather than the amplitude:

E,,(. t) = g,, sin k,,z sin (et + ,,, + 6 cos

The dimensionless constant 6 gives the amplitude of the modulation of frequency

. As in the case of amplitude modulation, this phase modulation gives rise to

sideband frequencies about the carrier frequency w. As we will now see, how

ever, the phase modulation produces a whole series of siclebands.

The time-dependent part of (12.10.1) may be written as

sin (wt + m + 6 cos Q r ) = sin ( w,, t + ) cos (6 cos 1 t)

+ cos (wt + ,,,) sin (6 cos ii,) (12.10.2)

Now we make use of two mathematical identities:2

cos (x cos 0) J0(x) + 2
(1)k

L5(x) cos (2k0) (12.lO.3a)

sin(xcos0) = 2Z(_l)kJ2icos[(2k + 1)0] (12.lO.3h)

where .I,1(x) is the Bessel function of the first kind of order n. The first few lowest-

order Bessel functions are plotted in Figure 12.13. These plots are all we will need

2. See, for example M. Ahramowitz and I. A. Stegun. Handbook of Marheniatual Functions (Dover,

New York, (971). trmuIas 9.1.44 and 9.1.45.

F’igure 12.13 The first few lowest-order Bessel functions of the first kind, J,,(b).
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to know about them. The functions (12.10.3) appear in (12.10.2) with x = 6 and

0 = t. Thus

sin + + 6 cos 1t)

= sin (wt + )(J(6) + 2
kI

1)k
J2k(ô) cos (2kt))

± 2 cos (w,,, t + ,,)
A
J A I (6) cos [(2k + 1) t]

k = 0

= sin (,,,t + ,,,) [i 2J (6) cos 2!2t

+ J4(6) cos 4t — 2J6(6) cos 6 +
‘

+ 2 cos (w,,t + ,.)[J1 (6) cos -- J5(6) cos 3fr

+ J5 cos 5h — ..,] (12. 10.4)

sin x cos y = [sin (.r + v) + sin (x — y)]

y = [cos (x + y) + cos (x
—

Using the identities

therefire, we have

sin (w,,t + + 6 cos t)

= J>(6) sin (ce,,,t ± rn)

+ J1 (6) { cos [(Le + ) I + + cos
— ) t + ,,,J }

-- J, { sin [(e + 2!2) I + + sin [(c — 2) t + ] }
— J3(6) { COS [(w,,, + 3) t + + cos [(w, -- 3Q) r + j }
+J4(6){sin [(ce,,, + 42) t + + sin [(o,, — 4) I + j}

+ J (6) { cos [(w, ± 5)i + a,,] + cos [(we, — 5) + m I }
(12.10.5)

after a simple rearrangement of terms in (12.10.4).
Whereas amplitude modulation produces one sideband on either side of the

carrier frequency ce,,. phase modulation in general produces a whole series of pairs

of sidebands. If the “modulation index” 6 is somewhat less than unity, however.

we observe from (12.10.5) and Figure 12.13 that the first pair of sidebands

and

(12.10.1)

-

C
0

1 2 3 4 5 6 7 8 9 10
8
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Figure 12.14 Frequency spectrum of the function (12.10.5) for the modulation index (a)

5 = I and (b) S = 5.

at w,,, ± 2 is strongest. As the strength of the modulation increases, i.e., as ô

increases, more sideband pairs become important. Figure 12.14 shows the fre

quency spectrum of the function (12. 10.5) for S = 1 and S = 5.

Again borrowing the terminology of radio engineering, we refer to this type of

modulation asfrequencv modulation (FM). As in the AM case, frequency modu

lation at the mode separation frequency = = irc/L causes the sidebands

associated with each mode to be in resonance with the carrier frequencies of other

modes. This results in a strong coupling of these modes and a tendency for them

to lock together and produce a mode-locked train of pulses. This is called FM

mode locking.

• Information cannot he transmitted with a purely monochromatic wave. The basic idea of

radio communication is to modulate a monochromatic (carrier) wave in some way (AM or

FM), transmit it, then demodulate ii at a receiver to recover the information contained in

the original modulation. In the AM case the sidebands imposed on the carrier wave are

displaced from the carrier by an amount equal to the modulation frequency, independently

of the modulation index €. In the FM case, on the other hand, the “width” of the modu

lation about the carrier is directly proportional to the corresponding index 5, approximately

independently of the modulation frequency 0. This makes FM transmission less susceptible

to interference from extraneous sources (lightning, electric power generators, etc.) than AM

if its modulation index is large. At the same time, there is a disadvantage to FM in that the

amplifiers in the tmnsmitter and receiver must have large bandwidths in order to pick up a

good portion of the sideband spectrum. A large bandwidth is most easily obtained at higher

carrier frequencies; this is analogous to the fact that the bandwidth of a laser cavity increases

with frequency if the cavity Q is held constant jEq. (11.9.21)1, and explains why FM radio

stations broadcast at higher frequencies than AM stations (Problem 2.9).

12.11 METHODS OF MODE LOCKING

Lasers can be mode-locked in a variety of ways. We will h)dus our attention on

three common and illustrative techniques.

