

Laser: Theory and Modern Applications

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise Sheet 8: Shot noise, Johnson noise, heterodyne detection

8.1 Fiber Optics 1. Derive the numerical aperture of the fiber such that light is guided by total internal reflection (TIR) in the core of index n_2 surrounded by the cladding of index n_1 , i.e., derive the following relation:

$$NA \approx \sqrt{2\Delta \cdot n_1}$$
 (1)

where $\Delta = \frac{n_2 - n_1}{n_1}$.

- 2. Calculate the numerical aperture of a silica fiber with index $n_2 = 1.46$ and $\Delta = 10^{-2}$.
- 3. The V parameter is defined by the relation:

$$V = \frac{2\pi a}{\lambda_0} NA \tag{2}$$

Single mode propagation is satisfied for V < 2.405. Calculate the diameter of the silica fiber core at the telecommunication wavelength of $1.5~\mu m$ that ensures single mode performance. Do the same for the visible wavelength $0.5~\mu m$.

A solid core surrounded by air can guide light by TIR, so why aren't single-mode fibers of this type used in practice?

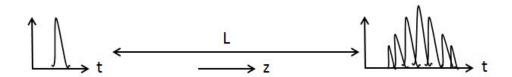
4. Estimate the length of the pre-form of fused silica with a diameter of 10 cm necessary to produce 1000 km of 8/125 fibers.

5. Double clad fiber

The absorption efficiency of pump light in the off-centered core of a double clad fiber of length L is given by:

$$n = 1 - e^{-F \cdot \frac{S_{core}}{S_{total}} \cdot \alpha \cdot L}$$

For the off-center double clad with an offset of 15 μm and core diameter 12 μm , clad diameter 400 μm , the confinement factor F is found to be 0.8. The absorption of the pump is 55 dB/m (typical value).


Compute the effective absorption coefficient and the absorption efficiency for a fiber length of 1 m, 5 m, 10 m, 20 m and 50 m.

hint: For the definition of dB and relation with absorption, see script on p.128.

8.2 Modal Dispersion in a Multimode Fiber The propagation constant of propagating modes

$$\beta_{lm} = \sqrt{n_1^2 k_0^2 - \frac{(l+2m)^2 \pi^2}{4a^2}} \tag{3}$$

- 1. Express β_{lm} as a function of the number of modes M and simplify the relation for $\Delta \ll 1$. 2. Derive the group velocity $v_{lm} = \frac{d\omega}{d\beta_{lm}}$ (assume $n(\omega)$ independent of ω) and calculate the minimum and maximum group velocity by noting that the minimum value of (l + 2m) is 2 and the maximum is \sqrt{M} .
- 3. A pulse entering a multimode fiber will propagate in all the discrete modes of the multimode fiber. The initial pulse will widen as a result of the different arrival times.

Derive the pulse broadening after propagating a length *L* in the fiber.

- 4. Calculate the pulse broadening after 100 km of fiber, $\Delta = 0.01$ and n = 1.46.
- 5. Calculate the pulse broadening for the gradient index fiber where $v_{min} = \frac{c}{n_1} \left(1 \frac{\Delta^2}{2} \right)$ and $v_{max} = \frac{c}{n_1}$.
 - 6. Which fiber type: step index or gradient index, delivers the least time broadening?

8.3 Even Mode Ansatz of an Asymmetric Waveguide The even mode ansatz of an asymmetric ric waveguide is

$$E_y = A \cdot e^{-p(|x|-d)} \cdot e^{-j\beta z} \quad |x| \ge d, \, n_1 \text{ index}$$
 (4)

$$E_y = B \cdot \cos(hx) \cdot e^{-j\beta z} \quad |x| \le d, \, n_2 \text{ index}$$
 (5)

Verify that the condition

$$\beta^2 = k_0^2 n_1^2 + p^2$$
 and $\beta^2 = k_0^2 n_2^2 - h^2$ (6)

is satisfied when E_y is a solution of the wave equation

$$\frac{\partial^{2}}{\partial x^{2}} E_{y}(x,z) + (k_{0}^{2}n_{1}^{2} - \beta^{2}) E_{y}(x,z) = 0 \quad |x| \ge d
\frac{\partial^{2}}{\partial x^{2}} E_{y}(x,z) + (k_{0}^{2}n_{2}^{2} - \beta^{2}) E_{y}(x,z) = 0 \quad |x| \le d$$
(8)

$$\frac{\partial^2}{\partial x^2} E_y(x, z) + (k_0^2 n_2^2 - \beta^2) E_y(x, z) = 0 \quad |x| \le d \tag{8}$$