Acoustic Loss Modulation
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This method is based on the diffraction of light by sound waves, i.e.. on Brilloujn
scattering. A sound wave is basically a wave of density variation—and therefore
refractive index variation (recall Section2.4)—in a material medium. As discussed
n Appendix 12.B, a sound wave can therefore act as a “diffraction grating” for
light. A sound wave of wavelength X. diffracts light of wavelength X with diffrac
tion angle 0 (Figure 12.19) satisfying (Eq. 12.B.3)

x
sinO = (12.11.1)

where a is the refractive index of the medium.
A standing sound wave in a medium may be represented by a refractive index

variation of the form

n(x, t) = a sin(ce,t + 0) sin kx (12.11.2)

The periodic spatial modulation sin k,x of the refractive index gives rise to dif
traction at the angle 0 given by (12.11.1) with X = 27r/kç. The temporal oscil
lation at frequency w means that the diffraction is most effective at times r such
that sin (test + 0 = ± I. for at these times the “diffraction grating’’ represented
by sin k5x has its largest amplitude ( ±aL Thus the diffracting strength of the
standing acoustic wave varies harmonically in time with frequency 2w.

We can now understand how the diffraction of light by sound can he used to
periodically modulate the cavity loss in a laser, and thereby to achieve AM mode
locking. If a block of material having a standing acoustic wave is inside the cavity.
the diffractive loss associated with it will oscillate with frequency 2w,. If 2w,

= irc/L. the cavity loss is modulated at the mode frequency separation, as
desired for mode locking Since audible sound waves have frequencies roughly
from 20 Hz to 2 >< l0 Hz. while the mode separations in a laser are typically
much larger, it is clear that ultrasonic acoustic modulation is required for mode
locking. This maybe done by driving a block of quartz with a piezoelectric ctystal.

Electro-optical Phase Modulation

This method is based on the electro-optical effect. Consider a linearly polarized
monochromatic wave propagating in the z direction in a medium with refractive
index n:

E(z, t) >cos (wt — kz) 0cos w(t
— (12.11.3)

Suppose we have a Pockels-type electro-optical medium in which the refractive
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8:1 modulation
freency

8:5



392 MULTIMODE AND TRANSIENT OSCILLATION 12.11 METHODS OF MODE LOCKING 393

index for light polarized in the x direction is linearly proportional to an applied Saturable Absorbers
electric field E

in thc case of Q sitching a pissic AM modc locking ma he ichiccd

+ p (1
through the use of a saturable absorber. Assume for simplicity that the absorption

—.
. coefficient a of the absorption cell saturates according to the formula

Therefore the electric field (12.11.3) in such an clectro-optical medium in which a0
an external field E is applied is a

= T771tt (12.11.8)

for a homogeneously broadened line. It is also convenient (but not necessary) to
E(2, e) = X80 COS — Z — — Eaz) assume that the saturation intensity I of the absorption line is very large corn-

pared with the laser intensity I. Then (12.11.8) is approximated by

= cos w(t — z) — (12 11 5) a a0
— a01/1 (12 II 9)

where
Suppose first that there are two oscillating cavity modes, so that the total cavity

electric held is

=
- (12 11 6)

E(- r) = sinh1 - sin(c1 t + ) + sink sin(c t + ) (12 II 10)

and the cavity intensity is

After a distance I of propag ition in the mcdium thc (ic Id Ii is the phase
I(c. t) = ce0lz(:. tr

= V (12 II 7)
((o{’ Sin sin (w11 +

4 + sin2k7 sin2 (ce2t + 2)

wherc V I’ j is thc potcntial differcnce due to thc hcld f Thus if an electro
optical cell is inserted in a laser cavity, the laser can be FM mode-locked by

+ 2 sink1 z sink2z sifl(w1 t + i) sin(ce2t + 2)} (12.11. II)

varying the applied voltage V sinusoidally at the mode separation frequency .
In general a linearly polarized electric field entering an electro-optical medium

Now the last term can be rewritten using the identity

can be decomposed into two orthogonally polarized components. each of which
has a different refractive index. The two orthogonal polarization directions are

2 sin(w1 I + ) s1n(e2t + 2) cos j(w c) t +
—

determined by the orientation of the cell and thc applicd field F In deriving

(12. 11.7) we have assumed that the incident field is linearly polarized along one
cos [(wi cc2) i + ± 1

of these directions In thc gcncr il case the field will h ivc components in both (12 11 12
dircctions and in i Pockcis cell the to componcnts will hac diflcrcnt s ilucs of

This results in i ph ise dificrence betsecn thc to ficld componcnts It thc ccli
Thc ticqucncics and

—
aic s c laigc compared s ith thc modc

produccs i tot il ph Isc ch lnc at 90 for cxampic thc inc idcnt linc irIs pal inicd
scp liation ficqucncs = It sc isci ic thc intcnsit (12 II II) Oscr i

held will bc conscrtcd to i circularh pal inzcd hickl is in thc cisc illustratcd in
hc optic il pcnods thcicforc c obt on

Figure 12.3 for a Kerr cell. That is. a cell containing an electro-optical material

can ict as a quartcr w isc pl ttc Fhc ads mt ige of using clcctro optical mcdii rather
- ) = [ - + sin I. -

than naturally hiretringent materials, of course, is the switching and control ca- 2 -

- 2’-

pahilities one has through the adjustment of the bias voltaoe. -7 . .+ _c,1,, sink1z sin k, cOS(t +
— Q2)J (12.11.13)



394 MULTIMODE AND TRANSIENT OSCILLATION 12.12 AMPLIFICATION OF SHORT OPTICAL PULSES 395

The intensity I has a time dependence that is simply a sinusoidal oscillation at

the mode beat frequency . The absorption coefficient (12.1 1.9) averaged over a

few optical periods will therefore have this same time dependence. In other words,

if a saturable absorber described by (12.11.8) is placed inside the laser cavity, it

results in a cavity loss modulated at the mode separation frequency, and therefore

acts to mode-lock the laser. The argument may be extended to the case of N cavity

modes, and we conclude that mode-locked operation may be achieved by placing

a cell containing a saturable absorber inside the cavity.

This technique is commonly used in mode-locked solid-state and dye lasers,

which, as discussed in Section 12.8, are especially attractive in this regard.

• Although both Q switching and mode locking may be accomplished by mserting a cell

containing a saturable absorber into the laser cavity, there are somewhat different require

ments for the absorber in the two cases.
In the case of mode locking the absorber should respond very quickly to any changes in

the cavity intensity. This was implied in our discussion above, where it was assumed that

the saturation behavior of the absorber is fixed according to (12.118); there are no transient

terms showing how a changes from O( I + I/I) to a0( I + J,/Jt) as I changes

from I to ‘2’ Rather, it was assumed that a reacts instantaneously to variations in I, or at

least with a response time shorter than 2L/c. This requires the absorber to have a short

relaxation time, whereas a longer one would be tolerable for Q switching.

Similarly, it is desirable for Q switching that the saturation intensity of the absorber be

considerably smaller than that of the laser gain medium. This ensures a large, unsaturated

gain after the loss associated with the absorption cell is fully saturated, and allows the giant

pulse to build up. In the case of mode locking, however, a relatively large absorber satu

ration intensity can still give rise to the required modulation. Our assumption I < I’ in

(12.11.9) was made for convenience, not necessity.

Thus it is possible to Q-switch a laser with one absorption cell and mode-lock it with

another. Frequently, however, both effects are present with a saturable absorber, and a

switched laser will show signs of mode locking. The output of such a Q-switched, mode-

locked laser is indicated in Figure 12.15. •

Figure 12.15 Output intensity vs. time of a Q-switched, mode-locked laser. The dashed

curve is the envelope of the mode-locked pulse train. Each contributing mode viewed in

dividually has the time dependence of the Q-switched envelope, but because the modes are

locked the total output is in the form of a group of pulses separated in time by 2L/c.

12A2 AMPLIFICATION OF SHORT OPTICAL PULSES

In many applications it is necessary to amplify laser radiation by passing it through

a medium with a population inversion on a resonant transition. The amplifier is

often made of the same material, and pumped in the same way, as the gain cell
of the laser, The most important difference between the laser and the amplifier is
simply that the amplifier does not have a resonator with mirrors for feedback.
Radiation incident on the amplifier undergoes amplification by stimulated emission
and emerges at the other end with greater energy. A series of amplifiers may be
employed in tandem, and mirrors may be used to allow the beam to make several
passes through a single amplifier. In this section we will consider a pulse of ra
diation making a single pass through an amplifier.

We will assume that the duration of the laser pulse is short compared with any
pumping or relaxation times, so that the changes in level populations in the am
plifier are due mainly to stimulated emission and absorption. The rate equations
for the level population densities of the amplifying transition are then simply

aN-, g
— —(N2 — N1) I (12.12.la)

at hi’

= (N, — N1)! (12.l2.lb)
at he

since pumping and relaxation processes do not affect N2 and N1 significantly during

the pulse; this condition for a “short” pulse typically requires pulse lengths shorter

than about a nanosecond. Equations (12. 12.1) may be combined to form a single
equation for the population difference N N2 — N1:

2u
——NI (12.12.2)

We also write the (plane-wave) equation for the variation in space and time of the
intensity:

+ = uNI (12.12.3)
az cat

Let us integrate both sides of (12.12.3) over time:

C°° lat 1 a!\

+
dt = uNldt (12.12.4)

a cat

Here t = — and t = + denote times long before and after the pulse has

“turned on” at z, so that I(z, t = —) = I(z, I = +) = 0. Thus

>‘

C

time —



dt = I(z, t=+) — I, t=—) = 0

u N(z, t) l(z, t) di

I(z. 1) di

is called the fluence. and is a measure of the total energy content of the pulse.
Note that the fluence has units of energy per unit area, and should not be confused
with the photon flux (number of photons per unit area and time) that was intro
duced in Chapter 7 and used extensively in Chapter 10.

Equation (12.12.6) may be simplified by solving (12.122) tbr N(z. t):

N(z, t) = N(z. —) exp I(z, t’) dt’)

where N(z, —) is the population inversion at z before the pulse has arrived.
Thus we find

d4 / 2a ‘

—
= uN, —) I(z, t) exp — —-- l(z. t’) dt’) di

dz - hi’
a’

1w a / 2u t’
= —uN(:. —) —- exp—---\ I(z.t’)dt’)dt

hi’ / 2u (‘
= — N(c. —) exp — — l(:. 1) di ) —

h i- /

Then use of (12.12.7) allows us to write

d hi’ 4 2uç&(:) \-=--N(.-oo) lexPj)j

= g0(l — e°) (12.12. 12)

where we have used the fact that the small-signal gain coefficient g0 ( z, — cx) =

uN(z, —). In many cases of interest the spatial variations of g0 are small, and
we can take g0 to be a constant in the differential equation (12.12. 12) for the
fluence. Then this equation has the solution

O(z) = In [1 + — 1)] (12. 12.13)

= In [i + G0(exp (jfl/sat) — 1)1 (12.12.14)

where (ut (L) is the output fluence of an amplifier of length L with small-
signal total gain G(, = given the input fluence ,, (0) to the amplifier.
We can also write (12.12. 14) in terms of the total gain G

C = X’ In [i - Go(eX — I)]. X (12.12.15)

It is important to note that this solution for the output fluence is independent of
the shape of the pulse as a function of time. As long as the pulse is confined, to a
good approximation, to a finite duration, and this duration is short compared with
any pumping and relaxation times, Eq. (12.12. 15) gives us the output fluence as
a function of the small-signal gain. length. and saturation fluence of the amplifier.
In Figure 12. 16 we plot G as a function of X. assuming a small-signal total gain
factor Go = 5000.

lfX = < 1, then (12.12.15) becomes

396 MULTIMODE AND TRANSIErT OSCILLATION

and so (12.12.4) becomes

where
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This is just the photon energy divided by twice the stimulated-emission cross sec
tion.

The differential equation (12.12. 10) may be written in terms of the ratio O()
=

dz

or

(1 .1 .5)

(12.12.6)

(12.12.7)

(1’ I .8)

(12.12.9)

hv
= N(z, —) I — exp (— —)Sat

where we define the saturation Jluence

hp/2u

(12.12.10)

(12.12.11)

G X’ ln (1 + G0X) (12.12.16)

If furthermore G,,X < 1. then In (I + G,,X) G,0X and we have the small-
signal limit on total gain

G Go = (12.12.17)

If e X
= exp (‘‘ut/sat) >> 1, on the other hand, then

C X in (G,eX) = X ‘In (exp (g01. +

= X ‘(g00L + X) = I + gL/X (12. l2.l8a)



+ (g.) L

This result identifies go&a, as the largest energy per unit volume that can he ex

tracted from the amplifier when ,, is large compared with This is analogous

to the result (11.3.8) for a cw laser, where go’sat is the largest possible rate of

energy extraction per unit volume. Using the fact thatg0 = eN and =

we can write (12.12.18) in the fonu

Nh i’

OUt + —— L

This says that the largest extractable energy density corresponds to taking half a

photon, on average, from each excited atom of the amplifier. The reason for the

factor is simply that in the limit of large fl/&at under consideration, the am

plifier is well saturated, with the upper- and lower-level populations having equal

probabilities.
This theory of short-pulse amplification is often referred to as the Frantz—Nod

vik model,3 and is useful in the design and interpretation of short-pulse amplifi

cation experiments. It is worth noting, however, that the model, which is based

on the rate-equation approximatiOfl does not account for coherent effects like 2 ir

pulse formation (Section 8.2 and Problem 8.4).

3 L M Frantz and J. S. Nodvik. journal n/Applied Physics 24. 2346 (1963).
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12.13 AMPLIFIED SPONTANEOUS EMISSION

The theory of pulse propagation presented in the preceding section is used fre
quently in the analysis of laser amplifiers. However, for high-gain systems this
theory ignores an important phenomenon: the amplifier can amplify not only the
mput field from a laser oscillator (or another amplifier), but also the spontaneous
radiation emitted by the excited molecules of the amplifier itself. It is easy to see
that spontaneously emitted photons at one end of an amplifier, which happen to
he directed along the amplifier axis, or close to that direction, can stimulate the
emission of more photons and lead to substantial output radiation at the other end
of the amplifier. This radiation, which appears regardless of whether there is any
input radiation, is called amplified spontaneous emission (ASE).

It is clear that ASE will have at least some properties resembling laser radiation.
in particular, it will he narrow-band in frequency and it will also be highly direc
tional, simply because the amplifier is long and thin. For these reasons high-gain
systems emitting ASE are often referred to as “mirrorless lasers.” Such mirrorless
lasing, also called “superradiance,” is well known in the 3.39 m He-Ne laser.
and in high-gain excimer. dye, and semiconductor laser media.

For a simple quantitative description of ASE. let us consider the steady-state
equation for the propagation of intensity in an amplifying medium characterized
by the gain coefficient g, namely

(11
=

The added term is the contribution to dI/dz from spontaneous emission of photons
of energy he by N, excited molecules per unit volume with spontaneous emission
rate A1. Since spontaneous emission is (statistically) isotropic. we have included
a factor f2/4ir. where is an appropriate solid angle; this factor accounts for the
fact that only a fraction /4?r of spontaneously emitted photons are emitted in
directions for which amplification can occur. In the simplest approximation 1 is
taken to be A/L2, where A is the cross-sectional area of the amplifier and L is its
length.

In the small-signal regime in which g and N2 are independent of I, we have the
following solution of equation (12.13.2):

4.5

3.0
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IogG

or

Iog10X

Figure 12.16 Gain G(X) lEq. (12.1215)1 ftwG0 5000.

4

4

(l2.12.18b)

e

(12.12 19)

S

S
4<

4<

(12.13.1)

If 1(0) = 0, then this equation predicts that I(z) 0 for all z. In other words, this
equation does not account for ASE. To include the possibility of ASE we add to
(12.13.1) the effect of spontaneous emission:

= gi + (A21N2hv) W/4) (12.13.2)



(A21hvrt (N

\ 4r /\gJ

for exp(gz) >> 1. For simplicity we will assume that the lower-level population

of the amplifying transition is negligible, so that g aN2, where a is the stimu

lated emission cross section. For a homogeneously broadened transition having a

Lorentzian lineshape of full width at half-maximum v we have

/X2A2 / 2

______

a
=
l\81r) \) 4ir2cX

/‘7rhcil’\ -

1(z) l\ x5 ) iXe

for the growth of intensity with propagation in the amplifier.
The result (12.13.5) allows us to estimate the importance of ASE in high-gain

amplifiers. [In careful design analyses, of course, it is necessary to include gain

saturation, which has not been done in the derivation of (12.l3.5).1 ASE can be

detrimental to the performance of amplifier systems for two reasons. First, the

ASE can significantly deplete the upper-level population, thus diminishing the gain
available to the input signal to be amplified. Second. the ASE radiation can irra

diate a target before the arrival of the amplified signal, and thus modify an exper

iment in unintended ways.

ASE can be expected to deplete seriously the upper-level population of the

amplifying transition if it becomes comparable in magnitude to the saturation in

tensity, j.t, of the transition. Setting 1(L) given by (12.13.5) equal to 1. we
have

x51 s”t

gL = log
irhc22X

for the gain-length product of the amplifier at which gain depletion due to ASE

may be an important consideration, It is clear from this formula (and (12.13.5))

that large-bore amplifiers, subtending large solid angles, are most susceptible to

ASE problems.

Amplified spontaneous emission is sometimes described from the standpoint of an . ‘ef

fective noise input.” This approach is based on (12.13.1> rather than (12.13.2). It begins

by noting that, since equation (12. 13.1) gives 1(c) = 0 for all c if 1(0> = 0. some effective
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1(z)
(A2thv) (N2)

(5
- 1)

where & = (c/v2)v is the width in the emission wavelength X = c/u. In this

case (12.13.3) becomes

(12 13.3)

(12.13.4)

(12.13.5)

(12.13.6)
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nput 1(0) ‘eft * 0 is necessary in order to obtain a nonvanishing I(z) An expression
tr is obtained by recalling that in a cavity of dimensions large compared with a wave
length there are (87ru2/C3).v modes of the field per unit volume in the frequency interval
Iv. v + ]. (Section 1.3) And according to the quantum theory of radiation each of these
modes has a zero-point energy 4hv. There is therefore a zero-point field energy per unit
volume

p(v) (-2)hvv
= (4ithv3)

(12.13.7)

in the wavelength interval IX, X + X I. Clearly we should take X to be on the order of
the spectral width of the laser transition. For our purposes we replace X in (12.13.7) by
[rX. where .X is the transition linewidth (FWHM). Then the ‘‘quantum noise’’ intensity
it the laser transition wavelength X is given by

I = cp(v)0/4
= (12.13.8)

where we have inserted the factor Q/4K to account for the fact that only those modes within
the solid angle 0 appropriate to the amplifier can act as effective noise sources. Thus, from
(12.13,1),

1(z) = = (12.13.9)

which reproduces (12.13.5). and thus validates the approach to ASE based on an ethctive
no1se input.

ASE radiation can have spatial coherence comparable to true laser radiation,
hut it generally lacks the same degree of temporal coherence. (See Chapter 15 for
a discussion of spatial and temporal coherence.) The latter property is understand
able from the fact that ASE is basically amplified “noise.’’ The bandwidth of ASE
is typically a ftw times smaller than the gain linewidth v.

12.14 ULTRASHORT LIGHT PULSES

With mode-locked lasers it is possible to produce ultrashort, extremely intense
pulses of radiation. Mode-locked lasers using saturable absorbers are used to pro
duce, rather routinely, picosecond pulses with peak powers in some cases exceed
ing lOll W (100GW). There are techniques ftr producing even shorter light pulses.

There are many scientific and technological applications of these ultrashort light
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pulses. For instance they can be used to study extremely fast photoproc sses in Optical pulses shorter than 10 fs (1 femtosecond = 10-15 sec h’ h
molecules and semiconductors. Especially promising applications may be possible tiieved by corn recsir h

) a’e ecn

in biological systems, where it has already been determined that certain funda- I r
p g in I is way ultrashort pulses from a colliding-pulse dye

mental chemical reactions occur on picosecond time scales Intense laser pulses

ha-e also been of interest in connection with laser isotope separation and controlled PPENDIX 12.A RUNGE—KUTTA FORTRAN AND
thermonuclear fusion, and it seems safe to say that many new applications will be B4SIC PROGRAMS

developed in the future. Not surprisingly, therefore, an entire field of research has

crown up around the ceneration of ultrashort liuht pulses. Although it is well be- e Run e Kg u a a goritm is an easily implemented and frequently used method
yond our scope in this book to discuss in detail these developments se will men- rhe numerical integration of ordinary ditTerential equations. For the first-order
tion bnefly somc techniques in usc. tierential equation

One of these is tht. colliding-pulse laser ‘This is a mode-locked three-mirror

ring laser with two counter-circulating pulse trains (Figure 12.17). Pulses in each (iV

direction pass through a very thin (about 10 m)jet of a saturable absorbing dye. F(x. y) ( 12.A. 1)

The absorption coefficient of the absorber i smallest when the intensity is largest.

Therefore the cavity loss is least when the counter-circulating pulses collide and e fourth-order Runee—Kutta aloorithm for v( - + Ii)
overlap within the thin dye jet. The thinness of the absorber forces the pulses to

is

overlap within a very short distance and thus over a very short time interval ( -

10 gm/c 3 x iO see).
y(x + h) = y(x) + (k + 2k2 + 2k3 + k4) (12.A.2)

Another technique involves chirping. by which an ultrashort pulse from a laser

can be further compressed. A chi,ped pulse is one in which the carrier frequency .shere

w has a small time dependence. In partkular, it has a linear time dependence of

the form = ce + 3t. A pulse can be deliberately chirped by passing it through
k1 = hF(x, )

a medium with a nonlinear refractive index. i.e.. a medium in which the refractive
.-

index depends upon the electric field (Chapter 17). rhe chirping results in a spec k2 = hF(x + 1, y +

tral broadening of the pulse, i.e., it extends the range of frequency components
2 2

contained in the pulse. A chirped pulse can be compressed by passing it through Ii k.

a dispersive (i.e., frequency-dependent) delay line. If the higher-frnquency corn- = +
. y +

ponents of the pulse travel more slowly than the lower frequency components the

delay line is designed to make them catch up with the lower frequencies on the k4 hF(x + h. y + R) (l2.A.3)

leading temporal edge of the pulse. By broadening the spectral width of the pulse

by chirping, therefore, it is possible to narrow it in time.
Ehe form of (12.A.2) and (12.A,3) is such as to duplicate the Taylor series for

x h)up to fourth order in the step size h. The method is easily extended to
systems of equations, as in the example below.

The Runge—Kutta method is described in detail in many textbooks on mathe

saturae
matical methods and numerical analysis. For the reader’s convenience we list here

absorber a FORTRAN program br the Runge—Kutta Integration of the two coupled equations

- PROGRAM MAIN
DIMENSION Y(2), DY(2), W(2,5)

C WIS A WORK ARRAY USED IN SUBROUTINE RUNG

(b) Y(l)= l.E—3

Figure 12.17 (a) A colliding-pulse ring laser with countcrcirculating pulses. (hI The low-
-

Y(2) = 2.0

est-loss condition is for the colliding pulses to synchronize and overlap inside the thin DT = .01

saturable absorber. NSTEP = 1000
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DO 1 N = 1, NSTEP
CALL RUNG(2,Y,DY.T,DT,’)
CONTINUE
PRINT 100,T,Y(I),Y(2)

100 FORMAT(3E16.7)
STOP
END
SUBROUTINE DERIV (T,Y,DY)
DIMENSION Y(2),DY(2)
DY)(Y(2)_l)*Y<I)
DY(2) _Y(1)*Y(2)
RETURN
END
SUBROUTINE RUNG(N .Y ,DY,T.DT.W)
N IS THE NUMBER OF EQUATIONS
DIMENSION Y(N),DY(N).W(N.5)
DOIOJ 1,N
W(J,1)=Y(J)
CALL DERIV(T.Y,DY)
DO 20 J=l,N
W(J.2) =DY(J)*DT
Z=T+ .5*DT
DO 401=2,3
DO 30 J=LN
Y(J) =W(J,1) +W(J,I)/2.
CALL DERIV(Z,Y.IY)
DO 40 J=1,N
W(J,l+ 1)=DY(J)*DT
Z =T + DT
DO 50 J=I,N
Y(J)=W(J.1) +W(,4
CALL DERIV(Z,Y,DY)
DO 60 J=1,N
W(J,5) =DY(J)*DT
DO 70 J= 1,N
Y(J) =W(J.l) + (W(J.2) +2. *(W(J,3) +W(J.4)) +W(J,5))/6.
T =T + DT
RETURN
END

The dependent variables are stored in the array Y. In this case [Eqs. (12.4.4)1
Y(1) x and Y( ) y. T is the independent variabi (r) and the step size DT
Idenoted by Ii in (12.A.3)1 is taken to be 0.01. In general DT should be taken
small enough to give an accurate solution of the equations but not so small that
the program is unnecessarily time-consuming. The accuracy of the solution can
always be checked by halving the step size and noting whether there is a significant
change in the computed solution.

NSTEP is the number of integration steps. Each call to RUNG moves time
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forward by DT. In the way our program is set up, therefore, the final values of Yafter the last call to RUNG are Y(1) = X(tmax) and Y(2) = V(tmax), where tmax =NSTEP*DT. In general the intermediate values of Y can be stored in arrays forplotting purposes.
Subroutine DERIV simply defines the derivatives. In our example DY(1) =dx/dr and DY(2) = dy/dr. Subroutine RUNG does a fourth-order Runge—Kuttaintegration, using the derivatives defined in DERIV. N is the number of (first-order) simultaneous differential equations to be solved; in our example N = 2. Wis a work array that must be dimensioned N by 5. Only the MAIN and DERIVroutines in our example depend on the specific problem, the RUNG subroutinebeing a “canned” routine, usable as it stands in every problem.

It may he worth noting that RUNG can also be used to solve higher-order differential equations of mixed order. For example, to solve the system

using RUNG, we let Y(I) = x, Y(2) = thc/dt. Then (12.A.4) is equivalent to thetwo first-order equations

DY(1) = Y(2), DY(2) = —Y(1) (12.A.5)

with initial values Y(l) = Y(2) = I.
RUNG can be used as it stands to solve complex as well as real systems ofequations. One simply writes the equations of DERIV in complex fonu and declares the appropriate variables COMPLEX.
It is easy to convert the FORTRAN program above to a BASIC program. We listbelow a BASIC program suitable for use on many personal computers. The programis set up specifically to solve an autonomous set of equations of the type shown inEqs. (12.4.4), where the right sides do not depend explicitly on the independentvariable, hut it can easily be modified to solve nonautonomous systems.

DIM Y(2), DY(2), W(2,5)
T =0
N=2
REM N IS THE NUMBER OF EQUATIONS
Y(1)=001
Y(2)=2
DT = .01
NSTEP= 1000
FOR K=l TONSTEP
GOSUB 1000
NEXT K
PRINT T, Y(l), Y(2)
REM DERIV
DY(l)=(Y(2)— l)*Y(I)

C

10

20

30

40

50

60

70

dx
—- + x = 0
dr =1

\UI /,o
(l2.A.4)
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DY(2) y(1)*Y(2)

RETURN
REM INTEG
FORJI TON
V(3,l)Y(J)
NEXT I
GOSUB 500
FOR I I TO N

W(J .2) =DT*DY(J)
NEXT J
FOR 1=2 TO 3
FORJ1 TO N

Y(J) =‘W(i , I) +W(J ,1)12

NEXT I
GOSUB 500
FORJ1 TON
W(J,1+ IUDT*DY(J)
NEXT I
NEXT I
FOR 1=1 TO N
y(J)=W(I, 1)+W(I.4)
NEXT I
GOSUB 500
FORI1 TON
W(J,5)=DT*D)
NEXT I
FOR 1=1 TON

Y(fl =W(i .1) + (W(J,2)+2*(W(J,3)+W FW(J ,5/6

NEXT I
T =T + DT
RETURN

APPENDIX 12.B DIFFRACTION OF LIGhT BV SOUNI)

The diffraction of light by sound waves can be understood h analogy with the

diffraction of X-rayS by crystals. The atoms of a crystal are spaced in a regular

pattern. and consequentlY they scatter radiation cooperatively with wclldefifled

phase relations between the fields scattered by different atoms. This results in scat

tering only in certain wc1ldefifled directions- and the process ts usually called

“diffraction” instead of “scattering.” Figure 12.18 shows a wave incident upon

a stack of crystal planes separated by a distance d. The allowed diffraction angles

are deteifled by the condition of constflictive interference of the fields re

flected” from different planes. As shown in the figure. these diffraction angles

satisfy the Bragg diffraction formula

2d sin 0 = niX, in = 1,2, 3.
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‘NN
N>4<
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B

Figure 12.1X Diffraction of a plane wave by a stack of crystal planes. Constructive interference of the two rays JO and I’O’ occurs when their path difference AB + BC is equalto an integral multiple in of the wavelength X. This gives the Bragg diffraction formula2d sin 0 = mX for the allowed diffraction angles 0. A more complete analysis shows thatthese angles give the only directions in which scattering occurs.

where X is the wavelength of radiation and d is the separation distance betweenadjacent crystal planes.

• Since d is on the order of I A in actual crystals, only wavelengths in the X-ray regioncan satisfy (12 .B. 1) and the requirement sin 0 1. The measurement of X-ray diffractionangles thus provides information about crystal structure. Indeed the use of crystals as “diffraction gratings” for X-rays has been one of the most important techniques of modemscience for probing the structure of matter. This technique was originally suggested by Maxvon Lane. The idea arose in connection with the question of whether X-rays were particlesor waves. [.. Brillouin predicted the diffraction of radiation by sound waves in 1922, andit was first observed ten years later by P. W. Debye and F.W. Sears. •

The refractive-index variation associated with a sound wave of wavelength X,has a spatial dependence of the form

zn(x) =asinkx (12.B.2)

where k = 2 ir / X, and a depends on material constants of the medium and theintensity of the sound wave. Equation (12.B.2) arises from the fact that a soundwave is basically a wave of density variation. Figure 12.19 shows an intuitive wayof understanding the diffraction of light by a sound wave. We regard the planes ofconstant x where (l2.B.2) is a maximum as “crystal” planes which, because oftheir regular spacing X, will diffract light only in certain well-defined directions.Indeed it turns out that the diffraction angles are given by the Bragg formula(l2.B.l)withd=Xandm= 1:

2Xsin0 = X/n (12.B.3)

We have included the effect of the refractive index n of the medium.The important difference between (12.B.I) and (12.B.3) is that there are nohigher-order diffraction angles corresponding to in > 1 in (12.B.3). This differ-
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Figure 12.19 Intuitive picture of diffraction of light by sound as diffraction from a fictitious

set of “crystals” planes defined by the intensity maxima of the sound.

ence arises from the fact that the “diffraction grating” associated with the sound

wave indicated in Figure 12.19 is really a spatially continuous one, not a discrete

set of crystal planes with nothing in between.
Equation (12.B.3) gives only the diffraction angle. It does not tell us the strength

with which the sound wave diffracts light, i.e., the fraction of light intensity dif

fracted after a given distance of propagation. This is determined by a and the

wavelength of the light.4

PROBLEMS

12.1 (a) Write the steady-state solutions of equations (12.2.5) in such a way as

to show the saturation of N2 with increasing I.

(b) Verify the equations (12.3.16) and (12.3.17) for the period and life

time of relaxation oscillations.

12.2 (a) Show that the quantity x defined in Eq. (12.4.1) is the cavity photon

number density divided by the threshold population inversion density.

(b) Show that Eqs. (12.2.5) may be written as (12.4.4) when the change

of variables (12.4.l)—(12.4.3) is made.

12.3 (a) Why is it that so much more power can be obtained from a Q-switched

laser than in ordinary continuous-wave operation?

12.4

(b) Suppose a Q-switched laser using a rotating mirror or a saturable ab

sorber is pumped continuously. How do you expect the laser to be

have?

Setup the equations forx and v [Eqs. (12.4.1) and (12.4.2)1 in the case

4. See. for example. R. Adler. The Interaction between Light and Sound:’ IEEE Spectrum. May

1967, p. 42.
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where Q switching is done with a saturable absorber with absorption coef
ficient a = 00 (1 + J/Jsat) If you have access to a computer, solve
these equations numerically using, for example, the Runge—Kutta algo
rithm of Appendix 12.A. You will have to assume values of the small-
signal absorption coefficient a1) and the saturation intensity j’31 of the ab
sorher. Determine how .v and v depend ri the choice of a0 and I”’.

12.5 (a) Suppose we have N oscillators whose frequencies are given by (12.7.2)
and whose phases are fixed but not “locked” according to
(12.7.10). Discuss the properties of the sum X(t) of the oscillator
displacements in this case. Can the maximum value ofX(t) be as large
as in the phase-locked case’?

(b)*Suppose that the phases are randomly chosen from an ensemble and
are completely uncorrelated. so that ( e’ “ > = 5,,, where < >
indicates an ensemble average. Then compute <X(t)> and <X2(t)).

12.6 (a) Show that each pulse of a mode-locked pulse train has an intensity N
times larger than the sum of the intensities of the individual modes
constituting it.

(h) Show that the average intensity of a mode-locked pulse train is equal
to the sum of the intensities of the individual modes constituting it.

12.7 Make a plot of the time-dependent factor in the brackets in Eq. (12.9.5),
choosing m = 0, f2 Wm/l0, and (a) E = , (b) e = 1, (c) = 5.

12.8 Consider the 6328-A He—Ne laser

(a) Estimate the shortest pulse that can, he obtained by mode-locking such
a laser.

(b) What is the duration of each pulse of the mode-locked train if the gain
tube has length I = 10 cm and the mirror separation L = 40 cm?

(c) What is the separation between the mode-locked pulses in part (b)?
(d) Why do liquid dye and solid-state lasers produce much shorter mode-

locked pulses than typical gas lasers’?

12.9 (a) Estimate the average power. in watts, expended by a normal human
adult. Assume that a “normal human adult” consumes 2500 dietitian’s
calories (2500 x 4185 J) per day, and that his output energy just bal
ances his input energy.

(b) Estimate the intensity at a distance of I rn from a 60-W light bulb.
(c) Estimate the average electrical power used to operate a typical house

in your area.

12.10 It is possible to “dump” the cavity of a pulsed laser by making the reflec
tivity of the output mirror effectively zero at the moment of peak intensity.
What is the advantage o f “cavity dumping” in this way?
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